
Received: 31 May 2021 Revised: 26 August 2021 Accepted: 12 September 2021

DOI: 10.1002/spe.3035

R E S E A R C H A R T I C L E

A computational approach for progressive architecture
shrinkage in action recognition

Matteo Tomei1 Lorenzo Baraldi1 Giuseppe Fiameni2 Simone Bronzin3

Rita Cucchiara1

1University of Modena and Reggio Emilia,
Modena, Italy
2NVIDIA AI Technology Center, Bologna,
Italy
3Metaliquid Srl, Milano, Italy

Correspondence
Matteo Tomei, University of Modena and
Reggio Emilia, Modena, Italy.
Email: matteo.tomei@unimore.it

Abstract
Efficiency plays a key role in video understanding modeling, and developing
more efficient spatiotemporal deep networks is a key ingredient for enabling
their usage in production scenarios. In this work, we propose a methodology
for reducing the computational complexity of a video understanding back-
bone while limiting the drop in accuracy caused by architectural changes. Our
approach, named, Progressive Architecture Shrinkage, applies a sequence of
reduction operators to the hyperparameters of a network to reduce its compu-
tational footprint. The choice of the sequence of operations is automatically
optimized in a coordinate-descent schema, and the approach transfers knowl-
edge from both the initial network and previous stages of the shrinking process
by employing a Knowledge Distillation and an adaptive fine-tuning strategy. As
each iteration of the shrinking algorithm requires to train a large-scale video
understanding network, we perform experiments on MARCONI 100—a super-
computer equipped with an IBM Power9 architecture and Volta NVIDIA GPUs.
Experimental evaluations are conducted using two backbones and three differ-
ent action recognition benchmarks. We show that, through our approach, high
accuracy levels can be maintained while reducing the number of multiply–adds
operations by four times with respect to the original architectures. Code will be
made available.

K E Y W O R D S
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1 INTRODUCTION

The last few years have witnessed a relevant interest in developing novel and more accurate video understanding mod-
els based on deep learning. Defining and training models which can effectively extract spatiotemporal features from
an input video is indeed a crucial challenge toward AI systems that can encode and understand motion, actions, and
interactions between people and objects.1 Such abilities are required to process the huge amount of video data that is
uploaded every day on video-sharing and social network platforms, as well as to endow novel surveillance systems with the
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538 TOMEI et al.

ability to understand and predict actions. Starting from models that adapted 2D CNNs to the spatiotemporal case,2,3 the
research community has over time developed more principled convolutional operators4-6 and architectural choices,7,8

gaining considerable advances in terms of effectiveness and accuracy.
Being videos sequences of consecutive frames, the development of video models requires significant computational

efforts with an impact on the cost of each experiment and, ultimately, on the speed of the research pace. While the compu-
tational cost of researching novel architectures is well known and has been properly managed by the research community
in the last years, the size and energy requirements of state of the art networks still severely limit their applicability in
production environments. Endowing any content sharing platform with real-time video analysis with a state of the art
spatiotemporal network, for example, would be almost unsustainable in the majority of cases.

In the attempt to make a step forward in the development of more sustainable spatiotemporal models, in this article
we devise a generic strategy for turning any video model into a more efficient one, limiting the loss in accuracy caused
by the reduction of computational demands. We see the process of shrinking a spatiotemporal network as that of apply-
ing a sequence of “reduction” operations over the factors which affect its computational complexity and sustainability
(Figure 1). For instance, one could reduce the computational footprint by halving the number of channels of the initial
architecture, and then reduce the spatial size of the input. In the same manner, one could gain a similar improvement
in efficiency by increasing the temporal stride of the input and then halving the number of channels. While both these
choices would increase the efficiency of the resulting network, surely they would have a different impact in terms of the
final accuracy of the two architectures when trained on a dataset of choice. Our approach, named, Progressive Architec-
ture Shrinkage (PAS), sequentially shrinks a base network by selecting an optimal sequence of reduction operators, so to
lower the computational complexity while limiting losing accuracy.

To maintain high accuracy levels after the application of each reduction operator, we employ a Knowledge Distillation
paradigm that aims at preserving the knowledge learned in the initial network. Further, we transfer knowledge between
each reduction step by applying an adaptive fine-tuning strategy. The resulting approach is general enough to be applied
to any video backbone and, after a sequence of reduction steps, produces a smaller network with a computational com-
plexity of choice. Although the overall approach requires a high computational load, since at each iteration the reduced
network needs to be retrained, PAS achieves impressive results in finding a good trade-off in computational complexity
and accuracy.

To validate the effectiveness of our approach, we perform experiments by shrinking two implementations of recently
proposed backbones, namely, R(2+1)D6 and SlowFast,7 when training on the Kinetics-400 dataset.1 Further, we also assess
the capabilities of the reduced networks on UFC1019 and HMDB51.10

Although recently there has been a growing interest in efficient video processing, and architectural modification have
been investigated in literature,8,11 to the best of our knowledge this is the first paper to employ a sequential shrinkage
approach to reduce the computational complexity of an existing network. While we chose to focus on action recogni-
tion12 because of its elevated computational requirements, we notice that our approach is general and could in principle
be applied to any deep neural network. Because of the significant reduction in computational load it can generate, the
proposed approach could benefit several other application scenarios in which computational resources are limited or
real-time processing is mandatory, like Edge AI13 or medical imaging.14

F I G U R E 1 Conceptual overview of our approach. We progressively shrink a video understanding model by modifying its input and
architectural hyperparameters through a set of reduction operators (in figure, outlined with 𝜖∗), minimizing the loss in accuracy during the
overall process—so to obtain a smaller but effective model
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Contributions. To sum up, our contributions are as follows:

• We propose a Progressive Architecture Shrinkage approach for lowering the computational demands of video net-
works. Our method is based on a coordinate descent optimization of a sequence of reduction operations, which
gradually shrink an input network.

• To reduce the loss in accuracy caused by architectural modifications, we devise a Knowledge Distillation and an
adaptive fine-tuning strategy to retain knowledge from the base network and previous iterations.

• We extensively evaluate our approach using two popular video backbones on Kinetics-400, where we show that our
approach can scale down the required FLOPs by a factor of four without a significant accuracy loss.

• Finally, we test the transfer capabilities of the learned networks on both UCF101 and HMDB51.

2 RELATED WORK

Video understanding networks. Recent advances in video understanding models on the Kinetics dataset1 are retrac-
ing the history of 2D backbones on ImageNet.15,16 Being convolutional networks the standard approach to challenge
video-related tasks, 3D CNNs are usually inspired by their 2D counterparts, with the additional burden of having to
manage the temporal dimension. Recent solutions extend kernels to handle both spatial and temporal information
together,2,17,18 decompose them to spatial and temporal ones,6,19-21 or even consider two separate but identical networks
to learn appearance and motion separately.3 As one of the most common motion descriptors is the optical flow,22 which
can provide a dense estimation of apparent motion, it is common to design a stream for RGB data and one for opti-
cal flow.17,23,24 Recent SlowFast networks,7 further, have demonstrated that the same RGB input can be processed by a
high frame-rate network and a low frame-rate one to achieve competitive results. Other works25-27 focus on temporal
modeling, exploit attention-like28 operators to find spatiotemporal relationships, or adopt Neural Architecture Search
techniques.29,30

Efficient 3D video architectures. Recently, there has been a growing interest in efficient video processing.11

Speed-accuracy trade-off was analyzed by Xie et al.,4 where early 3D convolutions were replaced by 2D ones in the network
design. A policy network to decide per-frame input resolution has been proposed by Meng et al.,31 improving efficiency
when handling less informative frames. Channel-separated convolutions for video classification have been explored by
Tran et al.32 Temporal shift module5 shifts channels along the temporal dimension and can be inserted into 2D CNN for
temporal modeling without extra computation. X3D networks8 progressively expand a 2D CNN through a form of coor-
dinate descent in the space defined by some expansion axes, achieving impressive computation/accuracy trade-offs. The
importance of efficiency in video-related tasks is highlighted by the huge efforts in this direction.20,33-38 Our proposed
approach starts from any existing architecture, and progressively reduces its computation requirements while preserving
accuracy at most.

Knowledge Distillation for video modeling. Knowledge Distillation (KD) has been first proposed by Hinton et al.,39 and
many alternatives followed.40 The idea is to train a small network, the student, using the knowledge from a pretrained
bigger model, the teacher. While many approaches have been proposed for applying KD in image-related tasks,41-45 by
transferring logits or intermediate features, the same does not hold for video-related tasks, where only a few methods have
been introduced. A student looking only at a small fraction of the input frames has been proposed by Bhardwaj et al.46

Other works have exploited KD for multimodal action recognition,47-49 transferring knowledge between networks trained
on different modalities. In this work, we propose to train progressively reduced students using KD to retain the knowledge
of the initial spatiotemporal network.

3 PROPOSED APPROACH

We propose a methodology that progressively reduces the computational needs of a given video architecture by modifying
either its input size or architectural hyperparameters while minimizing the impact of these modifications on the resulting
accuracy of the network. Starting from an initial network, this is achieved following an iterative approach, requiring large
scale and parallel computing during training, but providing a smaller model with far fewer resource requirements for
testing in the end.
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540 TOMEI et al.

F I G U R E 2 Example of a sequence of reduction operations obtained with Progressive Architecture Shrinkage (PAS). At each iteration,
PAS selects a reduction operator 𝜖 which is applied over the current network. The latter is trained with a KD criterion with respect to the base
network  and with an adaptive fine-tuning when possible

Given the initial network , at each iteration 𝜏 the procedure selects a reduction operator 𝜖𝜏 that can alter either the
input size or the architectural parameters of the current network, and which produces a reduced network 𝜏 = 𝜖𝜏(𝜏−1).
The choice of the sequence of reduction operations is optimized by following a coordinate descent schema which aims
at maximizing a trade-off between computational demands and accuracy. While the new reduced network is trained
on the same dataset on which  was trained, to limit the loss of accuracy we both distill the activations of the base
model and apply a sequential fine-tuning strategy. This is visually depicted in Figure 2, where we provide an overview
of the approach and of the sequence of reduction operations. The sequential shrinkage of the network continues until a
satisfactory computational complexity is reached.

3.1 Reduction operations

The structure of a spatiotemporal convolutional network is defined by both the shape of its input, in terms of the number of
frames and their spatial resolution, and architectural hyperparameters, for example, the number of layers in the network
and their filters. In the following, we define a basic set of reduction operations that are used to sequentially modify the
network’s structure at each iteration. All these operations have an impact on the input or on the architecture. Since these
belong to integer arithmetic, we omit rounding stages for clarity in the following.

• 𝜖s reduces the spatial resolution of the input by spatially downsampling the video clip by a factor 𝛾s. Given an input clip
shape of (T,C,H,W), where T is the number of frames in the video clip, C the number of RGB channels for each frame,
H the frame’s height, and W the frame’s width, this operation returns an output shape of (T,C,H∕𝛾s,W∕𝛾s), where the
two spatial axes have been downsampled through a resize operation.

• 𝜖t reduces the temporal length of the input, by cutting the input sequence up to a length proportional to 𝛾t. Given the
same shape of the original clip, this operation returns an output shape of (T∕𝛾t,C,H,W), where the new tensor only
contains the first T∕𝛾t frames of the original tensor.

• 𝜖f reduces the frame rate of the clip by increasing its temporal stride. Given an input clip shape of (T,C,H,W), this
operations again returns an output shape of

(
T∕𝛾f ,C,H,W

)
, where the new tensor is obtained from the first one by

sampling a frame every 𝛾f .
• 𝜖c reduces the number of output channels of all the convolutional layers of the network by a factor of 𝛾c. Given a

convolutional layer with C filters, the application of this operation amounts to setting the number of filters of the same
layer to C∕𝛾c.

• 𝜖l reduces the number of layers in the network by a factor of 𝛾l. As modern ResNet-like networks are organized as
sequences of convolutional blocks, we implement this operation as a reduction of the number of layers inside each
block—so that the resulting network maintains the original architectural choices while having fewer layers.

3.2 Progressive architecture shrinkage

The goal of progressive architecture shrinkage is to find the best sequence of reduction operations
(
𝜖∗1 , … , 𝜖∗T

)
, with 𝜖∗i ∈

{𝜖s, 𝜖t, 𝜖f , 𝜖c, 𝜖l}, to be applied to the base network  in order to reduce its computational cost and keep its effectiveness
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TOMEI et al. 541

unaltered as much as possible. To jointly take into account these objectives, we define the quality of a network as the ratio
between its accuracy and computational cost.

Following previous works on video recognition,6-8,28,32 we measure the efficiency of a network as the number of float-
ing point operations it requires to process a single sample during the evaluation phase, and evaluate the effectiveness of
the network on a given benchmark through its top-1 classification accuracy on the validation set.

Taking inspiration from previous works8,50 we optimize the shrinkage objective by applying a form of coordinate
descent in the hyperparameter space defined by the reduction axes. At each iteration, given the current network𝜏 (where
0 corresponds to the base network ) we explore a number of hypotheses equal to the number of reduction axes, each
of them obtained by applying a reduction operator to 𝜏 . We then select the hypothesis that maximizes the ratio between
the reduction in computational cost and the reduction in accuracy. This amounts to selecting the reduction operator 𝜖∗𝜏
that satisfies the following:

𝜖∗𝜏 = arg max
𝜖j

C() − C(𝜖j(𝜏−1))
Acc() − Acc(𝜖j(𝜏−1))

,

𝜖j ∈ {𝜖s, 𝜖t, 𝜖f , 𝜖c, 𝜖l}, (1)

where C(⋅) indicates the number of floating points operations required by a network to process a single sample, Acc(⋅)
indicates the top-1 validation accuracy of a network, and 𝜏−1 is the reduced network obtained at the previous iteration,
defined as

𝜏−1 = 𝜖∗
𝜏−1(𝜖

∗
𝜏−2(...𝜖

∗
2 (𝜖

∗
1 ()))) (2)

being 𝜖∗i the reduction operation chosen at iteration i, and 𝜖j(⋅) the application of a reduction operator over a network.
Exploring each hypothesis requires to retrain a new network, and each step of the coordinate descent procedure

described above requires to independently train a number of networks equal to the number of reduction operators.
As opposed to a recent work by Feichtenhofer et al.,8 which investigated the use of coordinate descent for progres-
sively increasing the size of a model, in our case the size and computational cost of the models decrease at each
iteration.

Applying a constant computational complexity scaling factor. To ensure that the steps taken in the coordinate descent
approach are consistent along each direction, we design our reduction operations so to keep a constant complexity reduc-
tion factor between the application of two subsequent reduction operations whenever possible. Under the hypothesis
that C(𝜖j(𝜏−1))∕C(𝜏−1) is constant, the rule for selecting the best hypothesis (see Equation 1) can be reduced to simply
selecting the hypothesis with maximum accuracy, that is,

𝜖∗𝜏 = arg max
𝜖j

Acc(𝜖j(𝜏−1)), 𝜖j ∈ {𝜖s, 𝜖t, 𝜖f , 𝜖c, 𝜖l}. (3)

In practice, we apply reduction operators which lead to a complexity reduction factor C(𝜖j(𝜏−1))∕C(𝜏−1) roughly
equal to 2 (e.g., halving the temporal resolution of a model usually leads to halving the FLOPs required by a model). It
shall be noted, however, that the reduction in computational complexity depends on both the reduction operator and
on the architecture of the current network. For instance, when the temporal resolution of the reduced model becomes
lower than the total temporal downsampling factor of the network, the temporal resolution of the activation maps in
the network tail will become equal to 1. In this case, halving the temporal resolution would reduce the computational
complexity by a factor ≤ 2. We choose to maintain the reduction operators unaltered and opt for Equation (1) for choosing
the best reduction operation in this case.

3.3 Training via distilling the knowledge

As the reader will have noticed, the base network  has not been involved in the optimization process until now, except
for being employed as the architectural starting point for a sequence of progressively reduced networks. At each iteration
𝜏, we want to keep the knowledge from as much as possible, while cutting down the complexity of𝜏 with respect to the
network produced at the previous iteration, 𝜏−1. Therefore, when training a reduced network 𝜏 , we distill knowledge39
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542 TOMEI et al.

from the base network  to the current reduced network. Knowledge Distillation39 has recently emerged as a powerful
technique to transfer knowledge from large models to smaller ones: these two roles are fulfilled by the base network 

and the progressively reduced networks 𝜏 , respectively.
The process of transferring knowledge from the base network to a reduced one works as follows. The base network 

is trained on a dataset D with a standard cross-entropy loss on each training sample, that is,

CE = −
K∑

k=1
yk log

(
ep̂k∑K
j=1ep̂j

)
, (4)

where K is the number of different classes, y represents the ground-truth one-hot vector of a sample, and p̂ represents the
output logits from the base network. The same loss is applied when training a hypothesis of reduced network 𝜏 , using
its own output logits in place of p̂.

Besides employing a cross-entropy loss, which maximizes the probability of the correct labels, we train each reduced
network hypothesis to minimize a Kullback–Leibler divergence loss with respect to the output probabilities of the base
network. Formally, this is defined as

KL = −
K∑

k=1
ẑk log

(
zk

ẑk

)
, (5)

where ẑk represents the soft targets from the base network , and zk indicates the normalized output from the reduced
network hypothesis. Formally,

ẑk = ep̂k∕t∑K
j=1ep̂j∕t

and zk = epk∕t∑K
j=1epj∕t

, (6)

where the same softmax temperature t > 1 is applied to both probability distributions. Following Reference 39, we also
multiply the KL loss by t2 when using both hard targets (corresponding to the ground-truth y adopted in Equation 4) and
soft targets. The final objective used to train each reduced network hypothesis is a weighted sum of the cross-entropy and
KL losses, as follows:

S = CE + 𝛼t2
KL, (7)

where 𝛼 is a constant scalar determining the relative weight of the KL loss with respect to the cross-entropy loss.
Besides distilling knowledge from the base network by employing the activations from the last layer, in our pre-

liminary experiments we also explored with different Knowledge Distillation methods involving intermediate feature
maps—for example, by adopting a MSE loss or a partial L2 distance together with a margin ReLU41 between the Stu-
dent’s and the Teacher’s activations, although without observing significant improvements. More details can be found
in Section 4.5.

3.4 Adaptively fine-tuning from previous iterations

So far, the reduced network obtained at a given iteration, 𝜏 , has been trained from scratch on the target dataset and
by distilling knowledge from the base model . While this training strategy clearly creates a link between the current
reduced network and the base model, we also aim at creating a training dependency with the reduced model obtained at
the previous iteration, 𝜏−1. Being the latter the best model reached so far in terms of the complexity/accuracy trade-off,
we expect its knowledge to be beneficial for the network hypotheses which are developed at the next stage. To this aim,
we implement an adaptive fine-tuning strategy that aims at recovering the knowledge from the reduced models obtained
at previous iterations.

At each iteration 𝜏, before training the reduced hypotheses 𝜖j(𝜏−1), 𝜖j ∈ {𝜖s, 𝜖t, 𝜖f , 𝜖c, 𝜖l}, we initialize them with
the weights of the reduced network from the previous iteration 𝜏−1, whenever this is feasible in terms of architectural
constraints, that is, when all the weights of 𝜖j(𝜏−1) and 𝜏−1 have the same shape. Clearly, this is verified only when

 1097024x, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3035 by U

niversity M
odena, W

iley O
nline L

ibrary on [17/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TOMEI et al. 543

applying an operator which impacts the input shape, that is, 𝜖s, 𝜖t, 𝜖f . When a hypothesis requires to use an operator
impacting the weights shape, we do not apply the fine-tuning strategy and train from scratch.

Our progressive shrinkage mechanism is presented in Algorithm 1, assuming that Equation (3) can be used in
place of Equation (1). Note that the inner-loop of the algorithm can be parallelized, meaning that the exploration
of the five reduced models at a given iteration can be performed at the same time, being the reduction operators
independent of each other. For details about the load distribution over devices for a single training, please refer to
Section 4.4.

Algorithm 1. Progressive architecture shrinkage

Data: Pre-trained base network , reduction operations {𝜖s, 𝜖t, 𝜖f , 𝜖c, 𝜖l}, number of iterations I;
Result: Reduced networks 𝜏 , 𝜏 ∈ {1, ..., I};
0 ← ;
for 𝜏 ∶= 1 → I do

TopAcc = 0;
for 𝜖j in {𝜖s, 𝜖t, 𝜖f , 𝜖c, 𝜖l} do

if 𝜖j in {𝜖s, 𝜖t, 𝜖f } then


j
𝜏 ← 𝜖j(𝜏−1);

Initialize 
j
𝜏with weights from 𝜏−1;

Train 
j
𝜏with S;

else


j
𝜏 ← 𝜖j(𝜏−1);

Initialize 
j
𝜏with random weights;

Train 
j
𝜏with S;

end
if Acc(j

𝜏)>TopAcc then
𝜖∗𝜏 ← 𝜖j;
𝜏 ← 

j
𝜏 ;

TopAcc ← Acc(j
𝜏);

end
end

end

4 EXPERIMENTAL RESULTS

4.1 Datasets

We adopt the Kinetics-4001 dataset for training all the reduced models obtained with our architecture shrinkage
approach. Kinetics-400 consists of approximately 240k training and 20k validation videos belonging to 400 different
human action classes, with each class comprising at least 400 videos. Following a common procedure in literature,
we report both the top-1 and top-5 classification accuracy on the validation set as a metric of effectiveness, and the
number of FLOPs as a metric for computational cost. Since the standard practice for inference consists in predicting
class-probabilities for multiple spatiotemporal crops of the same video, and then averaging them to obtain the overall
video prediction, we underline that the computational cost linearly increases with the number of crops adopted during
inference.

We also evaluate the transfer capabilities of our reduced models by fine-tuning them on UCF1019 and HMDB51.10

UCF101 consists of about 13k videos belonging to 101 different action classes, while HMDB51 has only about 6k videos
split across 51 classes. They both provide three different splits for training and testing, and we report the average accuracy
over these splits. In our preliminary experiments, we also tested our progressive architecture shrinkage technique when
training from scratch on UCF101 and HMDB51: although our strategy still improved the computational performance, we
observed strong overfitting. More details can be found in Section 4.5.
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4.2 Implementation details

While in principle our algorithm could be applied to any video backbone, we here consider two recent spatiotemporal
CNNs to showcase the effectiveness of our approach. Namely, we employ our PyTorch reimplementation of R(2+1)D-186

and SlowFast-4 × 16-R507 for all our experiments.
R(2+1)D-18. This backbone decomposes 3D convolutions into 2D spatial convolutions followed by 1D temporal ones.

We adopt the 18-layers version of this backbone and train a base model following the original implementation presented
in Tran et al.:6 during training, we resize video frames to 128 × 171 and apply random crop with size 112 × 112. Each
input clip of the base network consists of 16 consecutive frames. In the reduced models, when downsampling the spatial
size, we also downsample the crop size accordingly.

During each training epoch, we sample three clips per video from random temporal locations for temporal jittering.
Synchronized stochastic gradient descent is adopted on 64 NVIDIA GPUs, with a total mini-batch size of 1536 (24 per
GPU). The base learning rate is set to 0.96, with linear warm-up during the first 10 epochs. Afterward, the learning rate
is divided by 10 every 10 epochs, in both the base model and reduced models. When training a reduced model starting
from pretrained weights, that is, when applying the adaptive fine-tuning presented in Section 3.4, the base learning rate
is instead divided by 10. Training is always completed in 45 epochs. During inference, we use 112 × 112 center crops
from 10 clips uniformly sampled from the video. Output probabilities of these 10 clips are averaged to obtain video-level
prediction.

SlowFast-4 × 16-R50.SlowFast networks consist of two pathways, a Slow path operating at low frame-rate, and a Fast
one operating at higher frame-rate and employing fewer channels in convolutional layers. In this article, we consider a
base SlowFast instantiation with a ResNet-50 backbone.51 During the training of the SlowFast base network, the shorter
side of the input video is resized to a random value in the interval [256, 320] and keeping the aspect ratio, then 224 × 224
clips are randomly cropped from the video. The raw clips length is set to 64 frames, and the Slow path samples four frames
with stride 16 from each clip, while the Fast path samples 32 frames with stride 2 from each clip.7 In reduced models, we
downsample input and temporal sizes accordingly.

As with R(2+1)D, 3 clips are randomly sampled from a video for an epoch. Stochastic gradient descent on 128 GPUs is
adopted, with a total mini-batch size of 2048 (16 per GPU). The base learning rate is set to 1.6, with linear warm-up during
the first five epochs and cosine annealing after. Also in this case, the base learning rate is divided by 10 when training a
reduced model with adaptive fine-tuning. Again, 45 epochs are performed on both the base and reduced models to lighten
the computational requirements, while the original SlowFast implementation7 suggested 256 epochs without temporal
jittering. In inference, 256 × 256 center crops are extracted from 10 uniformly sampled clips (instead of 307), and their
softmax scores are averaged to obtain video-level prediction.

Other implementation details. The t value in Equation (6) is set to 5, while the 𝛼 value in Equation (7) is 500. We
fix the maximum number of iterations of the coordinate descent to 5. In order to roughly halve FLOPs, we set 𝛾s = 1.4,
𝛾t = 2, 𝛾f = 2, 𝛾c = 1.4, and 𝛾l = 2. For 𝛾l, we uniformly halve the layers in each residual block. For both R(2+1)D-18 and
SlowFast-4 × 16-R50, we used a momentum of 0.9 and a weight decay of 10−4. A dropout of 0.5 has been applied before the
final classification layer when using the SlowFast backbone. Finally, since SlowFast consists of two paths which sample
frames differently from the input video, we clarify how we handle the two sampling strategies when reducing the temporal
resolution or the frame rate. Specifically, we first apply the chosen reduction operations to the input clip and then allow
each path to sample frames from the reduced input according to its sampling strategy.

4.3 Progressive Architecture Shrinkage evaluation

Results using the R(2+1)D-18 backbone. We start presenting the results obtained using the R(2+1)D-186 backbone on the
Kinetics-400 dataset. The upper side of Table 1 reports the top-1 and top-5 accuracy of the reduced models obtained
by our progressive architecture shrinkage approach, as well as the number of GFLOPs required by each architecture
to process a single view, multiplied by the number of views adopted during inference for a given video. In the table,
“R(2+1)D-18-PAS-x” indicates the reduced model obtained at iteration x. As it can be observed, the total drop in accuracy
from the base network (R(2+1)D-18) to the reduced model obtained in the last iteration (R(2+1)D-18-PAS-5) is 5.6%
(from 69.2 to 63.6), while the number of GFLOPs required to process each view is reduced from 40.8 to 2.5. It is also
worth noting that the reduced model obtained at the first iteration (R(2+1)D-18-PAS-1) has a slightly increased accuracy
compared with the base network (69.5 vs. 69.2), despite requiring half of its GFLOPs per view (40.8 vs. 20.4).
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TOMEI et al. 545

T A B L E 1 Top-1, top-5 accuracy and inference cost (GFLOPs per
view × number of adopted views) of progressively reduced models
obtained from our PAS algorithm, starting from a R(2+1)D-18 and a
SlowFast-4 × 16-R50 backbone

Model Top-1 Top-5 GFLOPs

R(2+1)D-186 69.2 88.1 40.8 × 10

R(2+1)D-18-PAS-1 69.5 88.7 20.4 × 10

R(2+1)D-18-PAS-2 68.8 88.1 10.2 × 10

R(2+1)D-18-PAS-3 67.5 87.0 5.4 × 10

R(2+1)D-18-PAS-4 66.0 86.3 3.2 × 10

R(2+1)D-18-PAS-5 63.6 84.6 2.5 × 10

SlowFast-4×16-R507 73.5 91.3 36.6 × 10

SlowFast-4×16-R50-PAS-1 73.8 91.7 18.9 × 10

SlowFast-4×16-R50-PAS-2 73.4 91.1 10.2 × 10

SlowFast-4×16-R50-PAS-3 71.7 90.3 5.1 × 10

SlowFast-4×16-R50-PAS-4 69.8 88.9 2.9 × 10

SlowFast-4×16-R50-PAS-5 67.0 87.3 1.4 × 10

Note: Results are reported on the Kinetics-400 validation set.

F I G U R E 3 Top-1 accuracy of the PAS strategy applied to a R(2+1)D-18 backbone over five iterations. Different markers represent the
accuracy of different reduction operations. The red-dashed line follows the sequence of best-performing models, while the blue one shows
what happens if the best model is trained without using the Knowledge Distillation and the adaptive fine-tuning strategy

Figure 3 shows the detail of the reduction procedure and the accuracy of all the hypotheses obtained at each iteration.
The red-dashed line highlights the best-performing hypothesis selected at each iteration. Specifically, the sequence of
reduction operations which has been chosen by the coordinate descent is the following: [𝜖c, 𝜖f , 𝜖t, 𝜖t, 𝜖t] – so the procedure
firstly selects to reduce the number of channels, then the frame rate of the input clip, and then its temporal length (three
times). Noticeably, different reductions may lead to the same top-1 accuracy, as it happens at iteration 5 for 𝜖t and 𝜖f : to
choose the best operation in these cases, we sort the hypotheses using top-5 accuracy. The accuracy obtained by the other
hypotheses, on which the remaining reductions were applied, is also reported at each step.

The blue-dashed line in Figure 3 represents, at each iteration, the accuracy of a model with the same architecture as the
best-performing hypothesis, but trained without using the Knowledge Distillation and the adaptive fine-tuning strategy.
This is further detailed in the top part of Table 2, where we report the advantage of progressively reducing R(2+1)D-18
models through our PAS algorithm, compared with a standard KD-free and cross-entropy based training from scratch. At
the third iteration, for instance, after the reductions [𝜖c, 𝜖f , 𝜖t], the proposed PAS provides a gain of 6.4% top-1 accuracy
(67.5 vs. 61.1).
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546 TOMEI et al.

T A B L E 2 Accuracy comparison between models trained with or without our
Knowledge Distillation and adaptive fine-tuning, on the Kinetics-400 validation set

Model With PAS Without PAS

Top-1 Top-5 Top-1 Top-5

R(2+1)D-18-PAS-1 69.5 88.7 67.9 87.5

R(2+1)D-18-PAS-2 68.8 88.1 65.0 85.4

R(2+1)D-18-PAS-3 67.5 87.0 61.1 83.1

R(2+1)D-18-PAS-4 66.0 86.3 60.7 82.5

R(2+1)D-18-PAS-5 63.6 84.6 59.5 81.3

SlowFast-4×16-R50-PAS-1 73.8 91.7 73.1 91.0

SlowFast-4×16-R50-PAS-2 73.4 91.1 70.5 89.5

SlowFast-4×16-R50-PAS-3 71.7 90.3 68.1 88.4

SlowFast-4×16-R50-PAS-4 69.8 88.9 66.0 86.8

SlowFast-4×16-R50-PAS-5 67.0 87.3 61.2 83.6

Results using the SlowFast-4×16-R50 backbone. We also present results using the more recent SlowFast-4×16-R507

network. The lower side of Table 1 shows the accuracy and GFLOPs of a progressively reduced SlowFast instantiation
using our PAS strategy. Accuracy drops from 73.5 (base network) to 67 (SlowFast-4×16-R50-PAS-5) in the sequence of
iterations, while the number of GFLOPs per view is reduced from 36.6 to 1.4. Again, SlowFast-4×16-R50-PAS-1 improves
the accuracy of the base model from 73.5 to 73.8, while cutting down the computational complexity from 36.6 to 18.9
GFLOPs per view.

Figure 4 depicts the PAS procedure for this backbone, using the same notation as in Figure 3. The best sequence
of reduction operations here is [𝜖c, 𝜖s, 𝜖t, 𝜖s, 𝜖f ]. Finally, in Table 2 bottom, we show the comparison between PAS-based
SlowFast networks and their PAS-free counterparts at each iteration of our algorithm, as already observed for R(2+1)D-18.
At iteration 5, the gap reaches its maximum value, with an absolute top-1 accuracy gain of 5.8%.

Observations. It is important to underline how the sequence of reduction operations chosen by our PAS method reflects
which axes should be reduced in order to lower the computational requirements without compromising accuracy: for
R(2+1)D-18, four out of five reductions involve time-related axes. This means that, for the given initial input shape (16 ×
3 × 112 × 112) defined by the authors,6 the temporal dimension is the most redundant. SlowFast networks rely on stronger
temporal modeling: 𝜖t and 𝜖f are indeed chosen only once, respectively. The input spatial resolution of 256 × 256 has some
redundancy, and 𝜖s is chosen twice. Moreover, Figures 3 and 4 share a common trend: going on with iterations, 𝜖c and 𝜖l
degrade performance much more compared with 𝜖s, 𝜖t, and 𝜖f . This gap confirms the usefulness of loading weights from
previous iterations for input-related reductions, as explained in Section 3.4.

F I G U R E 4 Top-1 accuracy of the PAS strategy applied to a SlowFast-4×16-R50 backbone over five iterations. Different markers
represent the accuracy of different reduction operations. The red-dashed line follows the sequence of best-performing models, while the blue
one shows what happens if the best model is trained without using the Knowledge Distillation and the adaptive fine-tuning strategy
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TOMEI et al. 547

T A B L E 3 Comparison with existing action recognition models on the Kinetics-400
validation set, in terms of top-1 and top-5 accuracy

Model Pretrain Top-1 Top-5 GFLOPs

I3D17 ImNet 71.1 90.3 108 × N/A

Two-stream I3D17 ImNet 75.7 92.0 216 × N/A

Nonlocal R10128 ImNet 77.7 93.3 359 × 30

Nonlocal R5028 ImNet 76.5 92.6 282 × 30

TSM R505 ImNet 74.7 N/A 65.0 × 10

MF-Net35 ImNet 72.8 90.4 11.1 × 50

Two-stream I3D17 None 71.6 90.0 216 × N/A

ip-CSN-15232 None 77.8 92.8 109 × 30

Oct-I3D+NL52 None 75.7 N/A 28.9 × 30

R(2+1)D-186 None 69.2 88.1 40.8 × 10

SlowFast-4×16-R507 None 73.5 91.3 36.6 × 10

R(2+1)D-18-PAS-1 None 69.5 88.7 20.4 × 10

SlowFast-4×16-R50-PAS-1 None 73.8 91.7 18.9 × 10

Note: Inference cost is also reported (GFLOPs per view × number of adopted views). PAS is bounded by
the accuracy of the base network, but its effectiveness is confirmed on two different well-known
backbones.
Abbreviation: ImNet, ImageNet.

T A B L E 4 Accuracy obtained when removing Knowledge Distillation or
fine-tuning from previous iteration

Model KD Fine-tuning 𝝐s 𝝐t 𝝐f

R(2+1)D-18-PAS-3 ✓ ✓ 66.2 67.5 66.9

R(2+1)D-18-PAS-3 × ✓ 65.6 66.3 65.4

R(2+1)D-18-PAS-3 ✓ × 64.5 65.7 65.3

Comparison with the state of the art. In order to directly compare the models obtained in the succession of PAS iterations
with other well-known models, we present the performance of several existing methods on the Kinetics-400 validation set
in Table 3. For each method, the top-1 and top-5 accuracy are shown, along with their pretraining strategy and inference
time. Differently from X3D models,8 which exploit an expansion algorithm that starts from a predefined architecture, the
accuracy of our models is bounded by the base network capabilities: in this regard, PAS differs from other strategies which
aims to maximize accuracy. We believe that the main advantage of the PAS algorithm consists in its generalization ability:
one can choose an existing strong network (based on some requirements) and apply PAS on it to reduce its computational
load while maintaining accuracy almost unaltered. As the ability to limit the accuracy loss is confirmed on two different
backbones, with different designs and performance, PAS could potentially be applied to X3D models as well.

Ablation analysis. As mentioned, PAS leverages two key techniques to avoid an accuracy decay when progressively
reducing models, that is, Knowledge Distillation and fine-tuning from previous iterations. In order to quantify the role
of these two strategies, in Table 4 we present an ablation experiment conducted on iteration 3 of the R(2+1)D-18 back-
bone. Here we first remove the Knowledge Distillation from the Student training process, but we load pretrained weights
from R(2+1)D-18-PAS-2. Then, we restore KD and train another Student from scratch, that is, with randomly initialized
weights. In both cases, accuracy drops compared with our full solution. We explore only 𝜖s, 𝜖t, and 𝜖f reductions for abla-
tion purposes, since fine-tuning is unfeasible when applying 𝜖c and 𝜖l, while applying KD but not fine-tuning is exactly
what we propose for 𝜖c and 𝜖l.

Transfer capabilities to smaller datasets. We assess the transfer capabilities of PAS-generated models trained on the
Kinetics-400 dataset, by fine-tuning them on UCF101 and HMDB51. When fine-tuning a model, the base learning rate
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548 TOMEI et al.

is divided by 10, while all the other implementation details remain the same as presented in Section 4.2. Noticeably, PAS
strategy is not adopted again in these experiments: we simply fine-tune PAS models trained on Kinetics-400, to verify if
the transfer capabilities are maintained in the sequence of PAS iterations.

Table 5 shows the top-1 classification accuracy when fine-tuning all the models obtained with our PAS strategy. As
it can be seen, the transfer capability is preserved for both datasets: R(2+1)D-18-PAS-1 exceeds the accuracy of the base
network on HMDB51, while SlowFast-4×16-R50-PAS-1 and SlowFast-4×16-R50-PAS-2 exceed the accuracy of the base
network on UCF101, despite being much lighter. The first three SlowFast models reported in Table 5 have not been
evaluated on HMDB51, since many videos last between 1 and 2 s, which makes unfeasible to sample 64 frames at a
frame-rate of 30 fps. Being the reduction sequence for SlowFast [𝜖c, 𝜖s, 𝜖t, 𝜖s, 𝜖f ], the input temporal resolution is reduced
to 32 at the third PAS iteration, which allows us to report the accuracy of the last three models on HMDB51.

4.4 Computational analysis

Resource utilization during inference. Here we investigate the advantage of performing inference with a model shrinked
by PAS, in terms of both GPU utilization and memory consumption. For fairness, we employ 4 NVIDIA V100 GPUs with
32 GB of memory, and collect statistics from each GPU over the whole Kinetics-400 validation set, using a batch size of
1. When measuring the average percentage utilization of CUDA cores and the average percentage of GPU memory con-
sumption, we notice that they both linearly decrease, together with the number of FLOPs, when starting from a base
model and going on with PAS iterations. Specifically, we measured a 39.1% and 11.3% GPU utilization and memory con-
sumption, respectively, when using a base R(2+1)D-18. These values are reduced to 7.7% and 1.0%, respectively, when
using R(2+1)D-18-PAS-5. A similar trend has been observed for SlowFast-4×16-R50 models.

Computational strategies at training time. Our algorithm employs significant computational resources to find the best
sequence of reduction operations. Nevertheless, after exploring different network hypotheses, it provides a compressed
model with a complexity/accuracy trade-off of choice. In this section, we report some quantitative details about the num-
ber of GPU-hours required to perform five iterations with PAS. With the implementation details presented in Section 4.2,
training each network hypothesis requires about 15–16 h for both R(2+1)D-18 and SlowFast-4×16-R50. Using 64 GPUs for
a single R(2+1)D-18 experiment, we employed ∼25.000 GPU-hours for training 25 network hypotheses (5 iterations × 5
reduction operators). For SlowFast-4 × 16-R50 training, we used 128 synchronized GPUs and employed a total number
of ∼50.000 GPU-hours.

In all our experiments we used distributed training on nodes with 4 NVIDIA V100 GPUs each, distributing the com-
putation across 16 and 32 nodes, respectively, when employing the R(2+1)D-18 backbone and the SlowFast-4 × 16-R50
backbone. With distributed training the model is replicated on each device and the input is partitioned along the batch

T A B L E 5 Transfer ability of PAS models on UCF101 and HMDB51 datasets. K400
stands for Kinetics-400

Model Pretrain UCF HMDB GFLOPs

R(2+1)D-186 K400 94.4 70.0 40.8 × 10

R(2+1)D-18-PAS-1 K400 94.0 71.0 20.4 × 10

R(2+1)D-18-PAS-2 K400 93.5 68.1 10.2 × 10

R(2+1)D-18-PAS-3 K400 91.6 63.3 5.4 × 10

R(2+1)D-18-PAS-4 K400 89.8 58.9 3.2 × 10

R(2+1)D-18-PAS-5 K400 87.0 54.0 2.5 × 10

SlowFast-4×16-R507 K400 95.0 – 36.6 × 10

SlowFast-4×16-R50-PAS-1 K400 95.3 – 18.9 × 10

SlowFast-4×16-R50-PAS-2 K400 95.1 – 10.2 × 10

SlowFast-4×16-R50-PAS-3 K400 94.0 70.4 5.1 × 10

SlowFast-4×16-R50-PAS-4 K400 92.8 68.3 2.9 × 10

SlowFast-4×16-R50-PAS-5 K400 90.4 63.3 1.4 × 10
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TOMEI et al. 549

T A B L E 6 Accuracy when using different KD approaches on intermediate activations

Initial model Red. op. Logits only +MSE +mReLU41

R(2+1)D-18 𝜖l 68.8 68.1 68.0

T A B L E 7 Accuracy gain when setting the base model  in training mode with respect to evaluation mode.

Reduction operator

Initial model  train  eval 𝝐s 𝝐t 𝝐f 𝝐c 𝝐l

R(2+1)D-18 ✓ 67.7 68.6 69.0 69.5 68.8

R(2+1)D-18 ✓ 67.5 68.4 68.8 69.0 68.2

dimension so that each chunk is handled by a different device. During the backward pass, gradients from each device are
averaged. We spawn a number of processes equal to the number of available GPUs, each exclusively working on a single
GPU, and we exploit the DistributedDataParallel utility of the PyTorch library53 which automatically handles
synchronization and communication primitives between processes using the NVIDIA Collective Communication Library
(NCCL). All training and evaluation experiments have been performed on the CINECA Marconi100 cluster, which con-
sists of 980 GPU-powered nodes and is ranked 11th in the top500*ranking of the 500 most powerful commercially available
computer systems in the world.

4.5 Additional experiments

Distilling knowledge from intermediate feature maps. In Table 6, we investigate the usage of a Knowledge Distillation loss
employing the activations from intermediate layers. Specifically, we build an additional loss between the activations of
the base network and of each network hypothesis, which is applied after each residual block of the backbone. We test
the usage of both an L2 loss and the margin ReLU-based approach presented by Heo et al.41 As it can be observed, the
introduction of an additional loss on intermediate layers does not increase the top-1 accuracy. As a consequence, in the
final formulation of PAS we only employed network logits for Knowledge Distillation.

Role of batch normalization. An important factor to consider when distilling the knowledge from the base network 

to reduced models is the role of batch-normalization. As reported by Heo et al.,41 Batch-norm layers should behave in the
same way in the teacher and in the student (i.e., they should be both in training mode or in evaluation mode). For this
reason, our base model is set to training mode when computing its logits for Knowledge Distillation, since the students
are in training mode as well. This ensures that the features from both the teacher and the student are normalized in the
same way. Table 7 shows the advantage of distilling the knowledge from an R(2+1)D-18 base model in training mode with
respect to evaluation mode. Top-1 accuracy on Kinetics-400 is reported for the first iteration of PAS and for all reduction
operations.

Training PAS on smaller datasets without Kinetics-400 pretraining. As anticipated in Section 4.1, we also trained PAS
on UCF101 without employing a Kinetics-400 pretraining. Table 8 shows the top-1 accuracy of a progressively reduced
R(2+1)D-18 model. For simplicity, we only report the top-1 accuracy obtained on the first split of UCF101. The top-1
accuracy of the base model  is 62.3. For each PAS iteration, the accuracy obtained by applying each reduction operator
is reported, along with the accuracy of the best reduced model trained from scratch without any Knowledge Distillation
(last column).

In the first iteration, while the accuracy drop caused by 𝜖s, 𝜖t, and 𝜖f is comparable with that observed in Kinetics-400,
the same does not hold for 𝜖c and 𝜖l. Specifically, using PAS for reducing the number of channels or the number of lay-
ers increases the top-1 accuracy by 5.0% and 3.2%, respectively. Looking at the second row of Table 8, last column, it
is clear that the accuracy gain is not completely due to PAS: when reducing the number of channels (best-performing
reduction operator in the first iteration) and training the reduced model without PAS, accuracy still increases with respect
to the base model (64.6 vs.62.3), even with 50% fewer FLOPs. This highlights that the model capacity of R(2+1)D-18 is

*https://top500.org/.
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550 TOMEI et al.

T A B L E 8 PAS applied on the UCF101 dataset with a R(2+1)D-18 backbone

Reduction operator

Initial model 𝝐s 𝝐t 𝝐f 𝝐c 𝝐l Without PAS

R(2+1)D-18 – – – – – 62.3

R(2+1)D-18-PAS-1 60.5 62.0 61.5 67.3 65.5 64.6

R(2+1)D-18-PAS-2 63.8 66.3 66.2 66.7 66.5 64.0

R(2+1)D-18-PAS-3 63.5 65.4 65.8 65.3 65.1 60.3

R(2+1)D-18-PAS-4 62.8 65.3 64.1 63.0 63.5 59.3

R(2+1)D-18-PAS-5 62.2 63.7 63.9 61.8 62.2 57.8

excessive for UCF101, which leads to strong overfitting. The same is visible in the following iteration. Despite overfit-
ting, we notice that PAS still plays a key role in improving accuracywhile reducing the number of FLOPs. From the third
iteration on, reduced models trained without PAS start to get worse, while PAS-based training still ensures a minimal
accuracy loss.

SlowFast-4 × 16-R50 network architecture. For reference, in Table 9 we report the detailed architecture of the
base network and of the reduced hypotheses used in all our experiments with the SlowFast-4 × 16-R50 backbone.

T A B L E 9 Architecture of the base model and of reduced hypotheses based on SlowFast-4 × 16-R50, as a function
of the total reduction factor applied on spatial resolution, temporal length, frame rate, number of channels and number
of layers (𝛾 s, 𝛾 t, 𝛾 f , 𝛾c, 𝛾 l)

Stage Slow pathway Fast pathway Output sizes T × S2

Raw clip – – 64∕(𝛾 t𝛾 f ) × (224∕𝛾 s)2

Data layer Stride 16, 12 Stride 2, 12 Slow ∶ 4∕(𝛾 t𝛾 f ) × (224∕𝛾 s)2

Fast ∶ 32∕(𝛾 t𝛾 f ) × (224∕𝛾 s)2

Conv1 1 × 72, 64∕𝛾c 5 × 72, 8∕𝛾c Slow ∶ 4∕(𝛾 t𝛾 f ) × (112∕𝛾 s)2

Fast ∶ 32∕(𝛾 t𝛾 f ) × (112∕𝛾 s)2Stride 1, 22 Stride 1, 22

Pool1 1 × 32 max 1 × 32 max Slow ∶ 4∕(𝛾 t𝛾 f ) × (56∕𝛾 s)2

Fast ∶ 32∕(𝛾 t𝛾 f ) × (56∕𝛾 s)2Stride 1, 22 Stride 1, 22

Res2

⎡⎢⎢⎢⎢⎣
1 × 12, 64∕𝛾c

1 × 32, 64∕𝛾c

1 × 12, 256∕𝛾c

⎤⎥⎥⎥⎥⎦
× 3∕𝛾 l

⎡⎢⎢⎢⎢⎣
3 × 12, 8∕𝛾c

1 × 32, 8∕𝛾c

1 × 12, 32∕𝛾c

⎤⎥⎥⎥⎥⎦
× 3∕𝛾 l

Slow ∶ 4∕(𝛾 t𝛾 f ) × (56∕𝛾 s)2

Fast ∶ 32∕(𝛾 t𝛾 f ) × (56∕𝛾 s)2

Res3

⎡⎢⎢⎢⎢⎣
1 × 12, 128∕𝛾c

1 × 32, 128∕𝛾c

1 × 12, 512∕𝛾c

⎤⎥⎥⎥⎥⎦
× 4∕𝛾 l

⎡⎢⎢⎢⎢⎣
3 × 12, 16∕𝛾c

1 × 32, 16∕𝛾c

1 × 12, 64∕𝛾c

⎤⎥⎥⎥⎥⎦
× 4∕𝛾 l

Slow ∶ 4∕(𝛾 t𝛾 f ) × (28∕𝛾 s)2

Fast ∶ 32∕(𝛾 t𝛾 f ) × (28∕𝛾 s)2

Res4

⎡⎢⎢⎢⎢⎣
3 × 12, 256∕𝛾c

1 × 32, 256∕𝛾c

1 × 12, 1024∕𝛾c

⎤⎥⎥⎥⎥⎦
× 6∕𝛾 l

⎡⎢⎢⎢⎢⎣
3 × 12, 32∕𝛾c

1 × 32, 32∕𝛾c

1 × 12, 128∕𝛾c

⎤⎥⎥⎥⎥⎦
× 6∕𝛾 l

Slow ∶ 4∕(𝛾 t𝛾 f ) × (14∕𝛾 s)2

Fast ∶ 32∕(𝛾 t𝛾 f ) × (14∕𝛾 s)2

Res5

⎡⎢⎢⎢⎢⎣
3 × 12, 512∕𝛾c

1 × 32, 512∕𝛾c

1 × 12, 2048∕𝛾c

⎤⎥⎥⎥⎥⎦
× 3∕𝛾 l

⎡⎢⎢⎢⎢⎣
3 × 12, 64∕𝛾c

1 × 32, 64∕𝛾c

1 × 12, 256∕𝛾c

⎤⎥⎥⎥⎥⎦
× 3∕𝛾 l

Slow ∶ 4∕(𝛾 t𝛾 f ) × (7∕𝛾 s)2

Fast ∶ 32∕(𝛾 t𝛾 f ) × (7∕𝛾 s)2

Global average pool, fc #Classes

Note: Kernels are denoted as {T × S2, C} for temporal, spatial, and channel sizes, while strides as {temporal stride, spatial stride2}.
Convolutional residual blocks are represented in brackets. The speed ratio between the Fast and the Slow paths is 8, while the channel
ratio is 1/8.
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The architecture is reported as a function of the total reduction factors applied on spatial resolution, temporal length,
frame rate, number of channels and layers (denoted as 𝛾 s, 𝛾 t, 𝛾 f , 𝛾c, 𝛾 l) as a result of applying a sequence of reduction
operators. The base network  corresponds to the configuration where all 𝛾∗ are equal to 1, and is identical to the one
proposed by Feichtenhofer et al.7 At each iteration 𝜏, a chosen reduction operation 𝜖j can increase the corresponding
reduction factor 𝛾 j by a factor of 𝛾j (see Section 3.1), and modifies the network architecture according to Table 9.

5 CONCLUSION
In this article we presented PAS, a Progressive Architecture Shrinking approach which can iteratively reduce the com-
putational demands of a video architecture while limiting the loss in accuracy. The proposed approach is based on a
coordinate descent schema which aims at finding the best sequence of reduction operators to be applied on a base network.
At each stage we maintain the knowledge learned in the base network and in previous iterations through a distillation
and an adaptive fine-tuning strategy. The approach is implemented by exploring different network hypothesis in parallel,
through the usage of an HPC cluster.

Experimental evaluations have been conducted on the Marconi100 cluster, employing two video prediction back-
bones, namely, R(2+1)D-18 and SlowFast-4 × 16-R50 and Kinetics-400, UCF101 and HMDB51 as datasets. Employing
PAS on a R(2+1)D-18 allows to reduce the number of required GFLOPs from 40.8 to 2.5, while limiting the loss in accu-
racy on from 69.2 to 63.6 (Kinetics-400). When using a SlowFast-4 × 16-R50 backbone, instead, PAS reduces the number
of required GFLOPs from 36.6 to 1.4, dropping accuracy from 73.5 to 67. Also, PAS does not alter the transfer learning
capabilities of the base network toward small-scale datasets like UCF101 and HMDB51. As an additional contribution,
we conducted tests on distilling knowledge from intermediate feature maps, on the role of Batch Normalization and on
the usage of PAS on smaller scale datasets, avoiding Kinetics-400 pretraining.
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