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ABSTRACT
Image captioning models have lately shown impressive results
when applied to standard datasets. Switching to real-life scenarios,
however, constitutes a challenge due to the larger variety of visual
concepts which are not covered in existing training sets. For this
reason, novel object captioning (NOC) has recently emerged as a
paradigm to test captioning models on objects which are unseen
during the training phase. In this paper, we present a novel ap-
proach for NOC that learns to select the most relevant objects of
an image, regardless of their adherence to the training set, and to
constrain the generative process of a language model accordingly.
Our architecture is fully-attentive and end-to-end trainable, also
when incorporating constraints. We perform experiments on the
held-out COCO dataset, where we demonstrate improvements over
the state of the art, both in terms of adaptability to novel objects
and caption quality.
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1 INTRODUCTION
Describing images has recently emerged as an important task at
the intersection of computer vision, natural language processing,
and multimedia, thanks to the key role it can have to empower
both retrieval and multimedia systems [4, 6, 8–10, 17, 31]. Recent
advances in image captioning, indeed, have demonstrated that fully-
attentive architectures can provide high-quality image descriptions
when tested on the same data distribution they are trained [11, 13,
20, 27]. As the existing datasets for image captioning [23, 40] are
limited in terms of the number of visual concepts they contain,
though, the application of such systems in real-life scenarios is still
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challenging. For this reason, the task of Novel Object Captioning
(NOC) has recently gained a lot of attention due to its affinity
towards real-world applications [1, 12, 15]. This setting, indeed,
requires a model to describe images containing objects unseen
in the training image-text data, also referred to as out-of-domain
visual concepts.

Since the language model behind a NOC algorithm can not be
trained to predict out-domain words, proper incorporation of such
novel words during the generation phase is one of the most relevant
issues in this task. Early NOC approaches [12, 35] tried to transfer
knowledge from out-domain images by conditioning the model at
training time on external unpaired visual and textual data. Further
works [21, 38] proposed to integrate coping mechanisms in the
language model to select words corresponding to the predictions of
a tagger. However, these frameworks do not include a proper and
explainable method to identify which objects on the scene are more
relevant to be described, and consequently, lack on leveraging all the
available information provided by visual inputs. On a different line,
Anderson et al. [3] devised a Constrained Beam Search algorithm
to force the inclusion of selected tag words in the output caption,
following the predictions of a tagger.

Inspired by this last line of research, we combine the ability
to constrain the predictions from a language model with the us-
age of object regions and of fully-attentive architectures, which
is dominant in traditional image captioning. Precisely, we devise
a model with a specific ability to select objects in the scene to be
described, with a class-independent module that can work on both
in-domain and out-of-domain objects. Further, we combine this
with a variant of the Beam Search algorithm which can include
constraints produced by the region selector, while assuring end-to-
end differentiability. We provide extensive experiments to validate
the proposed approach: when tested on the held-out portion of the
COCO dataset, our model provides state-of-the-art results in terms
of caption quality and adaptability to describe objects unseen in the
training set. Given its simplicity and effectiveness, our approach
can also be thought of as a powerful new baseline for NOC, which
can foster future works in the same area.

2 PROPOSED METHOD
Our NOC approach can be conceptually divided into two modules:
an image captioner and a region selector. While the image captioning
model is conditioned on the input image and is in charge of mod-
eling a sequence of output words, the region selector is in charge
of choosing the most relevant objects which need to be described,
regardless of their adherence to the training set. The objects picked
by the selector are used as constraints during the generation pro-
cess, so that the output caption is forced to contain their labels
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Figure 1: Summary of our approach.

as predicted by an object detector. All the components of our ar-
chitecture are based on fully-attentive structure, and end-to-end
training is allowed also when adding constraints to the language
model. Fig. 1 shows an outline of the approach.

2.1 Class-Independent Region Selector
The role of the region selector is to identify objects which must be
described in the output sentence. Since the object selector will need
to work on classes that are unseen in the training set, we adopt
a class-independent strategy in which no information about the
object class is employed in the feature extraction process. Instead,
we model intra-class relationships between objects of the same
class, to handle the case in which multiple objects of the same class
are present on the scene.

Given a set of regions 𝑿 = {𝑥𝑖 }𝑖 extracted from the input image,
along with their classes {𝑐𝑖 }𝑖 , we extract central coordinates, width,
height and, additionally, we compute the object area. We also con-
sider as an extra feature the confidence score 𝑠𝑖 of the object, to
obtain a class-independent feature vector:

𝑥𝑖 =
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(1)

where 𝑥𝑐 and 𝑦𝑐 are the coordinates of the center of the region,𝑤𝑖

and ℎ𝑖 its width and height, and𝑊 and 𝐻 the image dimensions.
The set of feature vectors obtained for an image is then fed to a

sequence of Transformer-like [33] layers, each of them composed
by an inner-attention operator and a self-attention operator. The
inner-attention operator is devised to connect together regions be-
longing to the same class, while the self-attention operator provides
complete connectivity between elements in 𝑿 . The combination
of these two operators allows the region selector to independently
focus on specific clusters of objects, in order to exchange semanti-
cally related information and learn intra-class dependencies, and
then, to model long-range and diverse dependencies.

Given a partition of 𝑿 computed according to the class each
region belongs to, i.e. {𝒓𝑐 ⊆ 𝑿 | ∀𝑥𝑖 , 𝑥 𝑗 ∈ 𝒓𝑐 , 𝑐𝑖 = 𝑐 𝑗 }𝑐 , the result
of the inner-attention operator applied over an element of the
partition is a new set of elements I(𝒓𝑐 ), with the same cardinality
as 𝒓𝑐 , in which each element is replaced with a weighted sum of
values computed from regions of the same class. Formally, it can

be defined as:

I(𝒓𝑐 ) = Attention(𝑊𝑞𝒓𝑐 ,𝑊𝑘 𝒓𝑐 ,𝑊𝑣𝒓𝑐 ), (2)

where 𝒓𝑐 is the set of all elements of 𝑿 belonging to class 𝑐 ,𝑊∗ are
learnable projection matrices, and Attention indicates the standard
dot-product attention [33].

The inner attention layer is applied independently over each
element of the above-defined partition so that the overall encoding
of 𝑿 is a new sequence of elements defined as follows:

I(𝑿 ) = (I(𝒓1),I(𝒓2), ...,I(𝒓𝐶 )) , (3)

where𝐶 indicates the number of classes. After each inner-attention
layer, a self-attention layer is employed to connect elements of
different classes together. Formally, it is defined as:

S(𝑿 ) = Attention(𝑊𝑞𝑿 ,𝑊𝑘𝑿 ,𝑊𝑣𝑿 ), (4)

where𝑊∗ are, again, learnable projection matrices.
After a sequence of inner- and self-attention layers, in which

each pair of operators is followed by a position-wise feed-forward
network [33], the region selector outputs a selection score 𝑌𝑖 for
each object proposal. To do so, we apply an affine transformation
and a non-linear activation to the output of the last layer:

𝑌𝑖 = 𝜎 (RegionSelector(𝑋𝑖 )𝑊𝑜 ) , (5)

where𝑊𝑜 ∈ R𝑑×1 are learnable weights and 𝜎 is a sigmoid.
Training.The region selector is trained using a binary cross-entropy
loss. To build ground-truth data, for each image we collect the ob-
ject classes identified by the object detector and construct a binary
ground-truth vector indicating whether a class name is contained
in at least one of the ground-truth captions associated with the
image. We also consider as positives synonyms and plural forms of
the object class names. At inference time, we extract the selected
objects for each image adopting 0.5 as threshold.

2.2 Image Captioner
After object selection, our image captioning model is responsible for
generating a caption using the chosen class names as constraints.
Inspired by recent works which employ fully-attentive models in
image captioning [11, 13, 25], we create a captioning model with an
encoder-decoder structure, where the encoder refines image region
features and the decoder generates captions auto-regressively.



Table 1: Evaluation on the held-out COCO test set, when using different constraint selection approaches.

Cross-Entropy Loss CIDEr Optimization CIDEr Optimization with DGBS

In-Domain Out-Domain In-Domain Out-Domain In-Domain Out-Domain

M C S M C S F1 M C S M C S F1 M C S M C S F1

No Constraints 27.2 108.9 20.2 22.4 68.5 14.7 0.0 28.4 122.3 22.3 23.5 76.8 16.3 0.0 28.1 120.9 21.9 23.4 76.5 16.1 0.0
Top-1 26.2 97.4 19.2 24.1 75.9 17.6 60.1 27.6 110.5 21.3 25.4 84.6 18.8 60.2 27.9 115.9 21.0 25.3 84.7 18.7 60.2
Top-2 24.4 81.9 16.4 23.8 68.7 16.1 68.1 26.2 95.4 18.4 25.1 77.6 17.3 68.1 27.1 102.9 18.4 25.6 80.0 17.2 68.1
Top-3 22.7 69.9 14.4 22.4 56.9 14.5 66.0 25.1 83.3 16.5 24.4 67.1 15.4 66.0 26.6 92.3 17.0 25.2 70.8 15.6 66.0

Region Selector (w/o Inner) 25.2 70.6 17.7 24.1 70.6 16.8 70.2 26.8 101.5 19.6 25.6 80.5 18.0 70.2 27.4 108.0 19.7 25.8 82.2 18.2 70.2
Region Selector 26.2 97.0 19.2 24.9 78.2 18.3 75.0 27.6 109.2 21.1 26.1 87.7 19.4 75.0 27.9 115.3 21.0 26.3 88.5 19.4 75.1

Oracle Constraints 27.3 107.0 20.6 25.6 84.0 19.0 76.0 28.5 118.9 22.5 26.6 91.7 20.2 76.0 28.6 122.9 22.3 26.6 92.3 20.2 76.0

Encoder. Recent captioning literature has shown that object re-
gions are the leading solution to encode visual inputs [4, 37, 39],
followed by self-attentive layers to model region relationships [11,
13, 16, 25, 27, 32]. However, as self-attention can only encode pair-
wise similarities, it exhibits a significant limitation on encoding
knowledge learned from data. To overcome this restraint, we en-
rich our encoder with memory slots [7, 11]. Specifically, we extend
the set of keys and values of self-attention layers with additional
learnable vectors, which are independent of the input sequence and
can encode a priori information retrieved through attention.
Decoder. The decoder is the actual language model, conditioned on
both previously generated words and image region encodings. As in
the standard Transformer [33], our language model is composed of
a stack of decoder layers, each performing a masked self-attention
and a cross-attention followed by a position-wise feed-forward net-
work. Specifically, for each cross-attention, keys and values are in-
ferred from the encoder output, while for the masked self-attention,
queries, keys, and values are exclusively extracted from the input
sequence of the decoder. This self-attention is right-masked so that
each query can only attend to keys obtained from previous words.

2.3 Including Lexical Constraints
To include the lexical constraints produced by the region selector
when decoding from the language model, we devise a variant of
the Beam Search algorithm [14, 26] which supports the adoption of
single-word constraints. Given a number of word constraints𝑾 =

{𝑤0,𝑤1, ...,𝑤𝑛} and a maximum decoding length 𝑇 , we frame the
decoding process in a matrix 𝑮 with 𝑛 rows and 𝑇 columns, where
the horizontal axis covers the time steps in the output sequence,
and the vertical axis indicates the constraints coverage. Each cell
of the matrix can contain a beam of partially decoded sequences.

At iteration 𝑡 , each row 𝑖 of𝑮 [:, 𝑡] can be filled in twoways: either
by continuing the beam contained in 𝑮 [𝑖, 𝑡 − 1] by sampling from
the probability distribution of the language model, or by forcing the
inclusion of a constraint from𝑾 . In the former case, the resulting
updated beam of sequences is stored in 𝑮 [𝑖, 𝑡], while in the latter
case it is stored in 𝑮 [𝑖 + 1, 𝑡]. At the end of the generation process,
the last row of 𝑮 will contain sequences that satisfy all constraints.

Algorithm 1 reports the pseudo-code of our constrained beam
search procedure. There, 𝑘 indicates the number of elements in each
bin, model.step indicates sampling from the language model proba-
bility distribution to continue the generation of a partially-decoded

Algorithm 1: Grid Beam Search
𝑮 ← initGrid(𝑛,𝑇 , 𝑘)
for 𝑡 = 1; 𝑡 < 𝑇 ; 𝑡 + + do

for 𝑐 = max(0, 𝑛 + 𝑡 −𝑇 ) ;𝑐 < min(𝑡, 𝑛) ;𝑐 + + do
𝑔, 𝑠 = ∅ forall hyp in 𝑮 [𝑐, 𝑡 − 1] do

𝑔← 𝑔 ∪model.step(ℎ𝑦𝑝)
end
if 𝑐 > 0 then

forall hyp in 𝑮 [𝑐 − 1, 𝑡 − 1] do
𝑠 ← 𝑠 ∪model.add_constr(ℎ𝑦𝑝, {𝑤0, ..., 𝑤𝑛 })

end
end
𝑮 [𝑐, 𝑡 ] ← k-argmax

ℎ∈𝑔∪𝑠
(model.score(ℎ))

end
end
𝑡𝑜𝑝𝐻𝑦𝑝 ← hasEOS(𝑮 [𝑛, :]) ⊲ Remove sequences w/o EOS
return argmax

ℎ∈𝑡𝑜𝑝𝐻𝑦𝑝

(model.score(ℎ))

sequence, while model.add_constr indicates a function which con-
tinues a beam by adding all the available constraints, excluding
those which have already been generated for a sequence. Because
all the operations required to include constraints are differentiable,
we call our constraint inclusion approach Differentiable Grid Beam
Search (DGBS), and employ it to fine-tune the image captioner also
when using a CIDEr-D optimization strategy.

3 EXPERIMENTS
3.1 Evaluation Protocol
Dataset.We conduct experiments on the held-out COCOdataset [12],
which consists of a subset of the COCO dataset [23] for standard
image captioning, where the training set excludes all image-caption
pairs that mention at least one of the following eight objects: bottle,
bus, couch, microwave, pizza, racket, suitcase, and zebra. We follow
the splits defined in [12] and take half of COCO validation set for
validation and the other half for testing.
Metrics. To evaluate caption quality, we use standard captioning
metrics (i.e. BLEU-4 [28], METEOR [5], ROUGE [22], CIDEr [34],
and SPICE [2]), while we employ F1-scores [12] to measure the
model ability to incorporate new objects in generated captions.
Implementation details. To extract geometric features and confi-
dence scores for our region selector, we employ Faster R-CNN [30]
with ResNet-50-FPN backbone, trained on COCO [23]. For both
training and inference, we discard the detections of the person and
background classes. During training, we use different loss weights



Table 2: Comparison with the state of the art on the held-out COCO test set.

F1 Scores Captioning Metrics

F1bottle F1bus F1couch F1microwave F1pizza F1racket F1suitcase F1zebra F1average B-4 M R C S

DCC [12] 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8 - 21.0 - 59.1 13.4
NOC [35] 17.8 68.8 25.6 24.7 69.3 55.3 39.9 89.0 48.8 - 21.3 - - -
NBT [24] 14.0 74.8 42.8 63.7 74.4 19.0 44.5 92.0 53.2 - 23.9 - 84.0 16.6
CBS [3] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0 - 23.6 - 77.6 15.9
LSTM-C [38] 29.7 74.4 38.8 27.8 68.2 70.3 44.8 91.4 55.7 - 23.0 - - -
DNOC [36] 33.0 76.9 54.0 46.6 75.8 33.0 59.5 84.6 57.9 - 21.6 - - -
LSTM-P [21] 28.7 75.5 47.1 51.5 81.9 47.1 62.6 93.0 60.9 - 23.4 - 88.3 16.6
NBT + CBS [24] 38.3 80.0 54.0 70.3 81.1 74.8 67.8 96.6 70.3 - 24.1 - 86.0 17.4

Top-2 29.6 77.4 44.7 62.6 83.3 81.2 70.7 95.1 68.1 28.1 25.6 52.7 80.0 17.2
Region Selector (w/o Inner) 42.3 78.3 54.4 59.4 85.3 79.1 67.2 95.6 70.2 28.4 25.8 52.8 82.2 18.2
Region Selector 43.9 83.7 66.8 64.7 88.0 81.0 76.9 95.4 75.1 30.3 26.3 53.8 88.5 19.4

Table 3: Region selector performance evaluation using dif-
ferent loss weights for zero and one values.

In-Domain Out-Domain

𝜆0 𝜆1 M C S M C S F1

Region Selector (w/o Inner) 0.4 0.6 27.4 111.9 20.3 25.8 85.6 18.7 68.5
Region Selector 0.4 0.6 28.1 119.2 21.3 26.0 89.0 19.4 70.4

Region Selector (w/o Inner) 0.3 0.7 27.2 108.7 19.9 25.9 84.9 18.6 69.9
Region Selector 0.3 0.7 28.0 116.4 21.2 26.2 88.7 19.4 74.2

Region Selector (w/o Inner) 0.2 0.8 27.4 108.0 19.7 25.8 82.1 18.2 70.2
Region Selector 0.2 0.8 27.9 115.3 21.0 26.3 88.5 19.4 75.1

Region Selector (w/o Inner) 0.1 0.9 26.9 97.8 18.2 25.6 73.2 16.7 67.1
Region Selector 0.1 0.9 27.9 114.3 20.8 26.2 87.5 19.2 75.6

(i.e., 𝜆0 = 0.2 and 𝜆1 = 0.8) to balance the importance of zero and
one ground-truth values, and we limit the number of object pro-
posals for each image to 10 according to their confidence scores.
Region selector features are projected to a 128-dimensional em-
bedding space and passed through 𝑁 = 2 identical layers, each
composed of inner-attention, self-attention, and feed-forward.

For our image captioning model, we extract object features from
Faster R-CNN [30] with ResNet-101 finetuned on Visual Genome [4,
19]. Following [11], we use three layers for both encoder and de-
coder and employ 40 memory vectors for each encoder layer. We
represent words with GloVe word embeddings [29], using two fully-
connected layers to convert between the GloVe dimensionality
(i.e., 300) and the captioning model dimensionality (i.e., 512) before
the first decoding layer and after the last decoding layer. Before the
final softmax, we multiply with the transpose of the word embed-
dings. We pre-train our captioning model using cross-entropy and
finetune it using RL with CIDEr-D reward. During this phase, we
use the classes detected by Faster R-CNN, trained on COCO, that
are mentioned in the ground-truth captions as constraints for our
DGBS algorithm. We limit the number of possible constraints to 5.

All experiments are performed with a batch size equal to 50. For
training the region selector and pre-training the captioning model,
we use the learning rate scheduling strategy of [33] with a warmup
equal to 10, 000 iterations and Adam [18] as optimizer. CIDEr-D
optimization is done with a learning rate equal to 5 × 10−6.

3.2 Experimental Results
Table 1 shows the results of our model in terms of captioning met-
rics and F1-score averaged over the eight held-out classes, using

different strategies to train the captioning model. We compare with
a variant of our region selector without inner-attention (i.e., w/o
Inner) and using the top-𝑘 detections, with 𝑘 = 1, 2, 3, instead of our
selection strategy. For reference, we also report the performance
when using oracle constraints coming from ground-truth captions.
As it can be seen, our solution achieves the best results in terms of
both caption quality and F1-score, demonstrating the effectiveness
of our region selector for choosing constraints for the captioning
model and the importance of the inner-attention operator. Further-
more, by comparing the results with standard CIDEr optimization
and those obtained using our DGBS algorithm during training,
we can see improved results on both in-domain and out-domain
captions, thus confirming the usefulness of our training strategy.

In Table 3, we show the results when using different weights
to balance the importance of zero and one ground-truth values.
As it can be seen, our complete region selector achieves better
performance than the variant without inner-attention, thus further
demonstrating the effectiveness of the proposed attention operator.
Additionally, employing 𝜆0 = 0.2 and 𝜆1 = 0.8 provides the best
balance in terms of captioning metrics and F1-score.

Finally, in Table 2, we compare our model with NOC state-of-
the-art approaches. As it can be noticed, our region selector obtains
the best results in terms of both F1-scores and captioning metrics,
achieving a new state of the art on the held-out COCO dataset.

4 CONCLUSION
We have presented a fully-attentive approach for NOC that learns
to select and describe unseen visual concepts. Our method is based
on a class-independent region selector and an image captioning
model trained with a differentiable grid beam search algorithm
that generates sentences with given constraints, in an end-to-end
fashion. Experimental results have showed that our model achieves
a new state of the art on the held-out COCO dataset, demonstrating
its effectiveness in successfully describing novel objects.
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