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Abstract The characterization of the interacting behaviors of complex biological systems is a pri-
mary objective in protein–protein network analysis and computational biology. In this paper we
present FunMod, an innovative Cytoscape version 2.8 plugin that is able to mine undirected pro-
tein–protein networks and to infer sub-networks of interacting proteins intimately correlated with
relevant biological pathways. This plugin may enable the discovery of new pathways involved in dis-
eases. In order to describe the role of each protein within the relevant biological pathways, FunMod
computes and scores three topological features of the identified sub-networks. By integrating the
results from biological pathway clustering and topological network analysis, FunMod proved
to be useful for the data interpretation and the generation of new hypotheses in two case studies.

Introduction

Systems biology broadly uses networks to model and discover
emerging properties among genes, proteins and other relevant
biomolecules. Theoretical studies have indicated that biologi-
cal networks share many features with other types of networks,
as computer or social networks [1]. Therefore, biological net-
work analyses allow the application of mathematical and com-
putational methods of the graph theory to biological studies
[2]. The computational analysis of biological networks has
therefore become increasingly useful to mine the complex

cellular processes and signaling pathways [3]. Many types of
biological networks exist, depending on the information asso-
ciated with their nodes and edges. In general, biological net-
works can be classified as directed and undirected networks
[4]. In directed networks, the nodes are molecules and edges
represent causal biological interactions, such as the transcrip-
tion and translation regulations [5]. In contrast, in undirected
networks, an edge indicates a shared property, such as the
sequence similarity [6], gene co-expression [7], protein–protein
interaction [8], or the term co-occurrence in the scientific liter-
ature [9–11]. In order to extract relevant biological implication
from undirected networks, which are also called informative
networks [12], it is useful to complement the topological infor-
mation with the independent biological information retrieved
from Gene Ontology (GO) and pathway databases. Often
the goal is to identify densely-interconnected areas and
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correlate them with a specific biological function [13,14]. Sev-
eral algorithms and bioinformatic tools have been proposed
for partitioning the network into structural modules, or for
clustering sub-network modules within an informative net-
work [15,16]. Researchers in Bioinformatics developed Cyto-
scape plugins [17] to mine functional modules in a varieties
of network types, such as Clust&See [18], clusterMaker [19],
CyClus3D [20], GLay [21] and Enrichment Map [22]. These
plugins mainly function on the basis of topological properties.
The groups of highly-interconnected nodes may form clusters
based on a ‘‘first topological clustering’’ strategy, which aimed
at partitioning complex networks into modules. The biological
functions are then assigned assuming that members within
each sub-network shared a similar biological function [23].
However, clusters are identified solely on the basis of the topol-
ogy. Therefore, the possibility of co-occurrence events cannot
be ruled out using these methods. Moreover, these strategies
are heavily influenced by the topological structure of the net-
work itself, and the way that the network is constructed [24].

In practice, the connectivity of the informative networks is
established by experimental methods, which can lead to sam-
pling of a subnet of the real biological network [25,26]. Often,
biases in the sampling strategies lead to apparent scale-free
topologies, which do not reflect the actual complete network
topology. As an alternate to the ‘‘first topological clustering’’
methods, some authors used a ‘‘first pathway enrichment’’
strategy [27], which enables analyzing gene networks and
extracting functional modules starting from the biological
enrichment analysis. Several Cytoscape plugins thus have been
implemented owning to this strategy, such as BiNGO [28], Clu-
eGO [29], ClusterViz [30], JEPETTO [31] and Reactome [32].

BiNGO and ClueGO are widely used tools to determine
which biological functions are statistically over-represented
in a list of genes or a network. These plugins offer the possibil-
ity to calculate enrichment by using different statistical algo-
rithms. However, they do not evaluate the connectivity
between genes, and do not take into account the possibility
that nodes spread in the network could still represent a signif-
icant biological function.

A recent focus of bioinformatics has been to develop the
computational tools that are able to mine the connectivity of
gene networks and uncover the sets of molecules that partici-
pate in a common biological function [33]. Reactome is estab-
lished based on an un-weighted human protein functional
interaction network and the functional interaction score was
calculated with Pearson correlation coefficients among all gene
pairs in the biological database. The weighted network was
clustered into a series of gene interaction modules using the
Markov clustering algorithm. Each module of the Reactome
consists of a set of genes that are both connected in the protein
functional interaction network and highly-correlated in biolog-
ical databases [34]. This approach, however, does not consider
the topology or the connectivity of gene interaction modules.

JEPETTO identifies functional associations between genes
and pathways using protein interaction networks and topolog-
ical analyses. Although JEPPETTO combines network analy-
sis with functional enrichment, this tool requires a list of
genes in input and the selection of a database of interest from
which the reference gene sets will be extracted.

Reactome and JEPETTO are based on an internal gene
interaction database, in which the users are not able to filter
this pre-defined database or to analyze their own protein

informative networks. Nowadays there are a great number of
tools able to produce undirected protein networks from a
user-defined query, such as protein–protein interaction net-
work (STRING, BioGRID, etc.), co-expression network
(COXPRESdb) [35] and co-occurrence network (Protein-
Quest) [36].

To the best of our knowledge, there is no software available
to identify sub-networks of genes that are highly connected
and belong to the same biological pathways. Moreover, the
aforementioned plugins do not allow the analysis of user-
defined undirected networks, such as protein–protein interac-
tion, functional association, gene co-expression and literature
co-occurrence.

In this work we developed a new approach using a ‘‘first
biological assignment’’ strategy and we implemented our
method as a Cytoscape plugin, called FunMod. According to
the principle that interacting proteins drive common biological
processes, FunMod analyzes informative networks combing
topological and biological information to identify and extract
sub-network modules in proteins that are involved in the same
biological pathway. Moreover, in order to describe the shape
of the modules and discriminate the proteins’ topological pro-
prieties within the single sub-network, FunMod analyzes sub-
network features by using three topological scores. The sub-
networks that are statistically overrepresented can act as build-
ing blocks of complex informative networks and carry out a
specific biological function [24]. Assessment of the sub-net-
work topological proprieties and shapes can consequently be
used for the gene ranking in the context of a specific research
domain, such as a disease [35].

In the present study, FunMod proves to be a useful method
for identifying functional sub-networks in an informative pro-
tein network, exploring biomedical information and inferring
automated functional hypotheses between an user defined pro-
tein–protein network [36]. FunMod is unique at its capability
of analyzing user-defined undirected networks, in order to pro-
vide more realistic models that incorporate information from
certain cellular types, developmental states and/or disease
conditions.

Methods

FunMod analyzes the informative protein network displayed
in the Cytoscape Main Network View window. The plugin
supports many standard protein dictionaries, the protein nodes
can be identified (node ID) by six different dictionaries: Entrez
Gene ID, Ensembl, Official Symbol (HGNC symbol), NCBI
Reference Sequence, UniGene and Uniprot Entry Name.

FunMod iteratively selects all edges of the network and assigns
a functional annotation to an edge when two linked nodes are
annotated in the same biological group or pathway in the Consen-
susPathDB (DB)database [37]. Inotherwords,FunModconsiders
an order pair network G= (V, E), where vertices (V, nodes) join
with edges (E), and collects, for each ConsensusPathDB pathway,
pairs of linked nodes tomodel a functional sub-networkGp = (Vp,
Ep), where Vp ˝ ends on the pathways and Ep 2 E. FunMod per-
forms a global enrichment analysis screening the pathways whose
proteins are co-annotated with their neighbors. Accordingly, all
the pathways identified by FunMod are also significant in a global
enrichment analysis, since the connected nodes are a fraction of
nodes in the network. So pathways enriched in a sub-network
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are also enriched in the global network, but only a few pathways
enriched in the global network are enriched in a cluster. Our algo-
rithm thus could find the pathways enriched in the global network
and whose proteins are densely connected within a sub-network.

FunMod extracts all pairs of nodes annotated for the same
pathway in a new sub-network. Subsequently, FunMod tests
the statistical significance and calculates the topological prop-
erties of the sub-network to identify the sub-networks that are
statistically enriched in biological functions and that exhibiting
interesting topological features. The statistical significance of
the sub-network is determined by performing a hypergeomet-
ric test, a well-established method used in gene enrichment
analyses [27]. The hypergeometric probability (h) is based on
the following formula:

h ðx;X; n;NÞ ¼
X
x

! "
N$X
n$x

! "

N
n

! " ð1Þ

where x is the number of nodes of the sub-network (the items
in the sample that are classified as success), n is the number of
genes in the network (items in the sample); X is the number of
genes annotated in the DB with that pathway (items in the
population that are classified as success) and N is the number
of all genes annotated in DB (items in the population).
FunMod preserves the sub-networks with a P value <0.05.

For a better understanding of the systemic functions and
the cooperative interactions between genes within the func-
tional modules, FunMod checks whether the sub-network
topology fits into a specific module. Network modules repre-
sent patterns occurring significantly more often than random
in the complex networks. They consist of sub-graphs of local
interconnections between network elements. FunMod calcu-
lates a fitting score of each sub-network for three types of
modules: clique, star and path [38].

A clique is a sub-network in which all nodes are connected
to each other. Cliques are the most widely-used modules for
assigning a biological function to a topological sub-network.
FunMod calculates the tendency to be a clique by graph den-
sity (GD), a score that can also be defined as the local cluster-
ing coefficient, using the formula:

GD ¼ 2E

n% ðn$ 1Þ ð2Þ

where E is the number of edges in the sub-network and n is the
number of genes in the sub-network.

The star module is particularly interesting for identifying
drug targets. It is characterized by a central gene with a high
degree connection to a set of first-degree neighbors, which
are loosely connected between each other. In a star sub-net-
work, the central gene (the hub gene) has influence on its
neighbor genes and possibly on the whole network. To identify
a star module, FunMod calculates the sub-network centraliza-
tion (CE) using the formula:

CE ¼ n

ðn$ 2Þ
% maxðkÞ

n$ 1
$ GD

# $
ð3Þ

where max(k) is the highest degree of central gene connection
in the sub-network and n is the number of genes in the sub-
network.

The path module corresponds to a real pathway where the
genes contribute to a signal transduction. The path score is

evaluated by the sub-network diameter (D), which uses the
maximum length of all shortest paths between any two
connected nodes, using the formula:

D ¼ max
i;j

dminði; jÞ ð4Þ

where dmin is the minimum path between two nodes i and j of
the network.

Pathways identified using FunMod were displayed in the
Cytoscape Results Panel and ranked based on their P values.
For each pathway, FunMod displays its clique, star and path
coefficients. By clicking the ‘‘Pathway’’ button, FunMod
selects the corresponding nodes in the network. And by using
the ‘‘View subnet’’ function, it creates a new network contain-
ing only those genes and edges annotated within that pathway.
Moreover, FunMod enables saving the results in a tab-delim-
ited file. FunMod plugin, user’s guide, screenshot and demo
networks can be freely downloaded from the SourceForge pro-
ject page at: http://sourceforge.net/projects/funmodnetwork/.
Developed in Java, FunMod is a platform independent plugin
for Cytoscape 2.8.4, which is freely available without charge
for non-commercial purposes.

Results and discussion

Gene Ontology (GO) provides information on the location of
genes and gene products in a cell or the extracellular environ-
ment and also on the molecular function they carry out. How-
ever, GO does not provide information about the interaction
of proteins in the same biological context. For example, GO
does not allow us to describe genes in terms of which cells or
tissues they are expressed in, which developmental stages they
are expressed at, or their involvement in disease (http://
www.geneontology.org/GO.doc.shtml). We thus chose Con-
sensusPathDB [39] to identify proteins that are strictly
involved in the same pathways. We also assess the topological
shape of each sub-network in order to reveal evidence of its
biological function and the function of its components. Three
topological scores are calculated to describe the global features
of the sub-network: graph density, network centralization and
shortest path. Other topological scores, such as centrality and
degree, describe the relative importance of a single node within
the sub-network and thus left out in FunMod.

To demonstrate the usage and performance of FunMod, we
showed here case studies to analyze two different informative
networks: a bibliometric network of proteins related to the
Budd–Chiari syndrome and a co-expression network of pro-
teins related to spinal muscular atrophy. Identification of the
sub-network functional modules in the undirected protein net-
works allows the reduction in network complexity, clustering
of proteins on the basis of common biological functions and
discovery of the mechanisms underlying a disease [40].

Case study 1: Analysis of a bibliometric network

Budd–Chiari syndrome is an uncommon condition character-
ized by obstruction of the hepatic venous outflow tract [41].
Budd–Chiari syndrome is difficult for diagnosis and manage-
ment and often fatal if not treated optimally, since none of
the current medical therapies are based on the clinical evidence
due to the difficulty in performing appropriate clinical studies
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on a sufficient number of patients with this rare disease [42]. In
this circumstance, a meta-analysis can be useful to provide
valuable information for researchers to understand the mech-
anism of this disease [43].

In this case study, we used ProteinQuest (PQ), an advanced
text-mining tool that resorts to the web services offered by
PubMed to identify all proteins co-cited in the same abstract
or figure legend [44] and to export the literature co-occurrence
information as a network file that can be managed in Cyto-
scape. We submitted a query to PQ using the starting search
terms ‘‘Budd–Chiari syndrome’’ and its NCBI medical subject
heading (MeSH) term alias. PQ retrieved more than 2200
papers. The network obtained by PQ was an undirected pro-
tein–protein network consisting of 76 nodes that represent 76
proteins cited in at least one document and 174 edges indicat-
ing co-occurrence of two proteins in at least one document.
A screenshot of the plugin is shown in Figure 1, whereas a
quick guide of the Budd–Chiari syndrome network can be
downloaded at the SourceForge project page (http://source-
forge.net/projects/funmodnetwork/).

Using FunMod we identified 33 different biological path-
ways that are significantly enriched in the Budd–Chiari syn-
drome network. Table 1 shows 13 most relevant pathways.
The most significant one is related to the coagulation cascades,
which is in agreement with the previous reports that Budd–
Chiari is a disorder frequently characterized by the thrombotic

obstruction of hepatic venous outflow [45,46]. This result indi-
cated that FunMod, relying on the ABC principle (A and C
have no direct connection but are connected via shared B inter-
mediates) [47,48] to establish new relationships between pro-
teins from literature co-occurrence, can be effectively used to
combine information from the relevant scientific literature
and from pathway databases, supporting the discovery of
new knowledge. Moreover, we calculated the three types of
topological coefficients of each pathway sub-network with
FunMod and selected the most relevant pathways using three
types of coefficients. As shown in Figure 2, fibrinolysis path-
way was exemplified as a clique module (Figure 2A),
the JAK-STAT pathway as an example of a star module
(Figure 2B), and the platelet activation, signaling and aggrega-
tion as an example of path module (Figure 2C).

By examining the topological feature of a sub-network
functional module, we can extract information of pathways
functioning in Budd–Chiari syndrome. The cliques represent
a highly connected sub-network, where the proteins of the
pathway are highly co-studied and co-cited. The fibrinolysis
pathway is the central pathway in Budd–Chiari syndrome,
consistent with the fact that prothrombotic tendency is caused
by abnormalities in the coagulation of fibrinolysis pathways
[49]. These data may explain why the fibrinolysis pathway
functional sub-network is represented by a clique. A star mod-
ule represents a functional sub-network where a protein plays

Figure 1 Screenshot of FunMod plugin in action
Screenshot shows the bibliometric network of proteins related to Budd–Chiari syndrome. Proteins are displayed as pink nodes and the size
and color density are proportional to the occurrence of the protein term in the literature of Budd–Chiari syndrome. The line between
nodes represents the co-occurrence, and its thickness is proportional to the number of times that the proteins are co-cited in the same
abstract or figure caption. Cytoscape ‘‘Results Panel’’ displays the results of FunMod analysis. When a particular pathway is selected, all
the proteins on this pathway are selected in the network as yellow nodes.
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a central role in the pathway. Indeed JAK2 is the hub (the cen-
tral node) in the JAK-STAT pathway sub-network. Moreover,
a mutation in JAK2 tyrosine kinase (JAK2 V617F) is fre-
quently found in patients with Budd–Chiari syndrome
[50,51]. Finally, the path module represents a significant path-
way in the context of the disease, which is not studied compre-
hensively. The platelet activation, signaling and aggregation
pathway is a therapeutic target for the treatment of Budd–
Chiari syndrome [52]. von Willebrand factor (vWF) [53] and
SerpinA1 [54], two peripheral sub-network proteins that were
recently described as markers of abnormalities of coagulation
play roles in provoking thrombosis [55]. The information
extracted by FunMod will provide guidance for the future
study on Budd–Chiari syndrome.

Case study 2: Analysis of a co-expression network

Spinal muscular atrophy (SMA) is an inheritable neuromuscu-
lar disorder, leading to degeneration of a-motor neurons, due
to recessive mutations of the SMN1 gene [56]. No treatment is
currently available for curing SMA patients, and the develop-
ment of a computational approach could facilitate a better

understanding of this disease and identification of potential
therapeutic targets. In the second case study, we applied
FunMod to analyze a co-expression network obtained using
PQ and COXPRESdb. The protein–protein interactions within
this co-expression network reveal proteins examined in the
context of SMA and that are simultaneously documented to
be co-regulated at mRNA level. The analysis of gene co-
expression network provides powerful searching ability that
allowed us to identify more than 400 functional clusters related
to SMA.

In this case study, we examined all proteins involved in
SMA using PQ and found that 1482 proteins were cited in
PubMed articles describing SMA. This list of proteins was
submitted to COXPRESdb [35], a publicly-available co-
expression database, which provides a tool to export the net-
works in Cytoscape. We used a co-expression network to
enhance the predictive power of the informative network.
We submitted the list of SMA proteins to COXPRESdb and
obtained a co-expression protein network with 2022 nodes
and 9166 edges (Figure 3). Further analyzing the SMA
co-expression network using FunMod, we identified 429 func-
tional modules and the 13 most relevant modules were shown
in Table 2.

Table 1 The most relevant biological pathways identified in the Budd$Chiari syndrome network

Pathway Pathway coverage P value Clique coefficient Star coefficient Path coefficient

Complement and coagulation cascades 20/69 2.13E$27 0.1237 0.6228 4
Homeostasis 24/466 2.13E$14 0.096 0.5119 5
Fibrinolysis pathway 6/14 4.35E$10 0.3333 1 2
Heparin pathway 6/18 2.63E$9 0.3333 1 2
Vitamin B12 metabolism 8/51 3.57E$9 0.1786 1.0952 2
Platelet degranulation 9/83 1.03E$8 0.0972 0.3571 3
Response to elevated platelet cytosolic Ca2+ 9/88 1.75E$8 0.0972 0.3571 3
Folate metabolism 8/66 2.94E$8 0.1786 1.0952 2
JAK/STAT molecular variation 1 9/99 4.95E$8 0.125 0.8036 2
Selenium pathway 8/77 1.01E$7 0.1786 1.0952 2
Lepirudin pathway 5/17 1.24E$7 0.3 1.1667 2
Dicumarol pathway 5/18 1.71E$7 0.3 1.1667 2
PI3K$Akt signaling pathway 7/334 1.29E$2 0.1429 0.7333 2

Figure 2 Three sub-networks extracted from Budd–Chiari network
The three sub-network functional modules selected according to the highest coefficient for each type of topological module––cluster
module (A), star module (B) and pathway module (C). The three sub-networks were extracted from the Budd–Chiari network by clicking
on the ‘‘View Subnet’’ button.
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FunMod identified a few pathways known to be related to
systemic aspects of neurodegenerative conditions, such as the
AGE-RAGE pathway [57], striated muscle contraction [58]

and leptin signaling pathway [59]. FunMod identified the
brain-derived neurotropic factor (BDNF) signaling among
the most relevant pathway (Figure 4A). The BDNF promotes

Table 2 The most relevant biological pathways identified in spinal muscular atrophy network

Pathway Pathway coverage P value Clique coefficient Star coefficient Path coefficient

AGE$RAGE pathway 39/66 3.75E$12 0.0789 0.3051 6
BDNF signaling pathway 61/140 1.93E$10 0.0484 0.2602 6
Prolactin signaling pathway 40/76 2.74E$10 0.0814 0.2922 5
Inhibition of cellular proliferation by Gleevec 17/22 1.25E$08 0.136 0.3417 4
Leptin signaling pathway 32/61 1.86E$08 0.1008 0.3742 5
Androgen receptor 59/148 2.22E$08 0.0649 0.6289 4
ATF-2 transcription factor network 31/61 8.13E$08 0.0753 0.3471 5
Glucocorticoid receptor regulatory network 37/80 1.11E$07 0.0691 0.3675 4
MAPK signaling pathway 61/161 1.16E$07 0.0522 0.2562 5
Chronic myeloid leukemia 34/73 2.94E$07 0.066 0.3163 5
mRNA processing 50/126 3.07E$07 0.0861 0.3142 5
Striated muscle contraction 22/38 3.26E$07 0.0736 0.3905 6
ErbB2/ErbB3 signaling events 23/42 6.89E$07 0.1206 0.3658 4

Figure 3 The SMA co-expression network
COXPRESdb provides NetworkDrawer, a tool for drawing and visualizing the protein co-expression network in Cytoscape Web. The
network can be downloaded in the XGMML format, the standard format for saving and importing network into Cytoscape, and imported
into a stand-alone Cytoscape distribution for advanced analyses. NetworkDrawer performs cluster detection and Gene Ontology
enrichment analysis, providing a node color scale to indicate protein localization: cytosol (green); cytoskeleton, endoplasmic reticulum,
Golgi body, lysosome, peroxisome and plasma membrane (gray); mitochondrion (cyan); nucleus (yellow); and extracellular matrix (white).
The edge represents the type of interaction between two nodes: gene co-expression (solid in black) and indicates known protein–protein
interaction (dotted in red). SMA, spinal muscular atrophy; XGMML, extensible graph markup and modeling language.
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neurogenesis, neuronal survival and synaptic plasticity [60].
Therefore, this finding validates the ability of our software to
reveal new relevant functional modules. Interestingly,
FunMod identified the androgen receptor signaling pathway
in SMA co-expression network as well (Figure 4B). Androgens
interact with BDNF during development to regulate non-path-
ological death of motor neurons. Androgens regulate BDNF
levels in the target musculature and moreover, androgenic
actions at the muscle regulate BDNF levels in motoneurons
[61]. Therefore, these interactions have important implications
for the maintenance of motoneuron morphology. These find-
ings provide further insights into the pathogenic role of BDNF
and androgens in SMA, which might be a preferential route
for targeting motor neurons [62].

Conclusion

Using a ‘‘first topological assignment’’ strategy to identify sub-
network functional modules, such as stars and cliques, can be
tricky because informative networks are known to have a huge
number of edges that are not always pertinent to biological
functions. In this work we presented FunMod, a new Cyto-
scape 2.8 plugin, which can analyze undirected protein net-
works, such as co-occurrence and co-expression networks,
and guide the discovery of sub-network functional modules.
A functional module can be considered as a distinct group of
interacting proteins [32] within a pathway relevant to a condi-
tion of interest.

FunMod identifies within an informative network, pairs
of nodes belonging to the same biological pathways and
assesses their statistical significance. It then analyzes the
topology of the identified sub-network to infer the topolog-
ical relations (motifs) of its nodes. In this work, the network
topology is influenced by the biomedical knowledge since the
link between two proteins was established when two gene
symbols appear in the same MEDLINE record. The study

of the connection between biomedical concepts by using
co-occurrence network extracted from MEDLINE proved
capable of guiding the discovery of novel knowledge from
scientific literature [63]. This sub-network profiling combined
with information from the biological database will help us to
better understand the biological significance of the protein–
protein network.

FunMod was tested using the co-occurrence network of
proteins cited in Budd–Chiari syndrome papers, identifying
33 different biological pathways that are significantly
enriched; and using the co-expression network of proteins
discussed in publications on SMA. FunMod proves to be
a useful tool for a better understanding of the cooperative
interactions between proteins and discriminating the biolog-
ical role played by each protein within a functional
module.
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