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A B S T R A C T

Action Detection is a complex task that aims to detect and classify human actions in video clips. Typically,
it has been addressed by processing fine-grained features extracted from a video classification backbone.
Recently, thanks to the robustness of object and people detectors, a deeper focus has been added on relationship
modeling. Following this line, we propose a graph-based framework to learn high-level interactions between
people and objects, in both space and time. In our formulation, spatio-temporal relationships are learned
through self-attention on a multi-layer graph structure which can connect entities from consecutive clips, thus
considering long-range spatial and temporal dependencies. The proposed module is backbone independent by
design and does not require end-to-end training. Extensive experiments are conducted on the AVA dataset,
where our model demonstrates state-of-the-art results and consistent improvements over baselines built with
different backbones. Code is publicly available at https://github.com/aimagelab/STAGE_action_detection.
. Introduction

Understanding people actions in video clips is an open problem
n computer vision, which has been addressed for more than twenty
ears (Bobick and Davis, 2001; Herath et al., 2017). In the past, this
ask was tackled through handcrafted features designed for specific
ctions (Laptev, 2005; Vezzani et al., 2009). Recently, the video action
etection task (Sun et al., 2018; Ulutan et al., 2020; Yang et al., 2019)
as introduced along with deep architectures able to extract fine-
rained and discriminative spatio-temporal features, to represent video
hunks in a compact and manageable form. This has motivated recent
fforts to design novel backbones for video feature extraction (Feichten-
ofer et al., 2019; Tran et al., 2018; Wu et al., 2019). On the other hand,
igher-level reasoning is necessary for detecting and understanding
uman actions.

Interestingly, the performances of video action detection networks
hat take inspiration from object detection architectures are still far
rom being satisfactory. For example, it would be difficult to recognize
hether a person is watching someone just by looking at a bounding
ox around him, without considering the context. This can be partly
xplained by the lack of proper context understanding of the previous
orks, as they cannot model the relationships between actors and sur-

ounding elements (Ulutan et al., 2020). Also, the presence of objects
nd other people in the scene, together with their behaviors, influences
he understanding of the actor at hand.

High-level reasoning is necessary not only at the spatial level,
o model relations between close entities, but also in time: most of
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the existing backbones can handle small temporal variations, without
modeling long-term temporal relationships.

Following these premises, we devise a high-level module for video
action detection which considers interactions between different people
in the scene and interactions between actors and objects. Further,
it can also take into account temporal dependencies by connecting
consecutive clips during learning and inference. The same module can
be stacked multiple times to form a multi-layer structure (Fig. 1).
In this manner, the overall temporal receptive field can be arbitrar-
ily increased to model long-range dependencies. Since our method
works at the feature level, it can expand its temporal receptive field
without dramatically increasing its computational requirements. Our
solution can exploit existing backbones for feature extraction and can
achieve state-of-the-art results without an end-to-end finetuning of the
underlying backbone.

Previous works in action analysis have already tried to exploit
graph-based representations (Wang and Gupta, 2018; Zhang et al.,
2019), to model relationships with the context (Girdhar et al., 2019;
Ulutan et al., 2020) and to exploit long-term temporal relations (Wu
et al., 2019): our proposal merges all these insights in a single module,
which is independent of the feature extraction layers and works on pre-
computed representations. Moreover, our model is the first to employ
a learning-based approach also on graph edges. We test our model
on the Atomic Visual Actions (AVA) dataset (Gu et al., 2018), which
represents a challenging test-bed for recognizing human actions and
exploiting the role of context, and provide experiments on J-HMDB-21
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Fig. 1. We propose a graph-based module for video action detection which encodes
relationships between actors and objects in a spatio-temporal neighborhood. Multiple
layers of the module generate indirect edges between temporally distant entities,
increasing the temporal receptive field.

(Jhuang et al., 2013) and UCF101-24 (Soomro et al., 2012). We demon-
strate that our approach increases the performance of three different
video backbones, reaching state-of-the-art results on AVA 2.1 and AVA
2.2.

Contributions. To sum up, our contributions are as follows:

• We propose a novel module for video action detection, which con-
siders spatio-temporal relationships between actors and objects.

• The proposed module is based on a spatio-temporal graph rep-
resentation of the video, which is learned through self-attention
operations. Further, multiple instances of the proposed module
can be stacked together to obtain a greater temporal receptive
field. The overall model is independent of the feature extrac-
tion stage and does not need end-to-end training to achieve
state-of-the-art results.

• Extensive experiments on the challenging AVA dataset (Gu et al.,
2018) validate our approach and its components, demonstrating
better performance with respect to other end-to-end models. In
particular, our proposal achieves 29.8 and 31.8 mAP on AVA 2.1
and AVA 2.2, respectively, surpassing all previous approaches.

2. Related work

Deep networks for video understanding. CNNs are currently the
state-of-the-art approach to extract spatio-temporal features for video
processing and understanding (Carreira and Zisserman, 2017; Tran
et al., 2015; Varol et al., 2017; Xie et al., 2018). Most of the approaches
for spatio-temporal feature extraction have employed either full 3D
convolutional kernels, or a combination of 2D spatial kernels and 1D
temporal filters (Feichtenhofer et al., 2016a; Qiu et al., 2017; Tran
et al., 2018). Despite convolutions are capable of extracting temporal
features to some extent, it is still a common practice to integrate both
RGB and optical flow inputs in two separate streams (Feichtenhofer
et al., 2016b; Simonyan and Zisserman, 2014; Wang et al., 2016) to cap-
ture appearance and motion respectively. Recently, some works have
proposed architectural variations to improve the feature extraction
capabilities of the network. Li et al. (2019) have proposed to employ
2D convolutional kernels which slide over the three 2D projections of a
spatio-temporal tensor; (Hussein et al., 2019), instead, have developed
2

a multi-scale temporal convolution approach which uses different ker-
nel sizes and dilation rates to better capture temporal dependencies. On
the same line, Feichtenhofer et al. (2019) has proposed a two-pathway
network, with a low frame rate path that focuses on the extraction of
spatial information and a high frame rate path that encodes motion.

Detecting actions in space and time. Detecting actions is a funda-
mental step towards human behavior understanding in videos. Towards
this goal, two problems have been analyzed in the last few years:
temporal action detection and spatio-temporal action detection. The
former task aims to segment the temporal interval in which the action
takes place (Caba Heilbron et al., 2015; Sigurdsson et al., 2016; Xu
et al., 2017). The latter, instead, is intended to detect people in space
and time and to classify their actions (Gu et al., 2018; Jhuang et al.,
2013; Soomro et al., 2012; Soomro and Zamir, 2014). Seminal works in
action detection and recognition have already investigated the role of
context and that of modeling the interactions with objects (Gupta and
Davis, 2007; Gupta et al., 2009; Prest et al., 2012; Escorcia and Niebles,
2013) to improve recognition. Other approaches proposed to split the
action localization task into spatial and temporal search (Kläser et al.,
2010).

Recent approaches have tackled the spatio-temporal action detec-
tion task by exploiting human proposals coming from pre-trained image
detectors (Feichtenhofer et al., 2019; Wu et al., 2019) and repli-
cating them in time to build straight spatio-temporal tubes; others
have extended image detection architectures to infer more precise
spatio-temporal tubelets (Gkioxari and Malik, 2015; Hou et al., 2017;
Kalogeiton et al., 2017; Saha et al., 2017). (Gu et al., 2018) proposed
a baseline exploiting an I3D network encoding RGB and flow data
separately, along with a Faster R-CNN (Ren et al., 2015), to jointly learn
action proposals and labels. Ulutan et al. (2020) suggested combining
actor features with every spatio-temporal region in the scene to produce
attention maps between the actor and the context. Girdhar et al. (2019),
instead, proposed a Transformer-style architecture (Vaswani et al.,
2017) to weight actors with features from the context around him. Fi-
nally, weakly-supervised approaches have also been proposed (Escorcia
et al., 2020).

Graph-based representations. Graph-based representations have been
used in action recognition (Brendel and Todorovic, 2011; Jain et al.,
2016; Wang and Gupta, 2018; Zhang et al., 2019) to model spatio-
temporal relationships, although the use of graph learning and
graph convolutional neural networks (Defferrard et al., 2016; Kipf and
Welling, 2017; Veličković et al., 2018) in video action detection is
still under-investigated. Wang and Gupta (2018) proposed to model a
video clip as a combination of the whole clip features and weighted
proposal features, computed by a graph convolutional network based
on similarities in the feature space and spatio-temporal distances be-
tween detections. Zhang et al. (2019), instead, defined the strength of a
relation between two nodes in the graph as the inverse of the Euclidean
distance between entities in the video.

3. Graph-based learning of spatio-temporal interactions

Given a video clip, the goal of our approach is to localize each
actor and classify his actions. As actions performed in a clip depend on
actor and object relationships through both space and time, we define
a graph representation in which actor and object detections are treated
as nodes, and edges hold relationships between them. Further, we link
graphs from subsequent clips in time, to encode relations between clips
belonging to the same longer video. We name our approach STAGE, as
an acronym of Spatio-Temporal Attention on Graph Entities.

In this section, we first outline our graph-based representation for
a single clip, describing the graph attention layer and the adjacency
matrix we employ. In the remainder of the section, we will then extend
this approach to handle a sequence of consecutive clips.
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3.1. Graph-based clip representation

We propose a graph-based representation of each clip, where nodes
consist of actor and object features predicted by pre-trained detectors,
as shown in the left side of Fig. 2. Denoting the number of actors
and objects belonging to clip 𝑡 (i.e. centered in frame 𝑡) as 𝐴𝑡 and 𝑂𝑡
respectively, the total number of graph entities is 𝑁𝑡 = 𝐴𝑡 + 𝑂𝑡. Under
his configuration, a clip can be represented as an 𝑁𝑡×𝑑𝑓 matrix, where
𝑓 is the node feature size.

Since actors can have meaningful relations both between them
nd with objects in the scene, we employ a fully-connected graph
epresentation, in which all nodes are connected to the others, as the
nput of our network. Following the assumption that the closer an entity
s to another, the higher the probability that they affect each other,

link between two entities in the graph is made stronger if they are
patially close. The graph configuration is therefore given by a dense
𝑡 × 𝑁𝑡 adjacency matrix 𝑨, in which 𝑨𝑖𝑗 is defined as the proximity

between entities 𝑖 and 𝑗, computed as follows:

𝑨𝑖𝑗 = 𝑒−
√

(𝑥𝑐𝑖−𝑥𝑐𝑗 )2+(𝑦𝑐𝑖−𝑦𝑐𝑗 )2 , (1)

where 𝑥𝑐𝑖 and 𝑦𝑐𝑖 are the center coordinates of entity 𝑖. In the remain-
er of the paper, this single-clip adjacency matrix representation will
e extended to a multi-clip adjacency matrix, allowing us to easily link
raphs coming from subsequent clips of the same video.

.2. Spatial-aware graph attention

raph self-attention. Besides the introduced adjacency matrix, we
dopt a graph attention module, inspired by Veličković et al. (2018).
he input of the model consists of 𝑁𝑡 node features which represent

actors and objects, {𝒇 1,𝒇 2,… ,𝒇𝑁𝑡
} with 𝒇 𝑖 ∈ R𝑑𝑓 . First, the module

pplies a linear transformation to these features, in order to obtain a
ew representation of each entity {𝒉1,𝒉2,… ,𝒉𝑁𝑡

}, 𝒉𝑖 ∈ R𝑑ℎ . Then a self-
attention operator  is applied to the nodes. In particular, the operator
is defined as  ∶ R𝑑ℎ × R𝑑ℎ → R, as follows:

𝑖𝑗 = (𝒉𝑖,𝒉𝑗 ) (2)

ith the scalar 𝑬𝑖𝑗 representing the importance of entity 𝑗 with respect
o entity 𝑖. Since we propose to represent a clip as a fully-connected
raph, 𝑬𝑖𝑗 is computed for each pair of entities belonging to the same
lip, avoiding the need for masking disconnected couples. Based on the
riginal graph attention implementation (Veličković et al., 2018),  is
mplemented with a feedforward layer with 2×𝑑ℎ parameters, followed
y a LeakyReLU nonlinearity:

𝑖𝑗 = LeakyReLU(𝖥𝖢(𝒉𝑖 ∥ 𝒉𝑗 )), (3)

here ∥ indicates concatenation on the channel axis and 𝖥𝖢 is a linear
ayer. The resulting matrix, 𝑬, will be a squared matrix with the same
hape as the adjacency matrix. Separating it into its components, it can
e rewritten as:

=
(

𝑬𝑎𝑎 𝑬𝑎𝑜
𝑬𝑜𝑎 𝑬𝑜𝑜

)

(4)

here 𝑬𝑎𝑎 is the matrix of attentive weights between actors and actors,
𝑎𝑜 is the matrix of objects weights to actors, 𝑬𝑜𝑎 is the matrix of actors
eights to objects and 𝑬𝑜𝑜 is the matrix of objects weights to objects.

ntroducing spatial proximity. The proposed self-attention module,
hen applied to a clip graph, computes the mutual influence of two
ntities in feature space, i.e. the influence of an entity on another
ased on their features. However, it does not consider mutual distances
etween entities.

To introduce the prior given by the spatial proximity inside the clip,
e condition the self-attention matrix 𝑬 with the adjacency matrix
3

, which contains the proximity between detections, by taking their
adamard product, i.e.:

= 𝑨⊙ 𝑬. (5)

This operation allows us to strengthen the importance of the features of
n entity with respect to its neighbors and to weaken relations between
ntities that lie spatially far from each other. A row-wise softmax
ormalization is then applied to obtain an importance distribution over
ntities:

𝑖𝑗 =
exp(𝑫𝑖𝑗 )

∑𝑁𝑡
𝑘=1 exp(𝑫𝑖𝑘)

. (6)

The updated features computed by the module are a linear combination
of the starting features {𝒉1,𝒉2,… ,𝒉𝑁𝑡

} using {𝑾 }𝑖,𝑗 as coefficients.
In particular, the self-attention module updates the initial features as
follows:

𝒉′𝑖 = 𝜎

( 𝑁𝑡
∑

𝑗=1
𝑾 𝑖𝑗𝒉𝑗

)

, (7)

where 𝜎 is an ELU nonlinearity (Clevert et al., 2016).

3.3. Temporal graph attention

In this section, we extend the proposed attention-based approach
to jointly encode a batch of consecutive clips. Since different clips
can have a different number of actors and objects, we devise a single
adjacency matrix with as many rows and columns as the total number
of entities in all clips of the batch. Besides allowing us to manage
clips with a variable number of entities, this solution is suitable to link
more graphs together and avoids padding. When encoding a batch of
consecutive clips, the size of the adjacency matrix will be ∑𝑏

𝑡=1 𝑁𝑡 ×
𝑏
𝑡=1 𝑁𝑡, being 𝑏 the size of the batch of clips.
An example is shown in Fig. 3, for a three clips setting and a

emporal receptive field of three consecutive clips. Here, dark red ele-
ents contain the proximity between actors of the same clip, dark blue

lements contain the proximity between objects of the same clip, and
ark violet elements contain the proximity between actors and objects
f the same clip. Entities belonging to subsequent clips can be linked
y computing their boxes proximity (as in Eq. (1)), assuming that the
emporal distance between clips is small enough to ensure the consis-
ency of the scene. The light-colored elements of the adjacency matrix
n Fig. 3 contain the proximity between actors (light red), objects (light
lue), and actors/objects (light violet) belonging to two consecutive
lips. The temporal receptive field of a single attentive layer can be
otentially increased by adding the proximity of temporally distant
ntities in the adjacency matrix.

elf-attention over time. We extend the self-attentive operations to
ompute the importance of an entity with respect to all the other entities
n the batch. In our implementation, the self-attention module computes
ttention weights for each pair of entity features, without any masking.
or a three clips per batch setting, the complete attention weights
atrix �̂� looks like the following:

̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̂�𝑡0 ,𝑡0
𝑎𝑎 �̂�𝑡0 ,𝑡1

𝑎𝑎 �̂�𝑡0 ,𝑡2
𝑎𝑎

�̂�𝑡1 ,𝑡0
𝑎𝑎 �̂�𝑡1 ,𝑡1

𝑎𝑎 �̂�𝑡1 ,𝑡2
𝑎𝑎

�̂�𝑡2 ,𝑡0
𝑎𝑎 �̂�𝑡2 ,𝑡1

𝑎𝑎 �̂�𝑡2 ,𝑡2
𝑎𝑎

�̂�𝑡0 ,𝑡0
𝑎𝑜 �̂�𝑡0 ,𝑡1

𝑎𝑜 �̂�𝑡0 ,𝑡2
𝑎𝑜

�̂�𝑡1 ,𝑡0
𝑎𝑜 �̂�𝑡1 ,𝑡1

𝑎𝑜 �̂�𝑡1 ,𝑡2
𝑎𝑜

�̂�𝑡2 ,𝑡0
𝑎𝑜 �̂�𝑡2 ,𝑡1

𝑎𝑜 �̂�𝑡2 ,𝑡2
𝑎𝑜

�̂�𝑡0 ,𝑡0
𝑜𝑎 �̂�𝑡0 ,𝑡1

𝑜𝑎 �̂�𝑡0 ,𝑡2
𝑜𝑎

�̂�𝑡1 ,𝑡0
𝑜𝑎 �̂�𝑡1 ,𝑡1

𝑜𝑎 �̂�𝑡1 ,𝑡2
𝑜𝑎

�̂�𝑡2 ,𝑡0
𝑜𝑎 �̂�𝑡2 ,𝑡1

𝑜𝑎 �̂�𝑡2 ,𝑡2
𝑜𝑎

�̂�𝑡0 ,𝑡0
𝑜𝑜 �̂�𝑡0 ,𝑡1

𝑜𝑜 �̂�𝑡0 ,𝑡2
𝑜𝑜

�̂�𝑡1 ,𝑡0
𝑜𝑜 �̂�𝑡1 ,𝑡1

𝑜𝑜 �̂�𝑡1 ,𝑡2
𝑜𝑜

�̂�𝑡2 ,𝑡0
𝑜𝑜 �̂�𝑡2 ,𝑡1

𝑜𝑜 �̂�𝑡2 ,𝑡2
𝑜𝑜

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8)

where �̂�𝑡,𝑡′

𝑎𝑎 is the weights matrix of actors belonging to clip 𝑡 to actors
belonging to clip 𝑡′, �̂�𝑡,𝑡′

𝑎𝑜 is the weights matrix of objects belonging to
clip 𝑡 to actors belonging to clip 𝑡′, and so on.

Given the new adjacency matrix, �̂�, the Hadamard product:

�̂� = �̂�⊙ �̂� (9)
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Fig. 2. Architecture of our high-level video understanding module. Given consecutive clips, the input of our model consists of actor and object features. It then applies a sequence
of graph-attention layers (red-background box), each of them composed of a number of graph-attention heads (yellow-background box) applied in parallel. The figure depicts a
single layer with two heads.
Fig. 3. Adjacency matrix in a three clips per batch configuration, containing the spatial
proximity between entities belonging to the same clip (dark-colored sub-matrices) and
to consecutive clips (light-colored sub-matrices). White elements are zeros. Bounding
box centers are indicated as 𝑥𝑐 and 𝑦𝑐 .

is in charge of strengthening or weakening (based on the spatial
istance) weights between entities belonging to the same timestamp
r sufficiently close in time, and to zero weights between temporally
istant entities. Finally, the linear combination of Eq. (7) replaces
eatures of an entity with a weighted sum of features directly connected
o it in the graph: these features come now from entities belonging to
he same clip and to temporally close clips. As our approach works at
he feature level, increasing the temporal receptive field of the module
oes not dramatically increase the demand of computational resources.

ulti-head multi-layer approach. A single graph-attention head
yellow-background box of Fig. 2) performs the aforementioned oper-
tions in our model. A graph-attention layer (red-background box of
ig. 2) concatenates the output of different heads and applies a linear
ayer, a residual connection, and a layer normalization (Ba et al., 2016).
s it will be analyzed in Section 4.2, a grid search on the number
f parallel heads and subsequent layers allows us to obtain the best
erformance.

It is worth noting that the number of graph attention layers affects
he temporal receptive field of the overall sequence of layers. Consider-
ng a receptive field of three (corresponding to a graph where entities
re directly connected only with other entities of the same clip and
o entities from the previous and following clips), each layer after the
irst one increases the overall temporal receptive field by two. In a
wo layers setting, for instance, the second graph attention layer will
ompute the features of a clip as a weighted sum of its two neighbors,
ut features from those have already been affected by features of other

lips in the first graph attention layer.

4

4. Experimental results

In this section, we introduce the experimental setting and report the
implementation and training details. We then provide quantitative and
qualitative evaluations, as well as computational analysis.

Datasets and metrics. We evaluate our model on versions 2.1 and
2.2 of the challenging AVA dataset (Gu et al., 2018), which contains
annotations to localize people both in space and time and to predict
their actions. It consists of 235 training and 64 validation videos, each
15 min long. The temporal granularity of annotations is 1 s, leading
to 211k training and 57k validation clips centered in the annotated
keyframes. Each actor is involved in one or more of 80 atomic action
classes. One of the main challenges of AVA concerns its long-tail
property: tens of thousands of samples are available for some classes
while only a few dozen for others.

The performance of a model on AVA is measured by the keyframe-
level mean Average Precision (mAP) with a 50% IoU threshold. Follow-
ing the protocol suggested by the dataset authors and adopted in prior
works, we train our architecture on all the 80 classes and evaluate its
performance only on the 60 classes containing at least 25 validation
examples.

We also report performances in terms of frame-mAP with the same
50% IoU threshold on two additional benchmarks, namely J-HMDB-
21 (Jhuang et al., 2013) and UCF101-24 (Soomro et al., 2012). These
two datasets are relatively smaller than AVA, and provide a single
label per video. On average, they also have fewer interactions between
entities.

People and object detectors. When experimenting on AVA, we use
a Faster R-CNN (Ren et al., 2015) with a ResNeXt-101-FPN (He et al.,
2016; Lin et al., 2017; Xie et al., 2017) as people detector, applied on
keyframes. The detection network is pre-trained on COCO (Lin et al.,
2014) and fine-tuned on AVA (Gu et al., 2018) people boxes. The
detector is the same used by Feichtenhofer et al. (2019) and Wu et al.
(2019), and reaches 93.9 AP@50 on the AVA validation set. Following
previous works (Feichtenhofer et al., 2019; Gu et al., 2018), actor
features are then obtained from a 3D CNN backbone (which is discussed
in the next section) by replicating boxes in time to obtain a 3D RoI
and applying RoIAlign (He et al., 2017). During training, we employ
ground-truth people regions. Objects features, instead, are extracted
from a Faster R-CNN detector pre-trained on Visual Genome (Krishna
et al., 2017), and have a dimensionality of 2048.

Video Backbones. In all experiments, we employ a pre-trained actor
backbone which is kept fixed during training. Freezing the backbone
allows us to increase the batch size and to explore longer temporal
relations between consecutive clips. The pre-trained backbones take
raw clips as input and output features for each actor. When considering
the AVA dataset, all video-level backbones are trained on the Kinetics
dataset (Kay et al., 2017) and fine-tuned on the AVA dataset (Gu et al.,
2018) before applying our module.
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Table 1
Learnable blocks of STAGE, in a 4-heads/1-layer configuration, when using I3D features.
𝐺𝐴𝐿𝑖 indicates the 𝑖th graph-attention-layer, which consists of 4 attention heads (each
with 2 fully-connected layers), a linear layer, and a LayerNorm. 𝑁𝑡 is the number of
entities (actors and objects), 𝐴𝑡 is the number of actors.

Stage Module Input size Output size

𝐼𝑛𝑝𝑢𝑡 𝑁𝑡 × 1024

𝐺𝐴𝐿1

𝖥𝖢11
[

𝑁𝑡 × 1024
]

× 4
[

𝑁𝑡 × 256
]

× 4
𝖥𝖢12

[

𝑁𝑡 ×𝑁𝑡 × 512
]

× 4
[

𝑁𝑡 ×𝑁𝑡
]

× 4
𝖥𝖢13 𝑁𝑡 × 1024 𝑁𝑡 × 1024
𝖫𝖭𝗈𝗋𝗆 𝑁𝑡 × 1024 𝑁𝑡 × 1024

𝖥𝖢3 𝐴𝑡 × 1024 𝐴𝑡 × 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

On AVA, we consider three backbones for extracting actor features,
amely I3D (Carreira and Zisserman, 2017), R101-I3D-NL (Wu et al.,
019) and SlowFast-NL (Feichtenhofer et al., 2019). The I3D (Carreira
nd Zisserman, 2017) backbone is pre-trained on ImageNet (Deng
t al., 2009) before being ‘‘inflated’’, and then trained on Kinetics-
00. RoIAlign is applied after the Mixed_4f layer and we fine-tune only

the last layers (from the Mixed_5a layer to the final linear classifier)
on AVA for 10 epochs. The R101-I3D-NL (Wu et al., 2019) and the
SlowFast-NL (Feichtenhofer et al., 2019) backbones are pre-trained
on Kinetics-400 or Kinetics-600 (R101-I3D-NL on ImageNet, too), and
fine-tuned end-to-end on the AVA dataset.

For the I3D backbone, we use ground-truth boxes and predicted
boxes with any score during features extraction, assigning labels of a
ground-truth box to a predicted box if their IoU is 0.5 or more. We use
predicted boxes with score at least 0.7 for the evaluation. Following
the authors implementation (Feichtenhofer et al., 2019; Wu et al.,
2019), for the R101-I3D-NL and SlowFast-NL backbones we use ground-
truth boxes and predicted boxes with score at least 0.9 during features
extraction, assigning labels of a ground-truth box to a predicted box if
their IoU is 0.9 or more. We use predicted boxes with score at least 0.8
for the evaluation.

Features are always extracted from the last layer of the backbone
before classification, after averaging in space and time dimensions:
feature size, therefore, is 1024, 2048, and 2304 for I3D, R101-I3D-
NL, and SlowFast-NL respectively. As additional features, we also add
bounding boxes height, width and center coordinates to actors and
objects, as we found it to be beneficial in preliminary experiments.
A linear layer is employed to transform actor or object features to a
common dimensionality 𝑑𝑓 , making their concatenation feasible. In all
experiments, when concatenating actor and object features we apply
the linear layer to the feature vector with the largest dimensionality,
leaving the other unchanged.

Implementation and training details. Each graph attention head
consists of two fully-connected layers. The first one reduces the feature
size depending on the number of heads used in that layer: with 𝑛ℎ
heads, the output feature size is set to

⌊

𝑑𝑓∕𝑛ℎ
⌋

. The second linear layer,
instead, computes attention weights (Eq. (3)). The outputs of different
attention heads are then concatenated, and a fully connected layer
followed by a residual block and a layer normalization block is applied
(Fig. 2). Each graph attention head is followed by a dropout with keep
probability 0.5, and the alpha parameter of the LeakyReLU in Eq. (3)
is set to 0.2. After a sequence of layers of the proposed module, one
last linear layer is employed to compute per-class probabilities, and a
sigmoid cross-entropy loss (for AVA) or a softmax cross-entropy loss
(for the other benchmarks) is applied. In our experiments, we adopt a
temporal receptive field of three, connecting entities of a clip with those
belonging to the same, the previous and the following clip. Table 1 lists
the learnable blocks of our architecture in a 4-heads/1-layer setting.
It is worthwhile to mention that our graph-attention block is trained
without any data augmentation, while end-to-end approaches typically
require random flipping, scaling, and cropping.
 t

5

Table 2
Comparison with previous approaches on AVA 2.1 validation set, in terms of mean
Average Precision.

Model Pretraining mAP@50

AVA (Gu et al., 2018) Kinetics-400 15.6
ACRN (Sun et al., 2018) Kinetics-400 17.4
STEP (Yang et al., 2019) Kinetics-400 18.6
Better baseline (Girdhar et al., 2018) Kinetics-600 21.9
SMAD (Zhang et al., 2019) Kinetics-400 22.2
RTPR (Li et al., 2018) – 22.3
ACAM (Ulutan et al., 2020) Kinetics-400 24.4
VATX (Girdhar et al., 2019) Kinetics-400 24.9
SlowFast (Feichtenhofer et al., 2019) Kinetics-400 26.3
LFB (R101-I3D-NL) (Wu et al., 2019) Kinetics-400 26.8

I3D (Carreira and Zisserman, 2017) Kinetics-400 19.7
STAGE (I3D) Kinetics-400 23.0
R101-I3D-NL (Wu et al., 2019) Kinetics-400 23.9
STAGE (R101-I3D-NL) Kinetics-400 26.3
SlowFast-NL,8 × 8 (Feichtenhofer et al., 2019) Kinetics-600 28.2
STAGE (SlowFast-NL,8 × 8) Kinetics-600 29.8

Table 3
Comparison with previous approaches on AVA 2.2 validation and test sets, using
different backbones. Numbers marked with ‘‘*" are obtained from models released in
the official SlowFast (Feichtenhofer et al., 2019) repository. In (Feichtenhofer et al.,
2019), the reported performances are 29.0 and 29.8 for SlowFast-NL,8 × 8 and
SlowFast-NL,16 × 8 respectively.

Model Pretraining val mAP test mAP

SlowFast-NL,8 × 8 (Feichtenhofer et al., 2019)* Kinetics-600 29.1 –
STAGE (SlowFast-NL,8 × 8) Kinetics-600 30.0 29.6
SlowFast-NL,16 × 8 (Feichtenhofer et al., 2019)* Kinetics-600 29.4 –
STAGE (SlowFast-NL,16 × 8) Kinetics-600 30.3 29.9

STAGE (SlowFast-NL,16 × 8,8 × 8) Kinetics-600 31.8 31.6

During training, we use a batch size of 6. Adam optimizer (Kingma
and Ba, 2015) is adopted in all our experiments, with a learning rate
of 6.25 × 10−5 when using I3D features and 10−5 for R101-I3D-NL and
lowFast-NL features. The learning rate is decreased by a factor of 10
hen the validation mAP does not increase for ten consecutive epochs.
arly-stopping is also applied when the validation mAP does not in-
rease for five consecutive epochs. All the experiments are performed
n a single NVIDIA V100 GPU; on average, a single experiment takes
ess than a day to converge.

.1. Main quantitative results

In the following experiments, we show that our proposed mod-
le can improve video action detection performance by a significant
argin, reaching state-of-the-art results. If not specified otherwise, we

mploy a 2-layers 4-heads setting when using the I3D backbone and
hen testing on J-HMDB-21 and UCF101-24, and a 2-layers 2-heads

etting when using the R101-I3D-NL and the SlowFast-NL backbones.

esults on AVA 2.1. Table 2 shows the mean Average Precision with
0% IoU threshold on AVA 2.1 for our method, considering the three
ackbones, and for a number of competitors. All the experiments refer
o a single-crop validation accuracy (no multi-scale and horizontal
lipping are adopted for testing) and for a single model (i.e., without
sing ensemble methods).

When applying our approach, we observe a relative improvement
f more than 16% on the I3D backbone (19.7 → 23.0), of about 10%
or the R101-I3D-NL backbone (23.9 → 26.3) and of almost 6% for
he SlowFast-NL backbone (28.2 → 29.8). Noticeably, the presence of
on-local operations (Wang et al., 2018) in these last two backbones
oes not prevent our model from improving performance, underlying
hat these two techniques are complementary. Also, the results obtained
sing the I3D backbone are superior to many approaches that employ
he same backbone and train end-to-end. The adoption of a long-term
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Table 4
Mean Average Precision on different AVA 2.1 class groups (actions involving
person–pose, person–person and person–object interactions), when using the I3D
backbone.

Model Pose person–person person–object

I3D (Carreira and Zisserman, 2017) 37.4 20.4 12.2
STAGE (I3D) 40.4 23.5 15.7

R101-I3D-NL (Wu et al., 2019) 41.4 26.5 15.5
STAGE (R101-I3D-NL) 43.4 29.0 18.1

SlowFast-NL (Feichtenhofer et al., 2019) 48.3 28.8 19.8
STAGE (SlowFast-NL) 50.3 31.4 20.8

Table 5
Experimental results on J-HMDB-21 and UCF101-24, using the detection backbones
presented in Gkioxari and Malik (2015) and Saha et al. (2017). For both backbones,
the three rows report the mAP presented in the original paper, the mAP we obtained
training a linear classifier on top of pre-extracted features (marked by *) and the mAP
of STAGE on the same features, respectively.

Model↓ Dataset→ J-HMDB-21 UCF101-24

Action tubes (Gkioxari and Malik, 2015) 27.0 –
Action tubes* (Gkioxari and Malik, 2015) 28.6 –
STAGE (Action tubes*) 29.6 –

AMTnet (Saha et al., 2017) 45.0 –
AMTnet* (Saha et al., 2017) 47.0 67.7
STAGE (AMTnet*) 48.1 69.1

feature bank in Wu et al. (2019) brings slightly better performance
(26.8) compared to our solution (26.3) using the same R101-I3D-NL
backbone. It is worth noting, although, that Wu et al. (2019) uses two
instances of the backbone, one to compute long-term and another to
compute short-term features, both fine-tuned end-to-end. Our model,
instead, uses only one backbone instance, which is also kept fixed dur-
ing training. Single-crop validation mAP obtained with the SlowFast-NL
backbone (29.8 mAP) represents a new state of the art for the AVA v2.1
ataset.

esults on AVA 2.2. Table 3 reports the performance of our approach
n the more recent AVA v2.2. Here, the test mAP has been computed
sing the official AVA evaluation server, after training on both train
nd val splits, following the common practice in literature. As it can
e observed, adopting STAGE on top of SlowFast-NL,8x8 is better
han doubling the number of input frames to the backbone (i.e., using
lowFast-NL,16x8). This underlines that modeling high-level entities is
t least as important as extracting better spatio-temporal features.

Finally, leveraging the fact that STAGE is backbone independent,
e train it using both SlowFast-NL,8x8 and SlowFast-NL,16x8 features,
hich are averaged before being forwarded through STAGE. This model
chieves single-crop 31.8 mAP, a new state of the art for AVA v2.2.

er-class analysis. In Table 4, we show the performances of our ap-
roach on different AVA class groups, i.e. actions involving person–pose
13 classes), person–person interactions (15 classes) and person–object
nteractions (32 classes). As it can be seen, our model shows a higher
mprovement for actions that involve an interaction between entities
which are also the majority in AVA). We also note that the recognition
f pose classes (like dance or martial art) benefits from interactions
nd elements from the context. Finally, in Fig. 4, we show the five
erson–object interaction classes (top) and five person–person interac-
ion classes (bottom) with the top AP gain, when considering the I3D
ackbone. Classes with the highest absolute gain are watch (e.g., TV)
+14.0 AP), listen to (a person) (+10.7 AP), play musical instrument (+

10.7 AP), all involving interactions with other objects or actors.

Results on J-HMDB-21 and UCF101-24. We also experimented the
capabilities of STAGE on two additional benchmarks, namely J-HMDB-
21 (Jhuang et al., 2013) and UCF101-24 (Soomro et al., 2012), in
comparison with the models presented in Gkioxari and Malik (2015)
and in Saha et al. (2017). For fairness of evaluation, we adopt STAGE
6

Fig. 4. Per-class Average Precision of an I3D backbone with and without our module.
We report the five classes with the highest absolute gain among person–object
interaction classes (top) and person–person interaction classes (bottom).

Table 6
Validation mAP obtained considering different combinations of graph-attention heads
and layers.

Layers→ 1 2 3

Heads→ 2 4 8 2 4 8 2 4 8

STAGE (I3D) 21.2 21.7 22.0 21.7 23.0 22.8 21.7 22.7 21.9
STAGE (R101-I3D-NL) 26.2 26.1 26.3 26.3 26.1 25.8 26.3 26.0 25.6
STAGE (SlowFast-NL) 29.7 29.2 29.6 29.8 29.3 29.6 29.6 29.3 29.5

on top of the actor detection backbones presented in Gkioxari and
Malik (2015) and in Saha et al. (2017). Hence, only actor boxes are
considered, and no objects. J-HMDB-21 mAP is averaged over the three
splits, while UCF101-24 mAP refers to the first split of the dataset,
following the standard practice in literature. Results are reported in Ta-
ble 5, where, for each dataset, we also report the frame-mAP obtained
training a linear classifier on top of pre-extracted features (marked with
*), and the frame-mAP obtained through STAGE applied on the same
features. Only RGB features are considered, without exploiting optical
flow. As it can be seen, in both settings applying STAGE leads to a
performance improvement of around 1 mAP point.

4.2. Ablation study

To validate the importance of the design choices made in our graph-
attention module, we run several ablation experiments. We explore
different combinations of heads and layers, remove key components
in the architecture, and modify the graph structure to use existing
techniques in place of our choices. In all the following experiments we
employ AVA v2.1.

Varying the number of heads and layers. Table 6 shows the effect
of varying the number of graph-attention heads and layers when using
STAGE with features from the three adopted backbones. As it can be no-
ticed, stacking multiple layers together brings better performance: each
layer after the first increases the temporal receptive field, generating
indirect edges between temporally distant nodes. The best configura-
tion is obtained when using a 4-heads/2-layers setting for I3D features
and a 2-heads/2-layers setting for R101-I3D-NL and SlowFast-NL. These
configurations are also used in the following ablation experiments.

Comparison with the STO baseline. In Table 7 we compare the

STAGE module with the STO operator (Wu et al., 2019) applied on
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Table 7
Comparison with the STO baseline.

Head↓ Backbone→ I3D R101-I3D-NL SlowFast-NL

1L STO 20.2 24.7 28.5
2L STO 20.4 25.0 28.7
STO (STAGE) 20.5 25.5 29.5
STAGE 23.0 26.3 29.8

Table 8
Validation mAP obtained removing some key components in our model or replacing
them with other existing techniques.

Model↓ Backbone→ I3D R101-I3D-NL SlowFast-NL

Original Backbone 19.7 23.9 28.2
STAGE 23.0 26.3 29.8

STAGE w/o boxes proximity 21.5 25.8 29.6
STAGE w/o temporal connections 22.1 25.7 29.4
STAGE w/o actors–actors interactions 22.1 26.1 28.9
STAGE w/o object–object interactions 22.3 25.6 29.8

STAGE w/ Transformer attention 21.6 25.6 29.6
STAGE w/ nodes Euclidean distance 21.4 26.3 29.5

top of the considered backbones. The STO baseline consists of a short-
term operator that updates actor features on the basis of other actors
from the same clip, using one or more non-local blocks (Wang et al.,
2018). STO lacks the graph structure, the object detections, and the
temporal interactions, leading to worse performances compared to
STAGE (Table 7 first two rows, corresponding to one-layer and two-
layers STO, respectively). In the third row of Table 7, instead, we report
the performance of the STAGE module when replacing Eq. (3) with
the non-local-based attention, and removing temporal interactions. The
original STAGE design demonstrates higher mAP in this case, too.

Removing key components. In Table 8 we report the validation mAP
btained when removing key components. Performances drop when
emoving the spatial prior between detections. Moreover, when the
emporal links between consecutive clips are removed and only edges
etween nodes of the same clip are kept, we observe a reduction in
AP. To evaluate the design of the graph structure, we first remove

ctor–actor interactions to quantify the role of objects: in this setting,
ctor features are updated with a weighted sum of object features. As
t can be seen, this leads to better performances compared to those of
raph-free backbones. One can question if object–object interactions
re useful: when removing them from the graph, performances drop
or both I3D and R101-I3D-NL backbones. Our insight is that some
ecurring combinations of objects can be useful at prediction time: a
losed door in clip 𝑡, for instance, related to the same open door in clip
𝑡 + 1 could help to recognize the open action.

Attention and adjacency alternatives. In the last two rows of Table 8
we show results obtained by replacing our attention mechanism and
our adjacency matrix design with other proposals. We investigate the
use of dot-product attention, by replacing the weights of Eq. (3) with
weights computed through a Transformer-like self-attention (Vaswani
et al., 2017), as follows:

𝑬 = 𝑸𝑲𝑇
√

𝑑𝑘
𝑽 , (10)

here 𝑸, 𝑲 and 𝑽 come from three linear projections of input features.
n this setting, as it can be noticed, we again observe a significant drop
n performance.

Taking inspiration from Zhang et al. (2019), we also replace the
uclidean distance between bounding box coordinates with the Eu-
lidean distance between bounding box features in the adjacency ma-
rix. We found this choice to lower the performance on both I3D and
lowFast-NL backbones. In this setting, Eq. (1) is replaced by:

𝑖𝑗 =
1 . (11)
‖𝒉𝑖 − 𝒉𝑗‖2
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Table 9
Training times and computational requirements of STAGE and existing approaches
involving an end-to-end finetuning of the 3D backbone. The LFB model uses two
instances of the backbone, thus has twice the complexity of its base model.

Model # GPUs Clips/GPU Epochs Training time

ACRN (Sun et al., 2018) 11 1 63 –
Better baseline (Girdhar et al., 2018) 11 3 78 –
SMAD (Zhang et al., 2019) 8 2 11 –
VATX (Girdhar et al., 2019) 10 3 71 ∼7 days
SlowFast (Feichtenhofer et al., 2019) 128 – 68 –
LFB (Wu et al., 2019) 8 × 2 2 10 × 2 ∼2 × 2 days

STAGE 1 6 20 <1 day

Table 10
Computational complexity analysis for inference, considering 4 actors and 25 objects
per clip.

Model GFLOPs Parameters

I3D (Carreira and Zisserman, 2017) 108 12M
+STAGE +0.11 +6.4M
R101-I3D-NL (Wu et al., 2019) 359 54.3M
+STAGE +0.24 +17M
SlowFast-NL,16 × 8 (Feichtenhofer et al., 2019) 234 59.9M
+STAGE +0.26 +21.8M

It shall be noted that all the aforementioned ablations do not change
the number of parameters in the model (except for the Transformer
attention experiment, where each attention head uses three linear lay-
ers instead of two), thus confirming the effectiveness of our approach.
We finally note that STAGE with SlowFast-NL,8 × 8 backbone reaches
36.5 validation mAP on AVA 2.1 when tested with ground-truth actor
boxes, suggesting that a stronger person detector could significantly
boost performances.

4.3. Computational analysis

Our module can reach state-of-the-art results without requiring end-
to-end training of the backbone. This has an impact on the computa-
tional requirements of STAGE at training time, since the convolutional
backbone incorporates most of the model complexity. Table 9 shows a
comparison with different approaches employing end-to-end training in
terms of training time and resource requirements. For each approach,
we report the number of GPUs used during training, the batch size per
GPU, the number of epochs, and the overall training time. The com-
parison is based on the implementation details reported in the original
papers and refers to a training on the AVA (Gu et al., 2018) dataset.
Our module requires a single GPU for training when pre-extracting
backbone features, and less than a day to converge.

Finally, in Table 10, we report the additional FLOPs and trained
parameters introduced by STAGE during inference. Please note that
both the number of floating-point operations and the number of trained
parameters depend on the dimensionality of the features produced by
each backbone. As the amount of FLOPs also depends on the number of
detections predicted on each clip, we consider a clip with a number of
actor and object detections equal to the average number of actors and
objects in all AVA training clips, i.e. 4 actors and 25 objects.

4.4. Qualitative analysis

We present some qualitative results obtained on clips of the AVA
validation set in Fig. 5. Here, we only show the central keyframe of
the clip; red and blue boxes represent predicted actors and objects
respectively. For simplicity, we highlight only the actor involved in the
action (despite other actors could be found in the scene), except for the
Kiss class, where two actors perform the same action. Only predicted

objects with score greater than 0.8 are shown, even if all detections are
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Fig. 5. Qualitative results showing the keyframes of the evaluated clips, with red boxes
denoting actors performing actions, and blue boxes denoting objects.

Fig. 6. Sample failure cases. Actions are sometimes assigned to an actor very close to
the one actually performing the action, and some object-interaction classes are wrongly
assigned to people very close to the objects.

used during training. Fig. 6 shows sample failure cases. On average, we
qualitatively observe that our spatio-temporal graph-based module is
able to improve the recognition of human actions, especially for actions
involving relationships with objects and other people.

5. Conclusion

In this work, we presented a novel graph-attention module that
can be easily integrated into any video understanding backbone. The
module computes updated actor features based on neighboring entities
in both space and time. This is done considering detections from
consecutive clips as a single learnable graph, where actors and objects
are the nodes, while edges hold their relationships. The temporal
distance between entities determines the presence of a direct edge be-
tween them, while the spatial distance and attention weights define its
strength. Through extensive experiments on the Atomic Visual Actions
(AVA) dataset and comparisons on J-HMDB-21 and UCF101-24, we
showed that our module can bring state-of-the-art performances on a
variety of backbones, thus highlighting the role of modeling high-level
interactions in both space and time.
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