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Abstract

Transformer-based neural networks represent a success-
ful self-attention mechanism that achieves state-of-the-art
results in language understanding and sequence modeling.
However, their application to visual data and, in particu-
lar, to the dynamic hand gesture recognition task has not
yet been deeply investigated. In this paper, we propose a
transformer-based architecture for the dynamic hand ges-
ture recognition task. We show that the employment of a sin-
gle active depth sensor, specifically the usage of depth maps
and the surface normals estimated from them, achieves
state-of-the-art results, overcoming all the methods avail-
able in the literature on two automotive datasets, namely
NVidia Dynamic Hand Gesture and Briareo. Moreover, we
test the method with other data types available with com-
mon RGB-D devices, such as infrared and color data. We
also assess the performance in terms of inference time and
number of parameters, showing that the proposed frame-
work is suitable for an online in-car infotainment system.

1. Introduction
The recent introduction of affordable RGB-D devices,

which couple RGB cameras with active depth sensors, has
attracted the interest of the research community in Natural
User Interfaces (NUIs), in which the interaction is conveyed
through the body of the user [39, 30] instead of traditional
tools, like keyboards and mouse. In this context, the ability
to recognize dynamic hand gestures, i.e. a combination of
static hand poses and motion, without the use of contact-
based sensors is an enabling and crucial task. The hand
gesture recognition task is commonly tackled through the
use of RNNs [22, 29], such as LSTMs [50, 7], architectures
that are able to model the temporal and sequential nature of
dynamic gestures. Alternatively, authors have proposed to
classify temporal sequences using 3D CNNs [51, 31], stan-
dard CNNs [15, 14] or other machine learning methods, like
HMMs [28, 6] or HOG and SVM [38, 18].

The recent spread of attentive models, which are charac-
terized by the use of self-attention mechanisms, has come
with the introduction of new approaches, such as the Trans-
former [43], which can replace traditional recurrent mod-
ules, such as RNNs and LSTMs. However, these ap-
proaches have not yet been deeply explored for the anal-
ysis of visual data and, in particular, for the dynamic hand
gesture recognition task.

In this paper, we propose a method to classify dynamic
hand gestures based on the Transformer architecture, which
was originally developed for the machine translation and
language modeling tasks. We propose the use of RGB-D or
active depth devices and, in particular, we show that the use
of depth maps and the surface normals estimated from them
leads to state-of-the-art results. In addition, we investigate
the adoption of the other data streams usually provided by
RGB-D sensors, i.e. infrared amplitude and color images,
and derived data, such as optical flow.
The employment of light-invariant data sources – depth and
infrared images – guarantees the applicability of the pro-
posed method for a Human-Computer Interaction (HCI)
system able to work even in presence of dramatic and fast
light changes, as often occurs in the automotive setting [37].
Indeed, the presence of tunnels and trees or bad weather
conditions can strongly influence the quality of the acquired
data in this scenario. Moreover, the use of inexpensive and
compact cameras, which can be easily integrated in the car
cockpit, is an optimal choice in order to avoid obstructions
to the driver’s movements or gaze. It is shown [46, 13] that
the presence of a NUI-based system for the interaction with
the infotainment system of a car can significantly reduce the
driver’s manual and visual distraction [4, 5] often responsi-
ble for fatal road crashes.

For these reasons, the choice of datasets to test the pro-
posed system is automotive-driven: we exploit two pub-
licly released datasets, namely NVidia Dynamic Hand Ges-
ture [33] and Briareo [31]. They are both acquired in a
realistic car simulator through several acquisition sensors
placed in different position inside the car cockpit, as de-
tailed in Section 4.1. When tested on these datasets, the



proposed transformer-based architecture achieves state-of-
the-art results, overcoming existing literature competitors.
Moreover, the proposed method is flexible, since it can be
adapted to the available data types and is able to run in real-
time on a dedicated graphics card.
The proposed architecture is implemented in PyTorch 1.5
and the code is available online 1.

2. Related Work

In the literature, the hand gesture recognition task has
been approached using different strategies which enable the
temporal observation of an action performed by a human.
However, recent architectures [42, 33, 8], which exploit the
potential of 3D Convolution in extracting temporal features
from videos, become milestones as an action recognition
system.

As many tasks in the computer vision field, the hand ges-
ture recognition task can rely on different types and com-
bination of input data. Therefore, from a general point of
view, methods available in the literature can be grouped as
unimodal and multimodal.

In the unimodal case a single input (e.g. RGB, infrared,
depth) is used at a time. Köpüklü et al. [25] adapt state-
of-the-art architectures, i.e. C3D [42] and ResNet [21], in
a lightweight framework composed of a detector, that de-
tects the beginning and the end of a gesture, and the ges-
ture classifier. Since 3D CNNs needs more training data
due to the larger number of parameters with respect to 2D
CNNs, the networks are pre-trained on one of the largest
public hand gesture dataset, namely Jester [32], and then
fine-tuned on other datasets. In [10] authors exploit 3D
hand joints to reconstruct the hand skeleton and then per-
form the gesture classification capturing the motion and
the hand shape through a video sequence. Unfortunately,
their method gets quite low results on datasets without high-
quality hand skeleton annotations. Finally, with the recent
success of self-attention [43] in emulating the human visual
perception, an attention-based network has been introduced
by Dhingra et al. [12]. They use a 3D CNN model in which
3 attention blocks are positioned between the residual mod-
ules in order to learn features at different scales. Since they
train their network from scratch, they obtain good results
only on datasets with a large amount of training data.

In the multimodal setting two or more input types are
exploited for the recognition task. In [35] authors propose
a novel architecture that, exploiting RGB and depth data
together with their computed optical flow (4 different data
types), analyses the motion using a spatial focus attention,
which restricts the focus on specific body parts (e.g. global,
right hand, left hand). Having a total number of 12 features

1https://aimagelab.ing.unimore.it/go/
gesture-recognition-automotive

channels, they face the problem of gesture classification
weighting each channel with respect to its importance to a
specific gesture. A different multimodal approach [26] has
been introduced by the same authors of [25]: in this case,
they apply a data level fusion between an RGB frame and
several optical flow images computed on previous frames.
This information is given as input to a deep network that
extracts spatio-temporal features on which is performed the
gesture classification task with a fully connected network.
An inspiring work by Abavisani et al. [1] proposes a method
that explores the performance of multimodal training and
also its effects on unimodal testing. They fine-tune a pre-
trained 3D CNN network [8] on multiple source data (e.g.
RGB, depth, optical flow). An interesting aspect of this
work is the introduction of a loss, namely spatio-temporal
semantic alignment, which encourages the network to learn
a common understanding on different data types.

Authors of [20, 27, 9] propose transformer-based ap-
proaches similar to ours in order to tackle the action and
the sign language recognition tasks.
In [20], a slightly-modified version of the transformer archi-
tecture is used as part of an action localization and recogni-
tion framework, resembling the structure of Faster R-CNN.
In [27], a transformer-like architecture is used in combina-
tion of a feature extractor to real-time action recognition.
It makes use of 1D convolutional layers between sequential
decoder blocks, but it does not use any kind of positional
encoding thus the temporal relationships are not explicitly
modeled. On the other hand, in our approach the temporal
information about the frame order is encoded through the
positional encodings (PE). Moreover, the method proposed
in [27] is not developed for the usage with depth sensors
and it does not propose the usage of surface normals as a
different depth map representation.

3. Proposed Method
In this section, we present the mathematical formulation

and the transformer-based implementation of our method.
The proposed model can process an input sequence of vari-
able length and outputs the gesture classification. An over-
all view of the architecture is represented in Figure 1.

3.1. Formulation

The proposed gesture recognition architecture can be de-
fined as a function

Γ : Rm×w×h×c → Rn (1)

that predicts a probability distribution over n classes from
a set St ∈ Rm×w×h×c of m sequential frames I , with size
w × h and c channels, acquired in a time range t. In other
words, the function Γ takes a sequence clip and predicts a
class distribution over the considered hand gestures. The

https://aimagelab.ing.unimore.it/go/gesture-recognition-automotive
https://aimagelab.ing.unimore.it/go/gesture-recognition-automotive
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Figure 1. Overview of the proposed method. The temporal feature analysis, computed after the feature extraction performed by the ResNet-
18 model, is highlighted showing the architecture of the transformer encoder and the self-attention block.

function can be decomposed in the following three compo-
nents.

The first operation corresponds to a feature extraction
function F applied at frame level:

f t = F (St) where F : Rm×w×h×c → Rm×k (2)

Here, the extracted features f t consist of m independent vi-
sual features of size k. Therefore, the function F can be
defined as the concatenation of the results of a frame-level
feature extractor:

F (St) = f 0t ⊕ f 1t ⊕ . . .⊕ f mt where f j
t = G(Sj

t ) (3)

where G : Rw×h×c → Rk is a function that extracts visual
features from a single frame j of the sequence set St. ⊕
denotes the concatenation operator.

The second operation is a temporal combination and
analysis of the visual features extracted through F . This
process can be defined as

ht = H(f t) = H(F (St)) where H : Rm×k → Rl (4)

where H is a temporal function that processes m feature
maps of size k and outputs an aggregated feature map of
size l which encodes the temporal information of St.

Finally, the last operation is a mapping between the ex-
tracted temporal features ht and the n gesture classes:

yt = Y (ht) = Y (H(F (St))) where Y : Rl → Rn (5)

The resulting yt, being a probability distribution over n
classes, is a vector of size n so that

∑n
i=1 yt,i = 1 and

yt,i ∈ [0, 1].

3.2. Implementation

In our implementation, the function Γ is a combination
of multiple neural networks, defined as following.

The function F is the concatenation of the frame-level
features extracted by the function G, which is implemented
as ResNet-18 [21], taken from the first layer up to the last
convolutional and average pooling layers. The network is
designed for color images, but we adapt the first layer to
work with inputs having a lower number of channels c as
proposed in [33]. In practice, the convolutional kernels of
the first layer are adapted to 1-channel images by summing
their channels. In a similar way, they are adapted to 2-
channel images by removing the third channel and rescaling
the first two with a factor of 1.5.

The function H , which has to temporally combine the
frames of the clip St, corresponds to a slightly-modified
Transformer module [43] followed by an average pooling at
frame level. The model can handle sequences of any length
and can be defined formally as

H(x) = AvgPool(Encoders(x + PE)) (6)

where AvgPool(·) denotes the average pooling operation
over the m frames, while Encoders(·) corresponds to a se-
quence of 6 transformer encoders E, defined in the follow-
ing.
As detailed in [43], we add positional encodings PE to the
input data as a way of including temporal information about
the order of the frames into the model, which does not con-
tain any recurrent module. Among the several positional
encodings [19], we employ the proposal of [43].
Each transformer encoder can be defined as

E(x) = Norm(x + FC(mhAtt(x))) (7)



where Norm(·) is a normalization layer, FC(·) is a sequence
of two fully connected layers with 1024 units, followed by
drop out (drop probability 0.1) and divided by a ReLU acti-
vation function. The multi-head attention block mhAtt is a
self-attention layer that can be defined as

mhAtt(x) = ( Att1(x)⊕ . . .⊕ Att8(x) )WO (8)

where

Atti(x) = softmax
(
Qi Ki√

dk

)
Vi (9)

Here, Qi = xWQ
i , Ki = xWK

i , Vi = xWV
i are inde-

pendent linear projections of x into a 64-d feature space,
dk = 64 is a scaling factor corresponding to the feature size
of Ki, ⊕ is the concatenation operator and WO is a linear
projection from and to a 512-d feature space.

Finally, the function Y is implemented as a fully con-
nected layer with n hidden units followed by a softmax
layer, resulting in a probability distribution over the n
classes. The predicted gesture corresponds to the class with
the highest probability.

We note that the proposed approach is supposed to re-
ceive a sequence of frames containing the whole gesture or
can applied with a sliding-window approach. The tempo-
ral segmentation, i.e. the detection of the beginning and the
end of each gesture, and the gesture detection, i.e. the dis-
tinction between gesture and no-gesture sequences, are out
of the scope of this paper.

3.3. Data Representation

As mentioned above, we focus our investigation on the
use of data produced by active depth sensors, i.e. depth data
and infrared (amplitude) images. We include also RGB data
since several depth devices available in the market consist
of a combination of infrared and intensity sensors, like the
Microsoft Kinect or Intel RealSense families.

In addition, we propose the use of surface normals, in
which each pixel encodes the three components of the es-
timated surface normal in that point. From depth maps we
obtain a representation containing an estimation of the sur-
face normals, as introduced in [3]. Given a depth map D,
we define Z(x, y) as one of its pixel values. We compute
the direction d = 〈dx, dy, dz〉 of a surface normal as:

d =
(
− ∂Z(x, y)

∂x
, −∂Z(x, y)

∂y
, 1
)

(10)

where ∂Z(x, y)/∂x, ∂Z(x, y)/∂y can be considered the
depth gradients in the x and y directions [34], or rather:

∂Z(x, y)

∂x
≈ Z(x + 1, y)− Z(x, y)

∂Z(x, y)

∂y
≈ Z(x, y + 1)− Z(x, y)

(11)

Figure 2. Sample depth (first row) and surface normals (last row)
obtained from the Nvidia Dynamic Hand Gesture dataset. As
shown, cameras are placed in a frontal position with respect to the
driver and the noise level is low. Generally, in most of the frames,
only the hand is visible.

Then, the normal vector v̂ = 〈v̂x, v̂y, v̂z〉 is obtained
through a normalization operation [2]:

v̂ =
1

B

(
dx, dy, 1

)
, B =

√
d2x + d2y + 1 (12)

Normals computed from depth maps are not frequently
used in the literature, especially in the case of the hand ges-
ture recognition task with neural architectures. Preliminary
work investigated the use of surface normals for hand pose
estimation [44] or human activity recognition [49, 36]. We
show in the following that this representation is comple-
mentary to the common depth images and that greatly im-
proves the overall accuracy when used in combination with
the original depth data.

In order to compare our work with literature competi-
tors, we also compute the optical flow from consecutive
RGB frames following the implementation of Farnebäck et
al. [17]. It is a well-known data representation that is often
used to improve the performance of the proposed system,
even in the hand recognition task [33, 1], thanks to its ability
to provide an estimation of the magnitude and the direction
of the object (the hands in our case) motion.

3.4. Multimodal Integration

Multimodal architectures are becoming increasingly
common in the literature, for a variety of different tasks.
Since several input types are available from RGB-D sen-
sors, we adopt a neural network architecture that can be eas-
ily adapted to work with a single input type or a multimodal
combination of them. Specifically, the proposed architec-
ture is able to efficiently work in a unimodal way, i.e. with a
single input modality (color, depth, infrared, normals or op-
tical flow). Moreover, two or more unimodal networks can
be used at the same time through a late fusion approach [41]
in which the predicted probability distributions of the single
models are merged into a final classification score. Late fu-
sion strategies are reported to present comparable or even
better results with respect to the state-of-the-art in many



computer vision tasks [48, 16]. In our case, we adopt a
late fusion strategy based on the average of the intermediate
scores to predict the final classification, as follows:

yt =
1

N
·
∑
i

Y (H(F (St,i))) (13)

where N is the total number of tested classifiers, St,i is the
set of sequential frames of the i-th input type and F,H are
the functions defined in Section 3.1. Then, Y (H(F (St,i)))
is the probability distribution of a classifier trained and
tested on a specific input type.

4. Experimental Evaluation
In this section, we present the experimental setting and

the results obtained on two public datasets. Then, we com-
pare with literature methods and discuss the obtained re-
sults. Since surface normals can be considered as a different
representation of depth maps, we include competitors rely-
ing on RGB-D data.
In addition to the core tests with depth images and estimated
surface normals, we test on color and other modalities to
compare with existing literature methods.

4.1. Datasets

Being interested in the usage of depth or RGB-D sen-
sors and in the automotive environment, in which the light
invariance is a key factor, we test our approach on two
datasets, NVGestures [33] and Briareo [31], collected in a
car simulator.

Nvidia Dynamic Hand Gesture. This dataset [33], also
called NVGestures, is the largest dynamic hand gesture
dataset in an automotive setting, in terms of number of ges-
tures, subjects and sequences. Video sequences are acquired
with two sensors: the SoftKinetic DS325, an active RGB-D
sensor, and the DUO 3D, an infrared stereo camera. These
acquisition devices lead to 3 modalities (RGB, depth, IR)
and 5 streams (color, depth, color mapped on depth, IR left,
IR right), available in the dataset. NVGestures is acquired in
an indoor car simulator, the depth camera is placed next to
the infotainment system, while the stereo camera is placed
on top of the acquisition area. Authors did not release the
infrared amplitude recorded by the depth sensor, but they
provided infrared data from the dedicated DUO 3D cam-
era, placed in a different position. The dataset contains 25
different gestures performed by 20 subjects with the right
hand. Each gesture is repeated three times and acquired in
5-second video samples. Gestures range from swipes to ro-
tations and from showing n fingers to showing the “OK”
sign. For further details about this dataset, please refer to
the original paper [33].
In our experiments, we employ the color (RGB), depth, and
infrared (left IR) modalities. In addition, we compute an

Figure 3. Sample depth (first row) and surface normals (last row)
obtained from the Briareo dataset. Differently from the dataset
from Nvidia, this dataset is acquired placing the camera looking
upwards. Moreover, a strong noise signal is present in depth and,
consequently, in surface normals.

estimation of the surface normals from the depth data (see
Section 3.3) and we report visual samples of these data in
Figure 2. In order to compare with literature work, we com-
pute the optical flow on color frames through [17], as done
in previous work [33].

Briareo. This is a recently-released automotive
dataset [31] for the dynamic hand gesture recognition task.
Video sequences are acquired using three synchronized de-
vices: an active depth sensor (Pico Flexx), an infrared stereo
sensor (Leap Motion) and a standard RGB camera. There-
fore, several image types are available: depth and infrared
amplitude, left and right IR, color. In addition, the SDK
of the Leap Motion device has been used to estimate and
record the hand joint positions. Recording devices are
placed in the central tunnel console of a car simulator be-
tween the driver and the passenger seat, looking upwards. In
this case, authors released the infrared amplitude recorded
by the depth sensor, along with the infrared data acquired by
the Leap Motion sensor. The dataset contains 12 different
gestures performed by 40 different subjects (33 males and 7
females) with the right hand. As in NVGestures, each ges-
ture is repeated three times and captures the entire gesture
motion. Gestures are designed for the interaction between
the driver and the car infotainment system. Some examples
are the swipes in the four directions and the “thumb up” and
“phone” signs. For further details about this dataset, please
refer to the original paper [31].
In our experiments, we employ most of the available modal-
ities, i.e. color (RGB), depth, and infrared amplitude. In ad-
dition, we estimate the surface normals from the depth data,
as explained in Section 3.3 and depicted in Figure 3.

4.2. Model Training

We train and test the model with fixed-length clips of
40 frames extracted from the dataset sequences around the



center of the gesture. We empirically set this input size, but
the proposed model can potentially analyze sequences of
any length thanks to its flexible design. For the NVGestures
dataset, we extract the 80 central frames around the gesture
and sample them to obtain 40 equidistant frames. For the
Briareo dataset, which has a lower frame rate, we select the
40 frames containing the gesture movement.

Each input data is normalized individually to obtain zero
mean and unit variance input, with the exception of the sur-
face normals that are normalized to have unit-magnitude
and are contained in the range [−1, 1]. Then, frames are
cropped to 224×224 pixels as required by the chosen frame-
level feature extractor (i.e. ResNet-18). We apply random
rescale (with rescale factor in the range [0.8, 1.2]), random
crop and random rotation between −15 and 15 degrees as
data augmentation, in order to avoid overfitting.

The ResNet-18 architecture is initialized with weights
pre-trained on ImageNet [11] while the remaining of the
architecture is trained from scratch. The architecture is then
trained end-to-end using the Adam optimizer [24] to min-
imize the categorical cross entropy loss. We use a mini-
batch size of 8 video samples, learning rate 1e−4, weight
decay 1e−4 and random dropout. We apply the early stop-
ping based on the accuracy on the validation set, following
the official dataset splits.

A different model is trained for each modality and mul-
tiple modalities are combined at prediction level with the
late fusion approach presented in Section 3.4. Empirically,
we find that other types of fusion, e.g. mid and early fusion,
results in overfitting on the training set, in line with what
found in [33].

4.3. Results using NVGestures dataset

We analyze here the performance on the NVGestures
dataset.

Table 1 compares our method to the literature in the uni-
modal case, i.e. when a single input is fed into the model.
Focusing on depth data, the proposed approach achieves
state-of-the-art results when depth maps are the only used
input. A similar high accuracy is also achieved using sur-
face normals as input, revealing that normals are a discrim-
inative representation for the hand gesture recognition task,
even though no competitors are currently available. Also
the infrared modality overcomes the competitor, even if the
final accuracy is lower. On the other remaining modalities,
i.e. color and optical flow, our method achieves compara-
ble accuracy to the I3D method [8, 1]. However, we note
this method is pre-trained on ImageNet [11] (as our feature
extractor) and on Kinetics [23], which is a large dataset of
action recognition in videos. We hypothesize that the slight
gap between this and our method can be due to this pre-
training step, which was not available for the other types of
the exploited data.

Method Modality Accuracy

color

Spat. st. CNN [40] 54.6%
iDT-HOG [45] 59.1%
Res3ATN [12] 62.7%
C3D [42] 69.3%
R3D-CNN [33] 74.1%
Ours 76.5%
I3D [8]† 78.4%

depth

SNV [47] 70.7%
C3D [42] 78.8%
R3D-CNN [33] 80.3%
I3D [8]† 82.3%
Ours 83.0%

infrared R3D-CNN [33] 63.5%
Ours 64.7%

iDT-HOF [45] 61.8%

flow

Temp. st. CNN [40] 68.0%
Ours 72.0%
iDT-MBH [45] 76.8%
R3D-CNN [33] 77.8%
I3D [8]† 83.4%

normals Ours 82.4%

color Human [33] 88.4%

Table 1. Unimodal results on NVGestures [33]. Previous results
are taken from the respective papers and from [33, 1]. † indicates
models pre-trained on Kinetics [23], in addition to ImageNet [11].

Moving from the unimodal to the multimodal case, we
show in Table 2 a thorough analysis of the possible mul-
timodal combinations, following the late-fusion approach
reported in Section 3.4. The results are grouped by number
of employed modalities and ordered by accuracy. It can be
seen that, in general, the proposed approach benefits from
the multimodal integration. Moreover, the best perform-
ing methods in each group are those using a combination
of depth and surface normals as input data, confirming that
the partial 3D data obtained by the depth sensors contains
discriminative information for the gesture recognition task.
We highlight that the combination of depth images and sur-
face normals leads to a remarkable accuracy of 87.3%. This
result confirms that these two modalities are complementary
and their combination greatly improves the overall accuracy
compared to the usage of a single modality (which scores
83.0 for the depth and 82.4 for the surface normals). Com-
bining additional modalities (color and infrared) the accu-
racy is slightly incremented, reaching 87.6%.

We also compare our method in the multimodal setting
with state-of-the-art approaches reported in Table 3. Among
other methods that exploit several data types, our approach



# Modality Accuracy

1

infrared (ir) 64.7%
color 76.5%
normals 82.4%
depth 83.0%

2

color + ir 79.0%
depth + ir 81.7%
normals + ir 82.8%
color + depth 84.6%
color + normals 84.6%
depth + normals 87.3%

3

color + ir + depth 85.3%
color + ir + normals 85.3%
color + depth + normals 86.1%
depth + normals + ir 87.1%

4 color + depth + normals + ir 87.6%

Table 2. Multimodal results on NVGestures [33] using several
combinations of modalities. # refers to the number of used modal-
ities.

obtains state-of-the-art accuracy (87.3%) using only depth
data and surface normals, which derive from a single depth
sensor. Therefore, the whole system can depend from a sin-
gle depth or RGB-D device and can run in real time, as will
be shown in Section 4.5. In addition, our method, com-
bining a broader set of modalities (i.e. color, depth, surface
normals, infrared), slightly improves the overall accuracy,
reaching a 87.6 recognition rate.
A wide set of other methods make use of the optical flow,
but still perform worse than our method. However, we note
that the computation of the optical flow on the whole se-
quence of frames heavily affects speed performance, hin-
dering the achievement of real time computation.

Finally, we show the confusion matrix for the best per-
forming multimodal combination (i.e. color + depth + nor-
mals + ir) in Figure 4. Most of the gestures are correctly
classified, but some errors caused by confusion between
pairs of gestures are also visible. As expected, the model
sometimes swaps similar – in terms of hand poses or motion
– gestures, such as “move hand/fingers left/right”, “open-
ing” and “shaking” hand and “push hand down/towards the
camera” .

4.4. Results using Briareo dataset

Table 4 presents the results of the unimodal and the mul-
timodal setting for the Briareo dataset. The results are
grouped by number of employed modalities and ordered by
accuracy.
Considering the unimodal case, the surface normals obtains
the highest accuracy, reaching 95.8%, outperforming the re-

Method Modality Accuracy

Two-st. CNNs [40] color + flow 65.6%

iDT [45] color + flow 73.4%

R3D-CNN [33] color + flow 79.3%
R3D-CNN [33] color + depth + flow 81.5%
R3D-CNN [33] color + depth + ir 82.0%
R3D-CNN [33] depth + flow 82.4%
R3D-CNN [33] all 83.8%

8-MFFs-3f1c [26]* color + flow 84.7%

I3D [8]† color + depth 83.8%
I3D [8]† color + flow 84.4%
I3D [8]† color + depth + flow 85.7%

MTUTRGB-D [1]† color + depth 85.5%
MTUTRGB-D+flow [1]† color + depth 86.1%
MTUTRGB-D+flow [1]† color + depth + flow 86.9%

Ours depth + normals 87.3%
Ours color+depth+normals+ir 87.6%

Human [33] color 88.4%

Table 3. Multimodal results on NVGestures [33], comparison with
competitors. Previous results are taken from the respective papers
and from [33, 1]. † indicates models pre-trained on Kinetics [23],
in addition to ImageNet [11], while * shows models pre-trained on
the Jester gesture dataset [32].
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Figure 4. Confusion matrix for the best performing multimodal
combination (fusion of color, depth, normals, ir) on NVGestures.
Best viewed in color.

sults using other modalities. This confirms that surface nor-
mals estimated from depth are an informative and discrimi-
native representation for the hand gesture recognition task.
Also the infrared source achieves a high accuracy, probably



# Modality Accuracy

1

color 90.6%
depth 92.4%
ir 95.1%
normals 95.8%

2

color + depth 94.1%
depth + ir 95.1%
color + ir 95.5%
depth + normals 96.2%
color + normals 96.5%
ir + normals 97.2%

3

color + depth + ir 95.1%
color + depth + normals 95.8%
color + ir + normals 96.9%
depth + ir + normals 97.2%

4 color + depth + ir + normals 96.2%

Table 4. Unimodal and multimodal results obtained on Briareo. #
refers to the number of used modalities.

due to the position of the infrared sensor, close to the hand.
The combination of multiple modalities, with the late fu-
sion approach presented in Section 3.4, slightly improves
the overall results. The fusion of infrared and normals re-
sults in an overall accuracy of 97.2% which is the highest
result. While the combination of surface normals with in-
frared and depth increases the combined accuracy, the usage
of color data does not provide significant gains.

In Table 5 we compare our method in the multimodal
setting with state-of-the-art approaches. The proposed ap-
proach obtains state-of-the-art accuracy 97.2% using only
infrared data and surface normals, which derive from a sin-
gle active depth sensor. Even with the usage of a single
modality, e.g. surface normals, our method outperforms the
literature competitors by a clear margin. Indeed, it performs
better than methods based on recurrent networks (LSTMs)
and 3D joint features (computed by the Leap Motion SDK),
which require additional computation. Also in this case, the
whole system requires a single active depth device and can
run in real time, as shown in the next section.

4.5. Performance Analysis

We assess the computational requirements of our and
other architectures in terms of number of parameters, in-
ference time on a single GPU, and required VRAM on the
graphics card. We test them on a workstation with an In-
tel Core i7-7700K and a Nvidia GeForce GTX 1080 Ti. As
shown in Table 6, our method has fewer parameters, faster
inference speed and comparable memory usage when used
with a single modality. When applied on multiple modal-
ities, running in parallel on the same hardware, the pro-

Method Modality Accuracy

C3D-HG [31] color 72.2%
C3D-HG [31] depth 76.0%
C3D-HG [31] ir 87.5%

LSTM-HG [31] 3D joint features 94.4%

Ours normals 95.8%
Ours depth + normals 96.2%
Ours ir + normals 97.2%

Table 5. Comparison with the state-of-the-art methods tested on
Briareo.

Model Parameters Inference VRAM
(M) (ms) (GB)

R3D-CNN [33] 38.0 30 1.3
C3D-HG [31] 26.7 55 1.0

Ours (1 modality) 24.3 26.7 1.8
Ours (2 modalities) 48.6 61.7 3.0
Ours (4 modalities) 97.2 108.3 5.3

Table 6. Performance analysis of the proposed method. Specifi-
cally, we report the number of parameters, the inference time and
the amount of video RAM (VRAM) needed to run the system.

posed approach still maintains real time speed and accept-
able memory usage, both in case of 2 modalities and in case
of 4 modalities.

5. Conclusions
In this paper, we propose a transformer-based architec-

ture for the dynamic hand gesture recognition task. Through
an extensive evaluation we show how the frame-level fea-
ture extraction and the temporal aggregation computed by
the transformer, starting from depth and surface normals
combined through a late fusion approach, achieves state-of-
the-art results. Moreover, we investigate the use of other
data types usually provided by RGB-D sensors, such as
color and infrared images. Experimental results obtained
on two automotive datasets, namely NVidia Dynamic Hand
Gesture and Briareo, confirm the feasibility of the proposed
method for the automotive setting, in which the light in-
variance is an enabling element. Even though the tempo-
ral flow is explicitly encoded into the transformer-based ar-
chitecture, there are several “symmetric” gestures that are
occasionally confused. In fact, the main challenges of the
problem are still related to the temporal progression of the
gesture, which will be addressed in future work. The per-
formance analysis shows that the framework is able to run
with real time performance and it requires a limited amount
of video memory, making it suitable for an online infotain-
ment system.
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