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Construction and properties of volatility indices for

Austria, Finland and Spain

Giovanni Campisi ∗ Silvia Muzzioli†

Abstract

The volatility index of the Chicago Board Options Exchange (VIX) is the first to have been

introduced and it has attracted international imitators world-wide since it is considered as a barometer

of investor fear. The aim of the paper is threefold. First, by following the VIX methodology, we

construct a volatility index for three European countries (Austria, Finland and Spain) that do not

have yet that piece of market information for investors. Second, we investigate the properties of the

new volatility indices. In particular, we test their ability to act as fear indicators and as predictors

of future returns. Moreover, we shed light on the term structure of the proposed volatility indices,

by computing spot and forward implied volatility indices for different time to maturities (30, 60 and

90 days). Our results indicate that volatility indices are useful not only for investors to improve

their trading decisions, but also for policy makers to choose the appropriate economic measure to

guarantee stability in the market.

Keywords: Volatility indices; Market risk; Model free, Implied Forward Volatility, Volatility Term

Structure.

1 Introduction

Volatility indices play a key role for investor trading decisions since they contain relevant information on

future stock market volatility and are deemed as indicators of market sentiment. The volatility index

of the Chicago Board Options Exchange (VIX) is the first to have been introduced and it has attracted

international imitators world-wide since it is considered as a barometer of investor fear (see Moran (2014)

for a recent list of volatility indices).

The development of volatility indices in Europe has suffered a considerable delay compared to North

America. The main cause is due to the underdevelopment of European financial markets with respect

to the North American and Asian contexts. Today, eight are the European volatility indices listed on
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exchanges. The VSTOXX is the volatility index of the EUROSTOXX 50 that is an aggregate stock index

of the Euro-zone. The other seven volatility indices are country based: the VDAX NEW for the German

market, the VSMI for the Swiss market, the VCAC volatility index for the French market, the VAEX for

the Dutch market, the VBEL for the Belgian market, the VFTSE for the British market and the FTSE

MIB IVI for the Italian market.

The aim of the paper is to introduce a volatility index, based on the VIX formula, for three other

European markets: Austria, Finland and Spain1. Nowadays, an official volatility index is not traded in

these financial markets. In order to compute the indices we use the same methodology of the VIX index

(adapted to European markets). In this way we provide directly comparable volatility indices that can

be used to compare the performance of each market with respect to the others. Introducing a volatility

index is of primary importance for investors and policy makers. Investors may benefit from a volatility

index for portfolio allocation and hedging. Policy makers may use the volatility index as a barometer of

market health in order to improve monetary policy. It is important to have a standard index in order

to make comparisons for economic analysis purposes (see for example Connolly and Hartwell (2014),

Dew-Becker et al. (2019), Berger et al. (2020)). As pointed out by Muzzioli (2013b), the possibility to

trade volatility as a separate asset has several advantages. It helps to better hedge the portfolio with

a pure position in volatility; second, investors have the possibility to hedge with more dramatic events

thanks to the negative correlation of these indices with the market, furthermore it is possible to speculate

on future volatility levels by exploiting the mean-reversion of volatility. Finally, there is a research area

analysing the component volatility model that focuses on the characteristics of option-implied volatility

term structure (see for example Guo et al. (2014)). According to this research field, volatility can be

divided in several components (long-term, medium-term, short-term volatilities) each one affected by a

particular factor. The long-term volatility is driven by macroeconomic financial variables, the medium-

term by market default risk, and the short-term by financial market conditions. To this purpose, in

order to consider a term structure of the volatility, we analyse the three indices to different time to

maturities, in detail we consider time to maturities of 30, 60 and 90 days. As a further instrument to

better understand the volatility term structure, we make use of forward implied volatility (see Egelkraut

and Garcia (2006), Egelkraut et al. (2007), Della Corte et al. (2011)) as it represent the average volatility

that market participant expect to prevail during non-overlapping time interval.

The contribution of the paper is threefold. First, we introduce three new volatility indices for three

derivatives markets where similar indices are not present. Second, following Rubbaniy et al. (2014) and

Elyasiani et al. (2018), we investigate their usefulness in prediction of market returns. Third, we study

also the term structure of market volatility computing these indices for different time to maturities (30,

60, 90 days).

In our analysis we involve several regression specifications largely used in empirical finance literature. In

detail, we consider the contributions of Rubbaniy et al. (2014) and Muzzioli (2013b) for the contempora-

neous relation between returns and volatility. Moreover, empirical evidence shows an asymmetric relation

1Gonzalez-Perez and Novales (2011) proposed a model free version of the Spanish volatility index, the VIBEX-NEW. We

improve their methodology by using an interpolation and extrapolation method to cope with truncation and discretization

errors. Moreover, our dataset is the IvyDB Europe database.
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between stock index returns and changes in the volatility, that is, negative returns have a greater impact

on the volatility index than positive returns. In particular, there are two existing hypotheses that charac-

terize this asymmetric relation: the leverage effect (Black (1976) and Christie (1982)) and feedback effect

hypotheses (French et al. (1987), Campbell and Hentschel (1992), Bekaert and Wu (2000)). According

to the leverage effect hypothesis, when returns are negative the leverage ratio of the firm increases, and

the firm’s debt gets higher than total equity. As the equity of a firm is more exposed to the firm’s total

risk, the volatility of the equity should increase as a result. On the other hand, the feedback hypothesis

explains that the asymmetric relation is based on the change in conditional volatility, which implies a

change in market stock price (for further details see Badshah (2013) and Bekiros et al. (2017)). To this

purpose, we assess the asymmetric returns-volatility relation splitting both returns (Whaley (2000) and

Whaley (2009)) and change in volatility (Giot (2005) and Muzzioli (2013b)) in positive and negative.

Moreover, we test also the forecasting power of the volatility indices with the models of Rubbaniy et al.

(2014) and Elyasiani et al. (2018). We attempt to extrapolate the best regression specification among

the proposed ones making use of R2 metric.

Our main results can be summarized as follow: first, we confirm the negative contemporaneous returns-

volatility relationship for all the markets in our analysis. We do not find out a stronger evidence of negative

asymmetric and size effects of returns on volatility. For ATX and IBEX all specifications show similar

results and R2, while for OMX the best model is presented by Specification 4. Concerning forecasting

regressions, except for OMX case, all regressions highlight future positive co-movements between volatility

and returns for all time to maturities while the opposite is true for OMX. When considering forward

implied volatilities we observe a lagged effect of past volatilities. Moreover, in forecasting regressions

(Specification 8) the ATX index shows the highest R2 while, for the remaining stock indices, the evidence

of forecasting power of volatilities is rather weak.

The paper proceeds as follows. Section 2 provides details on the construction of volatility indices and the

term structure of implied volatility used in the empirical part. Section 3 presents the data set used for each

country highlighting the different features of each market. In Section 4 we perform contemporaneous and

forecasting regressions in order to analyze the contemporaneous relation between returns and volatility

and the forecasting power of the new volatility indices in predicting future returns. Section 5 concludes

our work.

2 Volatility indices and the term structure of volatility

The procedure used to construct the volatility indices for the three markets of Austria, Finland and

Spain relies on the computational method of the CBOE VIX index (CBOE (2009)). In particular, the

CBOE VIX index is based on the concept of fair value of future variance (the DDKZ variance, for

short) introduced by Demeterfi et al. (1999) while the notion of model free implied volatility is based on

the work of Britten-Jones and Neuberger (2000). Both authors show how to replicate the risk-neutral

expectation of variance with a portfolio of options with strike price ranging from zero to infinity. Jiang

and Tian (2007) find that the DDKZ variance is equivalent to the model free implied variance introduced

by Britten-Jones and Neuberger (2000). To this purpose, we compute our model free volatility indices as
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the square root of the model free variance given by:

Eq

[
σ2
R

]
=

1

T
Eq

[∫ T

0

σ2(t, . . . )dt

]
=

2 exprT

T

∫ ∞
0

M(K,T )

K2
dK (1)

where Eq is the expectation of the risk neutral measure, σ2
R is the realized variance, r is the risk-free

discount rate corresponding to maturity T , M(K,T ) is the minimum between a call or put option price,

with strike price K and maturity T . Note that only at-the-money and out-of-the-money options are used.

Given that in the financial markets only a limited and discrete set of strike prices are quoted, Equation

(1) is subject to both truncation and discretization errors (see Jiang and Tian (2005), Carr and Wu

(2009)). To this end we use an interpolation and extrapolation method to generate the missing strikes.

In detail, this procedure consists of three steps. First, we obtain the implied volatilities by using the

Black and Scholes model. Second, we interpolate implied volatilities between strike prices by means of

cubic splines (see Campa et al. (1998), Jiang and Tian (2005), Muzzioli (2013a)). Indeed, cubic splines

allows us to obtain a smooth volatility function and an exact fit to the known implied volatilities (for

details see Jackwerth (1999)). We then extrapolate volatilities outside the interval [Kmin,Kmax] using

a constant function equal to σ(Kmin) (σ(Kmax)) for strikes below (above) Kmin (Kmax), where Kmin

(Kmax) is the minimum (the maximum) strike price traded. Last, we use the B-S model to compute the

call and put prices to be inserted in Equation (1).

In order to compute the volatility indices with a constant maturity of 30, 60, 90 days, we use the same

interpolation scheme adopted by the Chicago Board of Exchange, that is:

σt,t+j =

√√√√[
w
Tnear
365

σ2
near + (1− w)

Tnext
365

σ2
next

]
365

j
(2)

where w = (Tnext − (j))/(Tnext − Tnear) with j = 30, 60, 90, Tnear and Tnext are the time to expiration

and σ2
near and σ2

next are the model free variance measures which refer to the near and the next term

options, i.e. the two option series with maturities closest to j.

In order to estimate the forecasting power of our volatility indices we compute implied forward volatility

as in (see Egelkraut and Garcia (2006), Egelkraut et al. (2007)). The implied forward volatility that

represents the market’s expectation at time t of the average volatility between the future time interval

t+ j, t+ j + i. It is given by the formula below:

σIFVt,t+j,t+j+i =

√
σ2
t,t+j+i − σ2

t,t+j

(t+ j + i)− (t+ j)
(3)

where σIFVt,t+j,t+j+i is the forward implied volatility between t + j and t + j + i, σt,t+j+i and σt,t+j , are

the two spot volatilities that refer to the time intervals t, t+ j and t, t+ j + i, j = 30, 60, i = 30, 60.
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3 Volatility indices in Finland, Spain and Austria

In order to construct the volatility indices we use the IvyDB Europe database. The underlying asset is

adjusted for dividends as follows:

Ŝt = Ste
−δt∆t (4)

where St is the index value at time t, δt is the dividend yield at time t and ∆t is the time to maturity of

the option. Risk-free rate is proxied by BBA LIBOR rates with maturities of one week, and one, two and

three months. Following Muzzioli (2013a), Elyasiani et al. (2017) we apply several filters to our data set.

First, options with trading volume lower than a contract are eliminated. Second, options near to expiry

which may suffer from pricing anomalies that might occur close to expiration are eliminated. Third,

as Aı̈t-Sahalia and Lo (1998), we retain only at-the-money options and out-of-the-money options (call

options with moneyness K/S > 0.97 and put options with moneyness K/S < 1.03). Last, option prices

violating the standard no-arbitrage constraints and positive prices for butterfly spreads are eliminated.

In the following we describe the properties of the volatility indices for each country.

The volatility index for the Austrian market is based on the ATX index. It is listed on the Vienna

Stock Exchange and it includes the most 20 capitalized Austrian firms. It is listed for the first time

on 2 January 1991 and reached its historical maximum on 9 July 2008, before the Lehman Brothers

bankruptcy. Our IvyDB Europe database contains a time series of this index from 7 February 2007 to 31

December 2017. Each day, we use an average of 25 options to compute the volatility index. We have on

average 22 maturities traded each day. 2016 is the year with the maximum number of available options,

while 2014 we have the lower availability. For what it concerns the data availability of options and their

underlying Austria collocates between Spain and Finland (Finland is the less complete in terms of data).

The ATX index is always listed in the same market, the Eurex Stock Exchange, for all the time horizons

analysed. The volatility index for the Austrian market, the ATXVX index, is calculated for a time period

ranging from 2014 to 2017. For all time to maturities considered, the ATXVX volatility index remains

relatively stable. The period considered for ATXVX do not have affected by particular events which

have influenced the Austrian market. From Table (1) we see that the ATXVX fluctuates between 15%

and 36% and its maximum value is reached in March 2016. An inspection of Figure (1) sheds light on

some particular features of the ATXVX index. We can note that, similarly to the OMXVX and IBEXVX

indices, for 30 days time to maturity the ATXVX reaches its highest and lowest values. The 60 days

ATXVX level ranges between the ATXVX on 30 and 90 days.

The volatility index for the Finnish market is based on the OMX Helsinki 25 market index (OMX25

for short). OMX25 is a value weighted index composed by the 25 most liquid Finnish stocks trading in

the Helsinki Stock Exchange. Among the firms with the largest market share we find Nokia, Sampo e

Fortum. Daily data of index options traded in the Eurex Stock Exchange from 1 January 2002 to 20

December 2006 and in the Helsinki Stock Exchange from 21 December 2006 to 31 December 2017 are

used2. Each day, we use an average of 22 options to compute the volatility index. We have on average

of 19 maturities traded each day. We compute the OMXVX volatility index for the 30, 60 and 90 days

2The OMX25 was listed in the Eurex Stock Exchange up to 20 December 2006, subsequently it was listed in the Helsinki

Stock Exchange.
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Figure 1: Volatility indices for different time to maturities.

time to maturity. Table (1) reports the descriptive statistics of the OMXVX volatility index. Figure (1),

panel (b), shows the evolution of OMXVX for each time to maturity. We can see that OMXVX reaches

its minimum values (between 10% and 20%) on the periods 2004 − 2006 and 2013 − 2015. Beyond the

years 2008 and 2009, OMXVX reaches its maximum on 2002 (41%) with the diffusion of the dot-com

bubble.

The Spanish stock index is the IBEX35 listed in the Madrid Stock Exchange. It is composed by the 35

most liquid and exchanged equities in the Madrid Stock Exchange. The database ranges from 7 May 2007

to 31 December 2017. Each day, we use an average of 22 options to compute the volatility index. We have

on average of 10 maturities traded each day. Unlike the OMX, the IBEX35 has always been listed on

the same stock market, the Meffmercado Espanol Financiero. We compute the IBEXVX volatility index

for different tradig horizons for daily frequencies (i.e., 30, 60 and 90 days). Our results are displayed on

Figure (1). Like the OMXVX, the IBEXVX also reached its maximum value during the sub-prime crisis.

In that period the IBEXVX reaches levels between 40% and 81%. Similarly to the previous case, the

level of 60 days IBEXVX ranges between that of IBEXVX on 30 and 90 days (see Fig. (1) panel (c)).

The comparison among the three indices is available only for a short time horizon (2014− 2017) due to

the lack of data of ATX index in the dataset. Figure (2) shows the evolution of OMXVX, IBEXVX and

ATXVX for time to maturities of 30, 60 and 90 days respectively. We can see that even though most of

the time the three volatility indices tend to move together, the IBEXVX index seems to be more volatile.

On the other hand, the OMXVX seems to be less volatile both at the beginning and at the end of the

time series showed in Figure (2). In general, all three indices reach their maximum values for time to

maturity at 30 days.
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Figure 2: Comparing OMXVX, IBEXVX and ATXVX volatility indices for all time to maturities.

Table 1: Descriptive statistics for the ATXVX, OMXVX and IBEXVX volatility indicies

Minimum value Maximum value Mean value Variance Standard deviation

ATXVX

30 days 13,51% 35,57% 19,49% 0,14% 3,70%

60 days 13,48% 32,63% 19,19% 0,09% 3,02%

90 days 15,11% 35,13% 19,50% 0,1% 3,16%

OMXVX

30 days 10,29% 75,56% 21,77% 0,76% 8,69%

60 days 10,26% 71,47% 21,62% 0,69% 8,32%

90 days 10,58% 71,50% 22,03% 0,66% 8,12%

IBEXVX

30 days 9,36% 81,96% 27,19% 0,85% 9,23%

60 days 10,19% 75,48% 26,5% 0,68% 8,23%

90 days 13,77% 68,48% 26,98% 0,58% 7,65%
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4 The performance of volatility indices as contemporaneous and

future sentiment indicators

In this section we focus on two main goals. First we try to understand the relationship between the

new volatility indices and market returns. Second, we test the usefulness of the proposed measures in

forecasting future market returns.

4.1 Contemporaneous relationship between stock market returns and im-

plied volatility indices

One of the most important and analyzed volatility indices, the CBOE volatility index (VIX), has been

interpreted as a benchmark of ”investor fear gauge” because high values of the VIX indicate investor

anxiety regarding a potential drop in the stock market (see Whaley (2009, 2000)). A volatility index is

labelled as fear index when it signals that returns react negatively to its increase. On the contrary, we

refer to a volatility index as a measure of market greed if returns react positively to its increase (Elyasiani

et al. (2016)). From asset pricing theory (Sharpe (1964)) it is well known that expected return depends

on the expected volatility. Moreover, within the implied volatility index literature, Whaley (2000), Giot

(2005), Simon (2003) found a negative relationship between returns and VXO/VXN. One possible reason

of this is that if expected market volatility increases (decreases), investors demand higher (lower) rates

of return on stocks, so stock prices fall (rise). To test this proposition. the contemporaneous relationship

between our volatility indices and their stock indices returns are analyzed deeply in this section, where

we analyze not only the sign, but also the symmetry in the relationship between ATXVX, IBEXVX and

OMXVX and their respectively stock indices returns. In line with previous studies (e.g. Giot (2005),

Muzzioli (2013b)), we analyze the return-volatility relationship and we establish if our new volatility

indices act as fear or greed ones.

We approach the study of the contemporaneous relationship between returns and volatility performing

several regression models following the contributions of different authors. In detail, we have chosen seven

different regression models employed in the works of Rubbaniy et al. (2014), Muzzioli (2013b), Whaley

(2009), Giot (2005), Whaley (2000) respectively (see Table 2).

We first investigate the contemporaneous relation between daily changes in the volatility index and in

returns performing the regressions in models 1 and 2. Second, in describing the aforementioned relation-

ship, we explore the possibility that this relationship might be asymmetric, i.e., the contemporaneous

relationship could be different for negative and positive stock index returns or negative and positive

changes in volatility index. To this purpose we use models 3, 4, 5, 6.

Estimation results are reported in Tables (4), (5), (6). In the following, Rt,t+j is the market aggre-

gate log-returns of the corresponding index computed between day t and day t + j, that is Rt,t+j =

ln(indext+j/indext), where indext+j and indext are the values of the index at time t + j and t with

j = 30, 60, 90 representing the time horizon in calendar days. 4σt,t+j is the relative change in the

volatility index of the corresponding market computed with respect a time horizon of j = 30, 60, 90.

stock returns and volatility. R−t,t+j (R+
t,t+j) is the rate of change of the returns conditional on the mar-
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Table 2: Review of regressions analysis on the contemporaneous relationship between volatility indices

and stock market returns

Author(s) Regression equation

1)Rubbaniy et al. (2014)
4σt,t+j = α+ β1Rt,t+j + εt

2)Muzzioli (2013b)
Rt,t+j = α+ β64σt,t+j + εt

3)Whaley (2009)
4σt,t+j = α+ β1Rt,t+j + β2R

−
t,t+j + εt

4)Giot (2005)
4σt,t+j = α+ β2R

−
t,t+j + β3R

+
t,t+j + εt

5)Whaley (2000)
Rt,t+j = α+ β64σt,t+j + β74σ+

t,t+j + εt

6)Muzzioli (2013b)
Rt,t+j = α+ β74σ+

t,t+j + β84σ−t,t+j + εt

ket going down (up), and zero otherwise. 4σ−t,t+j(4σ
+
t,t+j) = 4σt,t+j if 4σt,t+j < 0 (> 0), otherwise

4σ−t,t+j(4σ
+
t,t+j) = 0 indicates the negative (positive) changes in volatility. All the regressions have been

run by using the Ordinary Least Square (OLS), with the Newey-West heteroscedasticity and autocorre-

lation consistent (HAC) covariance matrix.

According to the results reported in Tables (4), (5), (6), in both models (models 1 and 2), all the β

coefficients are negative and significantly different from zero at the 1% level. Therefore, it seems from our

results, that the negative relationship between stock market returns and changes in volatility is confirmed

in line with the findings for the US market (Whaley (2009)), the Italian market (Elyasiani et al. (2018))

and the European market (Rouetbi and Chaabani (2017), Badshah (2013)). In particular, the IBEX

case shows the highest R2 while the OMX the smallest. From descriptive statistics of the three indices

(see Table 1) we recall that the IBEXVX index attained the highest value and displayed the highest

volatility for all the maturities under investigation. From this first analysis we can conclude that all the

new volatility indices are perceived by investors as bad news and associated with a contemporaneous

decrease in stock prices. This suggests that the proposed volatility indices can be used as indicators of

market fear, i.e. when the volatility index increases, returns are negatives.

As discussed in the Introduction, there are two main hypotheses that justify the asymmetric relation

between stock index returns and changes in the volatility: the leverage effect and feedback effect hy-

potheses. In order to consider both assumptions we test the presence of asymmetric effects considering,

first, changes in volatility as regressors (feedback hypothesis) and then taking positive and negative re-

turns as regressors (leverage hypothesis). From Tables (4), (5), (6) we note that only Model 6 is able to

capture negative asymmetric effects for all three markets. Indeed both positive and negative changes in

9



Table 3: Forecasting regressions

Author(s) Regression equation

7) Elyasiani et al. (2018) and Rubbaniy et al. (2014) Rt,t+j = α+ β7σt,t+j + εt

8) Implied Forward volatility with controls Rt,t+j = α+ β7σt,t+j + β8σ
IFV
t,t+j,t+j+i + εt

volatility (β5 and β6) are highly significant at the 1% level, for all time horizons. Moreover, the slope

coefficient of positive changes in the volatility index (β5) is bigger than the slope coefficient of negative

changes (β6): a rise in the volatility index affects the returns more than a decrease in the volatility index.

In particular, positive changes in the volatility index are associated with negative changes in the returns

for the stock index than are negative volatility changes.

Differently, Model 5 only confirms the negative relationship between returns and volatility, in fact the β5

coefficient is statistically not significant for all time to maturities in all three cases.

Finally, we assess asymmetric effects taking returns as regressors (Models 3 and 4). In all cases, we find

evidence of asymmetric effects only in the Model 4. In detail, ATX and IBEX indices exhibit negative

and asymmetric effects, indeed their β2 coefficient (which measures the effect of the rate of change of the

stock index conditional on the market going down) is negative and statistically significant at the 1% level

for all time to maturities (see Tables (4) and (6)). In particular, negative returns for these two stock

indices are associated with changes in their implied volatility indices than are positive returns.

Concerning the OMX index (see Table (5)), we observe slightly different results. Looking at the Model 4

we realize that coefficient β3 is higher in absolute value than β2 for time horizons 30 and 60, while for 90

days time to maturity we have a contrary relationship. These results highlights two different scenarios.

First, OMX exhibits a weak positive asymmetric effect for 30 and 60 time to maturities that is, positive

returns of the stock indices are associated with changes in their implied volatility indices than are negative

returns. On the contrary, for medium horizon returns display a negative asymmetric effect.

Overall, in all the three markets the volatility indices act as fear indices in the sense of Whaley (2000),

while when we study the asymmetric effects, we find that Models 4 (when we split returns in negatives

and positives) and 6 (when we split changes in the volatility in positives and negatives) are the only ones

to give us such evidence. Moreover, for ATX and IBEX Models 1, 2, 3, 5, 6 exhibit the highest R2 while

in the OMX case Models 5 and 6 perform better than others.

4.2 The forecasting performance of the proposed volatility indices

As for the second goal of our investigation, we aim to assess whether the volatility indices can be considered

as indicators of future market returns. Skiadopoulos (2004) found that investors can use past market

returns in order to forecast future changes in implied volatility. Giot (2005) has argued that positive

returns are to be expected as a consequence of high level of implied volatility. Muzzioli (2013b) gives a

possible justification of this fact, the author asserts that if volatility is high, investors are over-reacting,

selling stocks without a clear rationale and as a consequence stocks could be undervalued. Therefore high

volatility can be viewed as a ”buy” signal.
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In order to examine the forecasting power of our model-free volatility indices we use the OLS regression

model. In the first model we follow Elyasiani et al. (2018) and Rubbaniy et al. (2014) resulting in the

equation below:

Rt,t+j = α+ β7σt,t+j + εt (5)

where Rt,t+j is the market aggregate log-returns of the index computed between day t and day t+ j, that

is Rt,t+j = ln(indext+j/indext), where indext+j and indext are the values of the index at time t+ j and

j = 30, 60, 90 representing the time horizon in calendar days. σt,t+j is the implied volatility index of the

specific market considered between day t and day t+ j with j = 30, 60, 90,

As we can see in Table 7, for Model 7 all the coefficients are significant at the 1% level. For the IBEX

and the ATX indices the sign of the coefficients is positive denoting a co-movement on the same direction

between returns and volatility, while for the OMX index the sign is negative and the returns-volatility

pattern exhibits an inverse relation. However, the R2 is low for all three markets denoting a limited

explanation power of the results.

An interesting model we consider in this work relies on the use of forward implied volatility (IFV) as

defined in 2. In detail implied forward volatility can be computed applying Eq. (3) or simply as the

difference between two implied volatilities from options maturing in t and t + j. In our analysis we

consider the level of implied volatility indices, ATXVX, OMXVX and IBEXVX, between day t and day

t+ j (σIFV30,60, σIFV60,90, σIFV30,90) and the forward-looking 30−, 60−, 90-days relative changes in the underlying

stock indices, ATX, OMX, IBEX35. To capture this relationship, we regress the implied volatility on

forward looking returns using the regression equation reported in Table 7, Model 8. As in the previous

analysis, all the regressions have been run by using the Ordinary Least Square (OLS), with the Newey-

West heteroscedasticity and autocorrelation consistent (HAC) covariance matrix.

In the estimation results in Table 3, Model 8, we are focusing on the effect of expected average volatility

for non-overlapping time intervals on future market returns. In this way, we attempt to extrapolate the

investor’s expectations on future market returns given an average level of volatility. Moreover, we have

included in the regression equations the spot volatility σt,t+j in order to control for lagged effects. In

detail, we should expect that if the term structure of the forward implied volatility reflects the term

structure of stock returns, then the coefficients β7 of Model 7 should be statistically insignificant while

β8 should be significant.

Thanks to the involvement of future log-returns and implied volatility indices we are able to give some

consideration on the volatility term structure, i.e. the curve connecting prices of volatility index to matu-

rities across time. This analysis give an important information to traders because volatility term structure

contains insight into the market’s expectation of future realized volatility across different maturities (Luo

and Zhang (2012), Feldman et al. (2018)).

For what it concerns the IBEX index, the values of the coefficients in Table 7, Model 8 (β7 and β8), are

both positives and statistically significant at the 1% level. As a consequence, it is clear that in order

to predict the returns between 30 and 60 days, 60 and 90 days, 30 and 90 time horizons, in the case of

IBEX index, we need to consider both the spot and the forward volatilities although they exhibit low

11



R2. To this regard, the forward implied volatilities alone, considered in all the three time horizons, do

not subsume all the relevant information.

The ATX index behaves like the IBEX index for time horizons between 30 and 60 and between 30 and

90. In particular, both coefficients, β7 and β8, are positives and statistically significant at the 1% level.

The returns between 60 and 90 are negatively related to their forward implied volatilities, indeed in the

ATX case the coefficient β8 of Model 7 is negative and statistically different from 0 while β7 results to

be statistically insignificant.

Unlikely, the OMX index, lead to divergent results with respect to the IBEX and the ATX indices. From

the estimations of Table 7 we realize that the forward implied volatility is negative and statistically

significant between 30 and 60 days while in the remaining cases it results statistically not significant.

Overall, from estimations results of Table 7 we come to the following conclusion. When investors use

the proposed volatility indices for forecasting purposes they need to consider two volatility components:

the spot volatility σt,t+j , and the forward implied volatility σIFVt,t+j,t+j+i. This is because it emerges a

lagged effect, that is the option prices of any particular horizon do not contain information only up to

their maturity. Moreover, our results on volatility term structure are in line with the findings of Johnson

(2017). In detail, the significance of volatility spot in our empirical results suggests the rejection of the

expectations hypothesis (according to which time variations in the shape of the VIX term structure reflect

changes in the expected path of future VIX) and the need to consider others components in the analysis

of the term structure of the volatility indices, such as the variance risk premia.

It is worth to note that the R2 in our forecasting regressions are very low (except for Specification 7

of ATX) then the proposed volatility measures can explain only a low portion of the total variation in

returns, in the whole sample. However, as stressed by Fassas and Hourvouliades (2019), considering that

we are evaluating future returns these results are economically significant and potentially useful.

5 Conclusions

The article has the main goal to introduce new implied volatility indices for three financial markets,

Austria, Finnish and Spain. There is still no volatility index in these markets and given its importance

documented by empirical literature (Whaley (2000), Giot (2005),Muzzioli (2013b), etc.) we believe that

our paper can be useful for both investors and policy-makers.

After introducing the new indices we have tested their role in the respective markets by implementing

several OLS regressions. In particular, we were able to conclude that the proposed volatility indices act

as fear indices in line with the results of the empirical literature, thus confirming their role in reporting

turbulent market periods.

The power of the aforementioned indices in forecasting future market returns has been tested via OLS

forecasting regressions. The results show that all the indices are statistically and economically significant

at the 1% level and they are useful to explain to an extent the future directions of the underlying stock

price under investigation. However, we have stressed that the R2 of all regression, except Model 8 of the

12



Table 4: ATX Contemporaneous relative changes in IV indices versus stock returns

α β1(Rt,t+j) β2(R−t,t+j) β3(R+
t,t+j) β4(4σt,t+j) β5(4σ+

t,t+j) β6(4σ−t,t+j) R2

Model 1: Rubbaniy et al. (2014)

4σ30
0.0006 −2.5290∗∗∗ 0.2721

(0.0002) (0.1956)

4σ60
0.0004 −1.6005∗∗∗ 0.2501

(0.0011) (0.1513)

4σ90
0.0004 −1.3802∗∗∗ 0.1766

(0.0012) (0.1388)

Model 2: Muzzioli (2013b)

R30
0.0003 −0.1076∗∗∗ 0.2721

(0.0003) (0.0079)

R60
0.0003 −0.1562∗∗∗ 0.2500

(0.0003) (0.0134)

R90
0.0003 −0.1279∗∗∗ 0.1766

(0.0004) (0.0174)

Model 3: Whaley (2009)

4σ30
0.0002 −2.4811∗∗∗ −0.0882 0.2721

(0.0027) (0.314) (0.5996)

4σ60
−0.0003 −1.5473∗∗∗ −0.0980 0.2501

(0.0019) (0.226) (0.4665)

4σ90
−0.0010 −1.2166∗∗∗ −0.3011 0.1776

(0.0019) (0.236) (0.4213)

Model 4: Giot (2005)

4σ30
−0.0144∗∗∗ −3.3774∗∗∗ −0.0414 0.1990

(0.0025) (0.3876) (0.2779)

4σ60
−0.0087∗∗∗ −2.1476∗∗∗ −0.1172 0.1853

(0.0017) (0.3028) (0.2131)

4σ90
−0.0080∗∗∗ −1.9135∗∗∗ −0.0464 0.1393

(0.0016) (0.2519) (0.2043)

Model 5: Whaley (2000)

R30
0.0006 −0.0977∗∗∗ −0.0185 0.2731

(0.0005) (0.0143) (0.0216)

R60
0.0006 −0.1420∗∗∗ −0.0257 0.2509

(0.0004) (0.0230) (0.0359)

R90
0.0008 −0.1063∗∗∗ −0.0422 0.1795

(0.0006) (0.0228) (0.0481)

Model 6: Muzzioli (2013b)

R30
0.0006 −0.1161∗∗∗ −0.0977∗∗∗ 0.2731

(0.0005) (0.0123) (0.0143)

R60
0.0006 −0.1677∗∗∗ −0.1420∗∗∗ 0.2509

(0.0004) (0.0218) (0.0230)

R90
0.0008 −0.1484∗∗∗ −0.1063∗∗∗ 0.1795

(0.0006) (0.0354) (0.0228)

Note: The table reports the estimated output of the regressions:

1.4σt,t+j = α+ β1Rt,t+j + εt

2.Rt,t+j = α+ β64σt,t+j + εt

3.4σt,t+j = α+ β1Rt,t+j + β2R
−
t,t+j + εt

4.4σt,t+j = α+ β2R
−
t,t+j + β3R

+
t,t+j + εt

5.Rt,t+j = α+ β64σt,t+j + β74σ+
t,t+j + εt

6.Rt,t+j = α+ β74σ+
t,t+j + β84σ−t,t+j + εt

for the ATX stock returns and volatility. R−t,t+j (R+
t,t+j) is the rate of change of the returns conditional on the market going down (up), and zero otherwise.

4σ−t,t+j(4σ
+
t,t+j) = 4σt,t+j if 4σt,t+j < 0 (> 0), otherwise 4σ−t,t+j(4σ

+
t,t+j) = 0. Significance at the 1% level is denoted by ∗ ∗ ∗, at the 5% level by ∗∗, and

at the 10% level by ∗. Standard errors are shown in parentheses.
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Table 5: OMX Contemporaneous relative changes in IV indices versus stock returns

α β1(Rt,t+j) β2(R−t,t+j) β3(R+
t,t+j) β4(4σt,t+j) β5(4σ+

t,t+j) β6(4σ−t,t+j) R2

Model 1: Rubbaniy et al. (2014)

4σ30
0.0001 −1.2846∗∗∗ 0.1176

0.0008 0.0883

4σ60
0.0002 −0.8160∗∗∗ 0.0760

0.0007 0.0750

4σ90
−0.0002 −0.6705∗∗∗ 0.0427

0.0007 0.0791

Model 2: Muzzioli (2013b)

R30
0.0002 −0.0915∗∗∗ 0.1176

0.0002 0.0081

R60
0.0002 −0.0932∗∗∗ 0.0760

(0.0002) (0.0117)

R90
0.0002 −0.0637∗∗∗ 0.0427

(0.0002) 0.0094

Model 3: Whaley (2009)

4σ30
0.0003 −1.3059∗∗∗ 0.0415 0.1176

(0.0013) (0.1387) (0.2657)

4σ60
0.0001 −0.8274∗∗∗ 0.0221 0.0760

(0.0011) (0.1266) (0.2293)

4σ90
−0.0007 −0.5990∗∗∗ −0.1389 0.0429

(0.0012) (0.1382) (0.2398)

Model 4: Giot (2005)

4σ30
0.0003 −1.2644∗∗∗ −1.3059∗∗∗ 0.1176

(0.0013) (0.1768) (0.1387)

4σ60
0.0001 −0.8052∗∗∗ −0.8274∗∗∗ 0.0760

(0.0011) (0.1460) (0.1266)

4σ90
−0.0007 −0.7380∗∗∗ −0.5990∗∗∗ 0.0429

(0.0012) (0.1484) (0.1382)

Model 5: Whaley (2000)

R30
0.0005 −0.0827∗∗∗ −0.0178 0.1184

(0.0003) (0.0124) (0.0203)

R60
0.0003 −0.0899∗∗∗ −0.0067 0.0761

(0.0003) (0.0179) (0.0279)

R90
0.0003 −0.0584∗∗∗ −0.0108 0.0430

(0.0003) (0.0003) (0.0216)

Model 6: Muzzioli (2013b)

R30
0.0005 −0.1005∗∗∗ −0.0827∗∗∗ 0.1184

(0.0003) (0.0136) (0.0124)

R60
0.0003 −0.0966∗∗∗ −0.0899∗∗∗ 0.0761

(0.0003) (0.0185) (0.0179)

R90
0.0003 −0.0692∗∗∗ −0.0584∗∗∗ 0.0430

(0.0003) (0.0151) (0.0136)

Note: The table reports the estimated output of the regressions:

1.4σt,t+j = α+ β1Rt,t+j + εt

2.Rt,t+j = α+ β64σt,t+j + εt

3.4σt,t+j = α+ β1Rt,t+j + β2R
−
t,t+j + εt

4.4σt,t+j = α+ β2R
−
t,t+j + β3R

+
t,t+j + εt

5.Rt,t+j = α+ β64σt,t+j + β74σ+
t,t+j + εt

6.Rt,t+j = α+ β74σ+
t,t+j + β84σ−t,t+j + εt

for the OMX stock returns and volatility. R−t,t+j (R+
t,t+j) is the rate of change of the returns conditional on the market going down (up), and zero otherwise.

4σ−t,t+j(4σ
+
t,t+j) = 4σt,t+j if 4σt,t+j < 0 (> 0), otherwise 4σ−t,t+j(4σ

+
t,t+j) = 0. Significance at the 1% level is denoted by ∗ ∗ ∗, at the 5% level by ∗∗, and

at the 10% level by ∗. Standard errors are shown in parentheses. for the OMX stock returns and volatility. Significance at the 1% level is denoted by ∗ ∗ ∗, a

the 5% level by ∗∗, and at the 10% level by ∗. Standard errors are shown in parentheses.
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Table 6: IBEX Contemporaneous relative changes in IV indices versus stock returns

α β1(Rt,t+j) β2(R−t,t+j) β3(R+
t,t+j) β4(4σt,t+j) β5(4σ+

t,t+j) β6(4σ−t,t+j) R2

Model 1: Rubbaniy et al. (2014)

4σ30
−0.0004 −2.3562∗∗∗ 0.3638

(0.0009) (0.0920)

4σ60
−0.0003 −1.9480∗∗∗ 0.4929

(0.0006) (0.0612)

4σ90
−0.0002 −1.7156∗∗∗ 0.3426

(0.0008) (0.0626)

Model 2: Muzzioli (2013b)

R30
−0.0002 −0.1544∗∗∗ 0.3639

(0.0003) (0.0106)

R60
−0.0002 −0.2530∗∗∗ 0.4930

(0.0002) (0.0090)

R90
−0.0001 −0.1997∗∗∗ 0.3426

(0.0003) (0.0201)

Model 3: Whaley (2009)

4σ30
−0.0032∗ −2.0974∗∗∗ −0.4872∗ 0.3657

(0.0018) (0.1441) (0.2921)

4σ60
−0.0023∗∗ −1.7675∗∗∗ −0.3399∗ 0.4947

(0.0011) (0.1049) (0.1836)

4σ90
−0.0023∗ −1.5300∗∗∗ −0.3483∗ 0.3443

(0.0013) (0.1244) (0.1941)

Model 4: Giot (2005)

4σ30
−0.0189∗∗∗ −3.2408∗∗∗ −0.0364 0.2785

(0.0016) 0.203 (0.0964)

4σ60
−0.0153∗∗∗ −2.6611∗∗∗ −0.0666 0.3720

(0.0010) (0.124) (0.0711)

4σ90
−0.0139∗∗∗ −2.3629∗∗∗ −0.0673 0.2630

(0.0873) (0.0012) (0.1127)

Model 5: Whaley (2000)

R30
0.0008 −0.1826∗∗∗ −0.0419 0.3673

(0.0007) (0.0229) (0.0342)

R60
0.0004 −0.2347∗∗∗ −0.0338 0.4940

(0.0004) (0.0183) (0.0287)

R90
0.0003 −0.1844∗∗∗ −0.0288 0.3436

(0.0010) (0.0364) (0.0657)

Model 6: Muzzioli (2013b)

R30
0.0008 −0.1745∗∗∗ −0.1326∗∗∗ 0.3673

(0.0007) (0.0164) (0.0229)

R60
0.0004 −0.2685∗∗∗ −0.2347∗∗∗ 0.4940

(0.0004) (0.0154) (0.0183)

R90
0.0003 −0.2133∗∗∗ −0.1844∗∗∗ 0.3436

(0.0010) (0.0403) (0.0364)

Note: The table reports the estimated output of the regressions:

1.4σt,t+j = α+ β1Rt,t+j + εt

2.Rt,t+j = α+ β64σt,t+j + εt

3.4σt,t+j = α+ β1Rt,t+j + β2R
−
t,t+j + εt

4.4σt,t+j = α+ β2R
−
t,t+j + β3R

+
t,t+j + εt

5.Rt,t+j = α+ β64σt,t+j + β74σ+
t,t+j + εt

6.Rt,t+j = α+ β74σ+
t,t+j + β84σ−t,t+j + εt

for the IBEX stock returns and volatility. R−t,t+j (R+
t,t+j) is the rate of change of the returns conditional on the market going down (up), and zero otherwise.

4σ−t,t+j(4σ
+
t,t+j) = 4σt,t+j if 4σt,t+j < 0 (> 0), otherwise 4σ−t,t+j(4σ

+
t,t+j) = 0. Significance at the 1% level is denoted by ∗ ∗ ∗, at the 5% level by ∗∗, and

at the 10% level by ∗. Standard errors are shown in parentheses.
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Table 7: Models 7 and 8 : Forecasting regressions

α β7(σt,t+j) β8(σIFVt,t+j,t+j+i) R2

Panel I: ATX

Model 7

R30
−0.1151∗∗∗ 0.6239∗∗∗ 0.1777

(0.0080) (0.0400)

R60
−0.2034∗∗∗ 1.1137∗∗∗ 0.2248

(0.0109) (0.0530)

R90
−0.1712∗∗∗ 0.9728∗∗∗ 0.1503

(0.0147) (0.0707)

Model 8

R30,60
−0.0602∗∗∗ 0.3469∗∗∗ 0.6141∗∗∗ 0.0440

(0.0099) (0.0484) (0.1061)

R60,90
0.0167 −0.0412 −0.2840∗∗∗ 0.0084

(0.0109) (0.0513) (0.0705)

R30,90
−0.0518∗∗∗ 0.3416∗∗∗ 0.2314∗∗∗ 0.0228

(0.0149) (0.0722) (0.0705)

Panel II: OMX

Model 7

R30
0.01799∗∗∗ −0.0586∗∗∗ 0.0066

(0.0029) (0.0145)

R60
0.0315∗∗∗ −0.0981∗∗∗ 0.0081

(0.0040) (0.0202)

R90
0.0476∗∗∗ −0.1473∗∗∗ 0.0116

(0.0050) (0.0246)

Model 8

R30,60
0.0152∗∗∗ −0.0455∗∗∗ −0.1947∗∗∗ 0.0046

(0.0028) (0.0135) (0.0662)

R60,90
0.0163∗∗∗ −0.0501∗∗∗ −0.1106 0.0045

(0.0033) (0.0159) (0.1204)

R30,90
0.0298∗∗∗ −0.0893∗∗∗ 0.0262 0.0074

(0.0044) (0.0214) (0.0860)

Panel III: IBEX

Model 7

R30
−0.0299∗∗∗ 0.0987∗∗∗ 0.0186

(0.0042) (0.0164)

R60
−0.0652∗∗∗ 0.2174∗∗∗ 0.0345

(0.0062) (0.0234)

R90
−0.0771∗∗∗ 0.2477∗∗∗ 0.0267

(0.0096) (0.0352)

Model 8

R30,60
−0.0353∗∗ 0.1192∗∗∗ 0.1747∗∗ 0.0193

(0.0048) (0.0179) (0.0803)

R60,90
−0.0157∗∗∗ 0.0471∗∗ 0.6781∗∗∗ 0.0184

(0.0057) (0.0206) (0.1010)

R30,90
−0.0468∗∗∗ 0.1509∗∗∗ 0.3570∗∗∗ 0.0140

(0.0078) (0.0282) (0.0716)

Note: The table reports the estimated output of the following forecasting

regressions:

1.Rt,t+j = α+ β7σt,t+j + εt

2.Rt,t+j = α+ β7σt,t+j + β8σ
IFV
t,t+j,t+j+i + εt

for the stock returns and volatility. Significance at the 1% level is denoted

by ∗∗∗, a the 5% level by ∗∗, and at the 10% level by ∗. Standard errors

are shown in parentheses.
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ATX index, are not very high suggesting the need of a further analysis to better understand stock price

dynamics.

Finally, we have made use of implied forward volatility in order to shed some light to the volatility term

structure. In particular, for all the three markets, in the medium term horizon, all the volatility indices

are affected to a lagged mechanism. This open the analysis for further investigation.
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