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Abstract

In this paper we present a novel approach for bottom-
up multi-person 3D human pose estimation from monocu-
lar RGB images. We propose to use high resolution volu-
metric heatmaps to model joint locations, devising a sim-
ple and effective compression method to drastically reduce
the size of this representation. At the core of the pro-
posed method lies our Volumetric Heatmap Autoencoder, a
fully-convolutional network tasked with the compression of
ground-truth heatmaps into a dense intermediate represen-
tation. A second model, the Code Predictor, is then trained
to predict these codes, which can be decompressed at test
time to re-obtain the original representation. Our experi-
mental evaluation shows that our method performs favor-
ably when compared to state of the art on both multi-person
and single-person 3D human pose estimation datasets and,
thanks to our novel compression strategy, can process full-
HD images at the constant runtime of 8 fps regardless of the
number of subjects in the scene. Code and models available
at https://github.com/fabbrimatteo/LoCO.

1. Introduction

Human Pose Estimation (HPE) has seen significant
progress in recent years, mainly thanks to deep Convolu-
tional Neural Networks (CNNs). Best performing methods
on 2D HPE are all leveraging heatmaps to predict body joint
locations [3, 49, 43]. Heatmaps have also been extended for
3D HPE, showing promising results in single person con-
texts [38, 29, 41].

Despite their good performance, these methods do not
easily generalize to multi-person 3D HPE, mainly because
of their high demands for memory and computation. This
drawback also limits the resolution of those maps, that have
to be kept small, leading to quantization errors. Using larger
volumetric heatmaps can address those issues, but at the
cost of extra storage, computation and training complexity.
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Figure 1: Examples of 3D poses estimated by our LoCO
approach. Close-ups show that 3D poses are correctly com-
puted even in very complex and articulated scenarios

In this paper, we propose a simple solution to the afore-
mentioned problems that allows us to directly predict high-
resolution volumetric heatmaps while keeping storage and
computation small. This new solution enables our method
to tackle multi-person 3D HPE using heatmaps in a single-
shot bottom-up fashion. Moreover, thanks to our high-
resolution output, we are able to produce fine-grained ab-
solute 3D predictions even in single person contexts. This
allows our method to achieve state of the art performance
on the most popular single person benchmark [11].

The core of our proposal relies on the creation of an alter-
native ground-truth representation that preserves the most
informative content of the original ground-truth but reduces
its memory footprint. Indeed, this new compressed repre-
sentation is used as the target ground-truth during our net-
work training. We named this solution LoCO, Learning on
Compressed Output.

By leveraging on the analogy between compression and
dimensionality reduction on sparse signals [47, 39, 1], we
empirically follow the intuition that 3D body poses can be
represented in an alternative space where data redundancy
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is exploited towards a compact representation. This is done
by minimizing the loss of information while keeping the
spatial nature of the representation, a task for which con-
volutional architectures are particularly suitable. Concur-
rently w.r.t. our proposal, compression-based approaches
have been effectively used for both dataset distillation and
input compression [48, 46] but, to the best of our knowl-
edge, this is the first time they are applied to ground truth
remapping. For this purpose, deep self-supervised networks
such as autoencoders represent a natural choice for search-
ing, in a data-driven way, for an intermediate representation.

Specifically, our HPE pipeline consists of two modules:
at first, the pretrained Volumetric Heatmap Autoencoder is
used to obtain a smaller/denser representation of the volu-
metric heatmaps. These “codes” are then used to supervise
the Code Predictor, which aims at estimating multiple 3D
joint locations from a monocular RGB input.

To summarize, the novel aspects of our proposal are:

� We propose a simple and effective method that maps
high-resolution volumetric heatmaps to a compact and
more tractable representation. This saves memory and
computational resources while keeping most of the in-
formative content.

� This new data representation enables the adoption of
volumetric heatmaps to tackle multi-person 3D HPE in
a bottom-up fashion, an otherwise intractable problem.
Experiments on both real [12] and simulated environ-
ments [8] (see Fig. 1) show promising results even in
100 meters wide scenes with more than 50 people. Our
method only requires a single forward pass and can be
applied with constant running time regardless of the
number of subjects in the scene.

� We further demonstrate the generalization capabilities
of LoCO by applying it to a single person context. Our
fine-grained predictions establish a new state of the art
on Human3.6m [11] among bottom-up methods.

2. Related Work

Single-Person 3D HPE Single person 3D HPE from a
monocular camera has become extremely popular in the last
few years. Literature can be classified into three different
categories: (i) approaches that first estimate 2D joints and
then project them to 3D space, (ii) works that jointly esti-
mate 2D and 3D poses, (iii) methods that learn the 3D pose
directly from the RGB image.

The majority of works on single person 3D HPE first
compute 2D poses and leverages them to estimate 3D poses,
either using off-the-shelf 2D HPE methods [15, 10, 19, 20,

2, 24, 4] or by having a dedicated module in the 3D HPE
pipeline [26, 28, 16, 51].

Joint learning of 2D and 3D pose is also shown to be
beneficial [22, 6, 50, 54, 44, 27, 14, 30], often in conjunction
with large-scale datasets that only provide 2D pose ground-
truth and exploiting anatomical or structure priors.

Finally, recent works estimate 3D pose information di-
rectly [38, 29, 41, 18, 25, 34, 35]. Among these, Pavlakos
et al. [29] were the first to propose a fine discretization of
the 3D space around the target by learning a coarse-to-fine
prediction scheme in an end to end fashion.

Multi-Person 3D HPE To the best of our knowledge,
very few works tackle multi-person 3D HPE from monoc-
ular images. We can categorize them into two classes: top-
down and bottom-up approaches.

Top-down methods first identify bounding boxes likely
to contain a person using third party detectors and then per-
form single-person HPE for each person detected. Among
them, Rogez et al. [37] classifies bounding boxes into a
set of K-poses. These poses are scored by a classifier and
refined using a regressor. The method implicitly reasons
using bounding boxes and produces multiple proposals per
subject that need to be accumulated and fused. Zanfir et
al. [52] combine a single person model that incorporates
feed-forward initialization and semantic feedback, with ad-
ditional constraints such as ground plane estimation, mutual
volume exclusion, and joint inference. Dabral et al. [6], in-
stead, propose a two-staged approach that first estimates the
2D keypoints in every Region of Interest and then lifts the
estimated keypoints to 3D. Finally, Moon et al. [23] pre-
dict absolute 3D human root localization, and root-relative
3D single-person for each person independently. However,
these methods heavily rely on the accuracy of the people de-
tector and do not scale well when facing scenes with dozens
of people.

In contrast to top-down approaches, bottom-up methods
produce multi-person joint locations in a single shot, from
which the 3D pose can be inferred even under strong occlu-
sions. Mehta et al. [21], predict 2D and 3D poses for all
subjects in a single forward pass regardless of the number
of people in the scene. They exploit occlusion-robust pose-
maps that store 3D coordinates at each joint 2D pixel loca-
tion. However, their 3D pose read-out strategy strongly de-
pends on the 2D pose output which makes it limited by the
accuracy of the 2D module. Their method also struggles to
resolve scenes with multiple overlapping people, due to the
missing 3D reasoning in their joint-to-person association
process. Zanfir et al. [53], on the other hand, utilize a multi-
task deep neural network where the person grouping prob-
lem is formulated as an integer program based on learned
body part scores parameterized by both 2D and 3D infor-
mation. Similarly to the latter, our method directly learns a



Figure 2: Schematization of the proposed LoCO pipeline. At training time, the Encodere produces the compressed volumet-
ric heatmapse(H) which are used as ground truth from the Code Predictorf . At test time, the intermediate representation
f (I ) computed by the Code Predictor is fed to the Decoderd for the �nal output. In our case,H 0 = H=8 andW 0 = W=8

mapping from image features to 3D joint locations, with no
need of explicit bounding box detections or 2D proxy poses,
while simultaneously being robust to heavy occlusions and
multiple overlapping people.

Multi-Person 3D Pose Representation In a top-down
framework, the simplest 3D pose representation can be ex-
pressed by a vector of joints. By casting 3D HPE as a co-
ordinate regression task, Rogezet al. [37] and Zan�r et al.
[52] indeed utilize x, y, z coordinates of the human joints
w.r.t. a known root location. On the other hand, bottom-
up approaches require a representation whose coding does
not depend on the number of people (e.g. an image map).
Among the most recent methods, Mehtaet al. [21] and Zan-
�r et al. [53] both utilize a pose representation composed by
joint-speci�c feature channels storing the 3D coordinate x,
y, or z at the joint/limb 2D pixel location. This representa-
tion, however, suffers when multiple overlapping people are
present in the scene. In contrast to all these approaches, we
adopted the volumetric heatmap representation proposed by
Pavlakoset al. [29], overcoming all the limitations that arise
when facing a multi-person context.

3. Proposed Method

The following subsections summarize the key elements of
LoCO. Section 3.1 gives a preliminary de�nition of the cho-
sen volumetric heatmap representation and elaborates on its
merits. Section 3.2 illustrates our proposed data mapping
which addresses the high dimensional nature of the volu-
metric heatmaps by producing a compact and more tractable

representation. Next, in Section 3.3, we describe how our
strategy can be easily exploited to effectively tackle the
problem of multi-person 3D HPE in a single-shot bottom-up
fashion. Finally, Section 3.4 illustrates our simple re�ning
approach that prevents poses from being implausible.

3.1. Volumetric Heatmaps

By considering a voxelization of the RGB-D volumetric
space [7, 29], we refer as a volumetric heatmap,h, the 3D
con�dence map with sizeD � H � W , whereD repre-
sents the depth dimension (appropriately quantized), while
H andW represent the height and width of the image plane
respectively. Given the body jointj with pseudo-3D co-
ordinatesu j = ( u1;j ; u2;j ; u3;j ), whereu1;j 2 f 1; :::; Dg
is the quantized distance of jointj from the camera, and
u2;j 2 f 1; :::; H g andu3;j 2 f 1; :::; Wg are respectively
the row and column indexes of its pixel on the image plane,
the value ofhj at a generic locationu is obtained by center-
ing a �xed variance Gaussian inuj :

hj (u) = e�
ku � u j k2

� 2 (1)

In a multi-person context, in the same image we can si-
multaneously have several joints of the same kind (e.g. “left
ankle”), one for each of theK different people in the im-
age. In this case we aggregate thoseK volumetric heatmaps
hj

(k ) , into a single heatmaphj with a max operation:

hj (u) = maxk f hj
(k ) (u)g (2)

Finally, consideringN different types of joint andK



block layer in ch. out ch. stride

e-c2d
Conv2D + ReLU D D=d1 s1

Conv2D + ReLU D=d1 D=d2 s2

Conv2D + ReLU D=d2 D=d3 s2

e-c3d
Conv3D + ReLU N 4 1
Conv3D + ReLU 4 1 1

Table 1: Structure of the encoder part of the Volumet-
ric Heatmap Autoencoder (VHA). The decoder is not
shown as it is perfectly mirrored to the encoder.VHAv1:
(d1; d2; d3) = (1 ; 2; 2) and (s1; s2; s3) = (1 ; 2; 1); for
VHAv2: (d1; d2; d3) = (2 ; 4; 4) and(s1; s2; s3) = (2 ; 2; 1);
VHAv3: (d1; d2; d3) = (2 ; 4; 8) and(s1; s2; s3) = (2 ; 2; 2)

people, we have a set ofN volumetric heatmaps (each asso-
ciated with a joint type),H = f hj ; j = 1 ; :::; N g, resulting
from the aggregation of the individual heatmaps of theK
people in the scene. Note that, given pseudo-3D coordi-
natesu = ( u1; u2; u3) and the camera intrinsic parameters,
i.e. focal lengthf = ( f x ; f y ) and principal point(cx ; cy ),
the corresponding 3D coordinatesx = ( x; y; z) in the cam-
era reference system can be retrieved by directly applying
the equations of the pinhole camera model.

The bene�t of choosing a volumetric heatmap represen-
tation over a direct 3D coordinate regression is that it casts
the highly non-linear problem to a more tractable con�g-
uration of prediction in a discretized space. In fact, joint
predictions do not estimate a unique location but rather a
per voxel con�dence, which makes it easier for a network
to learn the target function [29]. In the context of 2D HPE,
the bene�ts of predicting con�dences for each pixel instead
of image coordinates are well known [31, 45]. Moreover,
in a multi-person environment, directly regressing the joint
coordinates is unfeasible when the number of people is
not known a priori, making volumetric heatmaps a natural
choice for tackling bottom-up multi-person 3D HPE.

The major disadvantage of this representation is that it
is memory and computational demanding, requiring some
compromise during implementation that limits its full po-
tential. Some of those compromises consist in utilizing low
resolution heatmaps that introduce quantization errors or
complex training strategies that involve coarse-to-�ne pre-
dictions through iterative re�ning of network output [29].

3.2. Volumetric Heatmap Autoencoder

To overcome the aforementioned limitations without intro-
ducing quantization errors or training complexity, we pro-
pose to map volumetric heatmaps to a more tractable repre-
sentation. Inspired by [17], we propose a multiple branches
Volumetric Heatmap Autoencoder (VHA) that takes a set of
N volumetric heatmapsH as input. At �rst, the volumetric

heatmapsf h1; :::; hN g are processed independently with a
2D convolutional block (e-c2d) in which the kernel does not
move along theD dimension. In order to capture the mu-
tual in�uence between joints locations, the obtained maps
are then stacked along a fourth dimension and processed by
a subsequent set of 3D convolutions (e-c3d). The resulting
encoded representation,e(H) is �nally decoded by its mir-
rored architectured (e(H)) = ~H. The general structure of
the model is outlined in Fig. 2 top.

The goal of the VHA is therefore to learn a compressed
representation of the input volumetric heatmaps that pre-
serve their information content, which results in the preser-
vation of the position of the Gaussian peaks of the various
joints in the original maps. For the purpose, we maximize
the F1-score, F1

�
QH ; Q~H

�
, between the set of ground truth

peaks (QH ) and the set of the decoded maps (Q~H ). We de-
�ne the set of peaks as follows:

QH =
[

n =1 ;:::;N

f u : hn (u) > u0 8u0 2 N �u g (3)

whereN �u is the 6-connected neighborhood of�u , i.e. the
set of coordinatesN �u = f u : ku � �u k = 1g at unit dis-
tance from�u . Since the procedure for extracting the coordi-
nate sets from the volumetric heatmaps is not differentiable,
the former objective cannot be directly optimized as a loss
component for training the VHA. To address this issue, we
propose to use mean squared error (MSE) loss betweenH
and~H as training loss.

Note that our proposed mapping purposely reduces the
volumetric heatmap's fourth dimension, making its shape
coherent with the output of 2D convolutions and thus ex-
ploitable by regular CNN backbones. Additional architec-
ture details can be found in the supplementary material.

3.3. Code Predictor and Body Joints Association

The input of the Code Predictor is represented by a RGB
image,I , while its output,f (I ), aims to predict the codes
obtained with the VHA, Fig. 2. The architecture, Fig. 2
bottom, is inspired by [49] thus composed by a pre-trained
feature extractor (convolutional part of Inception v3 [42]),
and a fully convolutional block (f -c2d) composed of four
convolutions. We trained the Code Predictor by minimiz-
ing the MSE loss betweenf (I ) ande(H), whereH is the
volumetric heatmap associated with the imageI .

At inference time, the pseudo-3D coordinates of the
body joints are obtained from the decoded volumetric
heatmap~H = d(f (I )) through a local maxima search.
Eventually, if camera parameters are available, the pinhole
camera equations recover the true three-dimensional coor-
dinates of the detected joints. Additional details in the sup-
plementary material.



F1 on JTA F1 on Panoptic F1 on Human3.6m

model bottleneck size @0vx @1vx @2vx @0vx @1vx @2vx @0vx @1vx @2vx

VHA (1) D
2 � H 0

2 � W 0

2 97.1 98.4 98.5 - - - - - -

VHA (2) D
4 � H 0

4 � W 0

4 92.5 97.0 97.1 97.1 98.6 98.9 100.0 100.0 100.0

VHA (3) D
8 � H 0

8 � W 0

8 56.5 90.3 92.9 91.9 98.7 99.6 99.7 100.0 100.0

Table 2: VHA bottleneck/code size and performances on the JTA, Panoptic and Human3.6m (protocol P2) test set in terms
of F1 score at different thresholds @0, @1, and @2 voxel(s); @t indicates that a predicted joint is considered “true positive”
if the distance from the corresponding ground truth joint is less thant

As in almost all recent 2D HPE bottom-up approaches
[3, 9, 5] (i.e. methods which does not require a people de-
tection step) detected joints have to be linked together to
obtain people skeletal representations. In a single person
context, joint association is trivial. On the other hand, in
a multi-person environment, linking joints is signi�cantly
more challenging. For the purpose, we rely on a sim-
ple distance-based heuristic where, starting from detected
heads (i.e. the joint with the highest con�dence), we con-
nect the remaining(N � 1) joints by selecting the clos-
est ones in terms of 3D Euclidean distance. Associations
are further re�ned by rejecting those that violates anatom-
ical constraints (e.g. length of a limb greater than a cer-
tain threshold). Despite its simplicity, this approach is par-
ticularity effective when 3D coordinates of body joints are
available, especially in surveillance scenarios where prox-
emics dynamics often regulate the spatial relationships be-
tween different individuals. Additional details are reported
in the supplementary material.

3.4. Pose Re�ner

The predicted 3D poses are subsequently re�ned by a MLP
network trained to account for miss-detections and location
errors. The objective of the Pose Re�ner is indeed to make
sure that the detected poses are complete (i.e. all theN
joints are always present). To better understand how the
Pose Re�ner works, we de�ne the concept of3D posesand
root-relative poses. Given a personk, its 3D pose is the set

p (k ) =
n

x (k )
n ; n = 1 ; :::; N

o
of the 3D coordinates of its

N joints. The corresponding root-relative pose is then given
by:

p rr
(k ) =

(
x (k )

n � x (k )
1

ln
; n = 2 ; :::; N

)

(4)

wherex1 are the 3D coordinates of the root joint (“head-
top” in our experiments) andln is a normalization constant
computed on the training set as the maximum length of the
vector that points from the root joint to any other joint of
the same person.

The Pose Re�ner is hence trained with MSE loss tak-
ing as input the root-relative version of the 3D poses with
randomly removed joints, and an additional Gaussian noise
applied to the coordinates. Given the 3D position of the root
joint and the re�ned poses, it is straightforward to re-obtain
the corresponding 3D poses by using Eq. (4).

4. Experiments

A series of experiments have been conducted on two multi-
person datasets, namely JTA [8] and CMU Panoptic [12, 40,
13], as well as one well established single-person bench-
mark: Human3.6m [11].

JTA is a large synthetic dataset for multi-person HPE and
tracking in urban scenarios. It is composed of 512 Full HD
videos, 30s long, each containing an average of 20 people
per frame. Due to its recent publication date, this dataset
does not have a public leaderboard and it is not mentioned
in other comparable HPE works. Despite this limitation, we
believe it is crucial to test LoCO on JTA because it is much
more complex and challenging than older benchmarks.

CMU Panoptic is another large dataset containing both
single-person and multi-person sequences for a total of 65
sequences (5.5 hours of video). It is less challenging than
JTA as the number of people per frame is much more lim-
ited, but it is currently the largest real-world multi-person
dataset with 3D annotations.

To further demonstrate the generalization capabilities of
LoCO, we also provide a direct comparison with other HPE
approaches on the single person task. Without any modi�-
cation to the multi-person pipeline, we achieve state of the
art results on the popular Human3.6m dataset.

For each dataset we also show the upper bound obtained
by using the GT volumetric heatmaps in order to highlight
the strengths of this data representation. In all the following
tables, we will indicate with LoCO(n ) our complete HPE
pipeline, composed of the Code Predictor, the decoder of
VHA (n ) and the subsequent post-processing. LoCO(n ) + is
the same system with the addition of the Pose Re�ner.

For all the experiments in the paper we utilized Adam
optimizer with learning rate10� 4. We employed batch size
1 when training the VHA and batch size 8 when training the



PR RE F1 PR RE F1 PR RE F1
@0.4 m @0.8 m @1.2 m

Location Maps [21, 22] 5.80 5.33 5.42 24.06 21.65 22.29 41.43 36.96 38.26
Location Maps [21, 22] + ref. 5.82 5.89 5.77 23.28 23.51 23.08 38.85 39.17 38.49
[33] + [19] 75.88 28.36 39.14 92.85 34.17 47.38 96.33 35.33 49.03
Uncompr. Volumetric Heatmaps 25.37 24.40 24.47 45.40 43.11 43.51 55.55 52.44 53.08

LoCO(1) 48.10 42.73 44.76 65.63 58.58 61.24 72.44 64.84 67.70
LoCO(1) + . 49.37 43.45 45.73 66.87 59.02 62.02 73.54 65.07 68.29
LoCO(2) 54.76 46.94 50.13 70.67 60.48 64.62 77.00 65.92 70.40
LoCO(2) + . 55.37 47.84 50.82 70.63 60.94 64.76 76.81 66.31 70.44

LoCO(3) 48.18 41.97 44.49 66.96 58.22 61.77 74.43 64.71 68.65
LoCO(3) + . 49.15 42.84 45.36 67.16 58.45 61.92 74.39 64.76 68.57

GT Location Maps [21, 22] 76.07 64.83 69.59 76.07 64.83 69.59 76.07 64.83 69.59
GT Volumetric Heatmaps 99.96 99.96 99.96 99.99 99.99 99.99 99.99 99.99 99.99

Table 3: Comparison of our LoCO approach with other strong baselines and competitors on the JTA test set. In PR (precision),
RE (recall) and F1, @t indicates that a predicted joint is considered “true positive” if the distance from the corresponding
ground truth joint is less thant. Last two rows contain the upper bounds obtained using the ground truth location maps and
volumetric heatmaps respectively

Code Predictor. We employed Inception v3 [42] as back-
bone for the Code Predictor, which is followed by 3 convo-
lutions with ReLU activation having kernel size 4 and with
1024, 512 and 256 channels respectively. A last1 � 1 con-
volution is performed to match the compressed volumetric
heatmap's number of channels. Additional training details
in the supplementary material.

4.1. Compression Levels

In order to understand how different code sizes in the VHA
affects the performance of our Code Predictor network,
multiple VHA versions have been tested. Speci�cally, we
designed three VHA versions with decreasing bottleneck
sizes. Each version has been trained on JTA �rst and then
�netuned on CMU Panoptic and Human3.6m. VHA's ar-
chitecture details are depicted in Tab. 1 for every version.

As shown in Tab. 2, as the bottleneck size decreases,
there is a corresponding decrease in the F1-score. Intu-
itively, the more we compress, the less information is being
preserved. VHA(1) is only considered when using JTA, as
VHA (2) and VHA(3) already obtain an almost lossless com-
pression on Panoptic and Human3.6m, due to their smaller
number of people in the scene.

All the experiments has been conducted considering a 14
joints volumetric heatmap representation of shape14� D �
H 0� W 0, whereH 0andW 0are height and width downsam-
pled by a factor of 8, whileD has been �xed to 316 bins.
Note that the real-world depth grid covered by our repre-
sentation is a uniform discretization in[0; 100]m for JTA,
[0; 7]m for Panoptic and[1:8; 8:1]m for Human3.6m. Thus,
every bin has a depth size of approximately0:32m for JTA
and0:02m for Panoptic and Human3.6m.

4.2. HPE Experiments on JTA Dataset

On the JTA dataset we compared LoCO against the Loca-
tion Maps based approaches of [21, 22]. Currently the Lo-
cation Maps representation is the most relevant alternative
to volumetric heatmaps to approach the 3D HPE task in a
bottom-up fashion and therefore represents our main com-
petitor.

A Location Maps is a per-joint feature channel that stores
the 3D coordinate x, y, or z at the joint 2D pixel location.
For each joint there are three location-maps and the 2D
heatmap. The 2D heatmap encodes the pixel location of
the joint as a con�dence map in the image plane. The 3D
position of a joint can then be obtained from its Location
Map at the 2D pixel location of the joint. For a fair compar-
ison, we utilized the same network (Inception v3 +f -c2d) to
directly predict the Location Maps. The very low F1 score
demonstrate that Location Maps are not suitable for images
with multiple overlapping people, not being able to effec-
tively handle the challenging situations peculiar of crowded
surveillance scenarios (see Tab. 3).

Additionally, we report a comparison with a strong top-
down baseline that uses YOLOv3 [33] for the people detec-
tion part and [19] as the single-person pose estimator. [19],
like almost all single person methods, provides root-relative
joint coordinates and not the absolute 3D position. We thus
performed the 3D alignment according to [37] by minimiz-
ing the distance between 2D pose and re projected 3D pose.
We outperform this top-down pipeline by a large margin in
terms of F1-score, while being signi�cantly faster; LoCO is
able to process Full HD images with more than 50 people at
8 FPS on a Tesla V100 GPU, while the top-down baseline
runs at an average of 0.5 FPS (16 times slower). The re-




