Endocrine Abstracts

Volume 63
May 2019

21st European Congress of Endocrinology
18–21 May 2019, Lyon, France

EDITORS
The abstracts were marked by the Abstract marking Panel selected by the Programme Organising Committee

Programme Organising Committee
Marta Kerbouit (UK)
ESE Scientific Programme Chair
Manuel Tena-Sempere (Spain)
Base Science Joint Chair
Sebastian Negrer (The Netherlands)
Clinical Science Joint Chair
Francoise Bormann-Chauvin (France)
Local Organising Committee Chair
Agnieszka Poludniowska-Witkowska (Poland)
Anton Luger (Austria)

EX officio members
Al van der Lely (The Netherlands) ESE President
Bulent Yilmaz (Turkey) ESE Treasurer
Johannes Kommines (The Chair) ESE European Journal of Endocrinology

Local Organising Committee
Francoise Bormann-Chauvin (France) Chair
Antoine Tahhan (Bordeaux)
Bertrand Caruso (Nantes)
Bruno Vergis (Dijon)

Abstract Marking Panel

C Acrani (UK)
M Coben-Solano (France)
R Gramatikov (Italy)
M Kreos (Germany)
C Ollere (Norway)
S Schmid (Germany)

M Alaviak (Greece)
D Cottia (France)
C Buhjell (Denmark)
N Kreos (UK)
P Oliveira (Portugal)
J Schoelpe (Germany)

W All (UK)
D Cuthbertson (UK)
D Cuzzari (Italy)
A Gauron (UK)
U Paquet (Italy)
M Sherlock (Ireland)

G Ano (France)
S Dahlqvist (Sweden)
C Daszak (UK)
A Germain (UK)
S Pearce (UK)
M Simon (Italy)

S Arabo (France)
D Dahlbom (Sweden)
P DeClerck (Belgium)
A Heck (Norway)
K Perrier (Denmark)
A Pinho (Italy)

B Badon (Germany)
M Dattani (Italy)
P Deelder (Netherlands)
A Holstein (Germany)
V Persson (Sweden)
E Pye (Italy)

A Bari (Poland)
G Demetis (Italy)
P De Greve (Belgium)
A Hubbe (Belgium)
M Sekoglu (Turkey)
A Pyras (Greece)

N Broman (Netherlands)
M Diacos (Italy)
W Dehoender (Netherlands)
I Huhu (Denmark)
M Segovia (Spain)
M Philippe (France)

W Bak (Poland)
M Donato (Switzerland)
P De Vos (Belgium)
D Hugon (France)
M Shefki (Spain)
M Pigeau (France)

E Bent (France)
D Droen (Canada)
R Dubois (Belgium)
E Ihrl (Germany)
N Skov (Denmark)
E Pira (Italy)

K Berke (UK)
J Dukins (Greece)
R Eshofen (Germany)
P Iorino (Italy)
A Skrj (Sweden)
M Piaggio (Italy)

J Berson (Norway)
A Dyewey (Greece)
G Eschenbacher (Germany)
P Ivanov (Italy)
P Kooijman (Netherlands)
E Piazza (Sweden)

P Bent (Belgium)
D Dykstra (Brazil)
K Ehrlich (UK)
E Jacob (UK)
A Knips (Germany)
E Pigeaux (France)

M Brandi (Italy)
J Dzifa (Greece)
B Ebbenhoer (Germany)
E Janssens (Sweden)
A Kutsugudin (Belgium)
E Pignatelli (Italy)

C Brison (France)
M Forona (Germany)
R Evers (The Netherlands)
G Javasso-Benedetti (Italy)
S Karpinski (Belgium)
E Pignatelli (Italy)

J Bruneau (France)
M Fuch (Italy)
F Feders (The Netherlands)
S Karbownik (Poland)
A Klaasen (Netherlands)
E Pignatelli (Italy)

G Brunetti (Italy)
J Fekete (Hungary)
E Feuer (Belgium)
J Jorgensen (Denmark)
E Kair (Netherlands)
E Pignatelli (Italy)

M Buchanan (UK)
M Fossati (Belgium)
R Feuer (Belgium)
G Johanneson (Sweden)
S Karger (UK)
E Pinardi (Netherlands)

M Buchfelder (Germany)
H Foll (Italy)
A Feuchtinger (UK)
G Johanssen (Denmark)
A Jorgensen (Denmark)
E Pinardi (Netherlands)

P Burman (Sweden)
J Follman (Sweden)
R Fodor (UK)
J Johansen (Denmark)
E Kanner (USA)
E Pinardi (Netherlands)

H Bus (Hungary)
R Forsdik (UK)
F Forsdik (UK)
D Kjaer (Denmark)
E Kasha (Netherlands)
E Pinardi (Netherlands)

S Camardo (Italy)
S Fornes (UK)
I Gatt (Belgium)
S Kohnen (Germany)
G Kolb (Greece)
E Pinardi (Netherlands)

J Cap (Czech Republic)
W Fraser (UK)
F Fuganti (Italy)
S Karatza (UK)
L Kallert (Greece)
S Pinardi (Netherlands)

M Caproni (Italy)
M Friedel (Germany)
K Gaffner (Belgium)
A Karlsson (Sweden)
E Kail (Australia)
E Pinardi (Netherlands)

M Castaneda-Sanchez (Spain)
M Frohlich (Germany)
S Gabriel (Belgium)
D Kastelan (Croatia)
M Kall (Belgium)
E Pinardi (Netherlands)

F Castaño (Spain)
K Gehrke (Germany)
F Gabler (Belgium)
L Kastelan (Croatia)
M Kali (USA)
L Post (Australia)

M Castaño (Spain)
L Gellman (Germany)
S Gabler (Belgium)
J Kaliber (Belgium)
L Morton-Pinzaan (UK)
G Pinardi (The Netherlands)

H Chelstek-Tammelinn (Finland)
K Gervitz (UK)
S Gabler (Belgium)
M Kastelan (Croatia)
M Kall (USA)
E Pinardi (Netherlands)

O Chabot (France)
G Geyer (Germany)
J Gavini (Belgium)
S Kemeny (Belgium)
M Kall (USA)
E Pinardi (Netherlands)

P Chasson (France)
B Ghebrehiwot (Greece)
A P Giannoudaki-Roques (France)
K Kaljurand (Netherlands)
E Knappe (UK)
E Pinardi (Netherlands)

K Chatwy (UK)
A Giustina (Italy)
F Giorgio (Italy)
S Knobloch (UK)
M Klotho (Belgium)
E Pinardi (Netherlands)

F Civitelli (Italy)
J Gomez-Ambroz (Spain)
I Gouk (Brazil)
B Kost-Kleidis (Greece)
C G Kraus (Italy)
E Pinardi (Netherlands)

J Chowen (Spain)
S Goulis (Greece)
T Gouj)anic (Serbia)
J Kopchuk (Belgium)
M Kuzins (Poland)
E Pinardi (Netherlands)

S Chiarchi (France)
D Goulis (Greece)
E Gomez-Ambrosi (Spain)
J Kopchuk (Belgium)
M Kuzins (Poland)
E Pinardi (Netherlands)

J Cohen (France)
R Gramatikov (Italy)
M Giachello (Italy)
B Kowalski (UK)
C D Kuiper (The Netherlands)
E Pinardi (Netherlands)

M Cohen-Solano (France)
A Ginzburg (UK)
B Kos (Poland)
E Kuiper (The Netherlands)
M Kuiper (The Netherlands)
E Pinardi (Netherlands)

M Cohen-Solano (France)
A Ginzburg (UK)
B Kos (Poland)
E Kuiper (The Netherlands)
M Kuiper (The Netherlands)
E Pinardi (Netherlands)

Martine Cohen-Solano (France)
Rachel Desfroix (France)
Robbi Poertner (The Netherlands)
Sandra Pekel (Serbia)
Silja Sancuk (Turkey)
Elena Kauer (USA)
Uberto Pagotto (Italy)
Vera Poppo-Bizic (Serbia)
Vincent Prevot (France)

Matthijs Thoofoellius (Germany)
Menahem Tuvia (Israel)
Mohammed Tanaka (Sweden)
Marta Wojcik (Poland)
Riccarda Granata (Italy)
ES Congress Committee Chair

corresponding author

Chair

Joint Chair

Joint Chair

Joint Chair

Chair
The ESE would like to thank its Corporate Members and the ECE 2019 sponsors.

ECE Corporate Members
Premium Corporate Members
Ipsen
Pfizer
Takeda

Corporate Members
Aegerion
Advanced Accelerator Applications
Laboratoire HRA Pharma
Merck Serono
Novo Nordisk
Otsuka Pharmaceuticals Europe
Sandoz International GmbH
Siemens-Healthineers
Strongbridge Biopharma
Uni-Pharma

Supporter
Chiasma

Gold Sponsors
Ipsen
Takeda
Pfizer

Bronze Sponsors
Merck
Advanced Accelerator Applications

ESE Office
Starling House
1600 Bristol Parkway North
Bristol BS34 8YU, UK
Tel: +44 (0)1454 642247
Fax: +44 (0)1454 642222
E-mail: info@euro-endo.org
Web site: www.ese-hormones.org

ECE 2019 Congress Team
Bioscientifica Ltd
Starling House
1600 Bristol Parkway North
Bristol BS34 8YU, UK
Tel: +44 (0)1454 642240
E-mail: ece2019@endocrinology.org
Website: www.ece2019.org
CONTENTS

21st European Congress of Endocrinology 2019

PRIZE LECTURES AND BIOGRAPHICAL NOTES

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The European Journal of Endocrinology Prize Lecture</td>
<td>EJE1</td>
</tr>
<tr>
<td>The Geoffrey Harris Prize Lecture</td>
<td>GH1</td>
</tr>
<tr>
<td>European Hormone Medal Lecture</td>
<td>EHM1</td>
</tr>
<tr>
<td>Clinical Endocrinology Trust Lecture</td>
<td>CET1</td>
</tr>
</tbody>
</table>

PLENARY LECTURES

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designing Cities and Homes as Exercise Machines: Helping endocrinologists to fight metabolic disease</td>
<td>PL1</td>
</tr>
<tr>
<td>Genetic epidemiology of puberty timing and reproductive lifespan (Endorsed by the European Journal of Endocrinology)</td>
<td>PL2</td>
</tr>
<tr>
<td>Pancreatic beta-cell ageing: Novel mechanisms and consequences in the management of diabetes</td>
<td>PL3</td>
</tr>
<tr>
<td>Exercise Training in the Management of Type 2 Diabetes</td>
<td>PL4</td>
</tr>
<tr>
<td>Paracrine regulation of the adrenal cortex</td>
<td>PL5</td>
</tr>
<tr>
<td>Graves orbitopathy</td>
<td>PL6</td>
</tr>
<tr>
<td>Control of Integrative Physiology by the Melanocortin Circuitry</td>
<td>PL7</td>
</tr>
</tbody>
</table>

SYMPOSIA

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid in cancer</td>
<td>S1.1–S1.3</td>
</tr>
<tr>
<td>Trends in puberty</td>
<td>S2.1–S2.3</td>
</tr>
<tr>
<td>Circadian clocks: from pathophysiology to chronomedicine</td>
<td>S3.1–S3.3</td>
</tr>
<tr>
<td>Immunology and endocrinology (Endorsed by Endocrine Connections)</td>
<td>S4.1–S4.3</td>
</tr>
<tr>
<td>Microbiota as new treatment for diabetes and metabolic disease</td>
<td>S5.1–S5.3</td>
</tr>
<tr>
<td>A better life with thyroid hormone (Endorsed by the European Journal of Endocrinology)</td>
<td>S6.1–S6.3</td>
</tr>
<tr>
<td>Endocrine disrupting chemicals (Endorsed by Endocrine Connections)</td>
<td>S7.1–S7.3</td>
</tr>
<tr>
<td>Gender dysphoria delayed puberty</td>
<td>S8.1–S8.3</td>
</tr>
<tr>
<td>Controversies in adrenal disease</td>
<td>S9.1–S9.3</td>
</tr>
<tr>
<td>Cancer drug-induced osteoporosis (Endorsed by Endocrine Connections)</td>
<td>S10.1–S10.3</td>
</tr>
<tr>
<td>EDCs & reproduction</td>
<td>S11.1–S11.3</td>
</tr>
<tr>
<td>Craniopharyngioma: a challenging tumour to treat and a difficult aftermath</td>
<td>S12.1–S12.3</td>
</tr>
<tr>
<td>Central control of metabolism: Brain rules all</td>
<td>S13.1–S13.3</td>
</tr>
<tr>
<td>Innovations in NETs</td>
<td>S14.1–S14.3</td>
</tr>
<tr>
<td>European Young Endocrine Scientists (EYES)</td>
<td>S15.1–S15.6</td>
</tr>
<tr>
<td>Thyroid in pregnancy</td>
<td>S16.1–S16.3</td>
</tr>
<tr>
<td>Where do pituitary tumours come from?</td>
<td>S17.1–S17.3</td>
</tr>
<tr>
<td>Congenital hypogonadotropic hypogonadism: New insights into GnRH Regulation</td>
<td>S18.1–S18.3</td>
</tr>
<tr>
<td>Adrenal insufficiency</td>
<td>S19.1–S19.3</td>
</tr>
<tr>
<td>News on nutrition: when to eat what</td>
<td>S20.1–S20.3</td>
</tr>
<tr>
<td>Rare bone disorders</td>
<td>S21.1–S21.3</td>
</tr>
<tr>
<td>The pituitary as metabolic sensor (Endorsed by Endocrine Connections)</td>
<td>S22.1–S22.3</td>
</tr>
<tr>
<td>PCOS: can we personalise treatment?</td>
<td>S23.1–S23.3</td>
</tr>
<tr>
<td>What’s new in the Adrenal Cortex? (Endorsed by the European Journal of Endocrinology)</td>
<td>S24.1–S24.3</td>
</tr>
<tr>
<td>Late Breaking Session</td>
<td>S25.1–S25.3</td>
</tr>
<tr>
<td>Impact of thyroid disease on...</td>
<td>S26.1–S26.3</td>
</tr>
<tr>
<td>What’s new in reproductive endocrinology?</td>
<td>S27.1–S27.3</td>
</tr>
<tr>
<td>Vitamin D - non-skeletal effects in RCT</td>
<td>S28.1–S28.3</td>
</tr>
<tr>
<td>Endocrine controversies in sport</td>
<td>S29.1–S29.3</td>
</tr>
<tr>
<td>Personalised medicine in diabetes and obesity (Endorsed by the European Journal of Endocrinology)</td>
<td>S30.1–S30.3</td>
</tr>
<tr>
<td>Special Symposium: ESE, the International Society of Endocrinology and</td>
<td></td>
</tr>
<tr>
<td>the Endocrine Society Joint Session - Endocrinology of Aging</td>
<td>SS1.1–SS1.3</td>
</tr>
</tbody>
</table>
NEW SCIENTIFIC APPROACHES

DEBATES
- Food addiction in humans: to be or not to be?
 D1.1–D1.2
- Surgical treatment of phaeochromocytoma - query pre-treatment
 D2.1–D2.2
- T4 is not enough
 D3.1–D3.2
- Pituitary pathology: Do we care?
 D4.1–D4.2
- MicroRNAs as hormones?
 D5.1–D5.2
- Should we treat young osteoporotic patients?
 D6.1–D6.2

MEET THE EXPERT SESSION

MTE1–MTE16

MEET THE BASIC SCIENTIST SESSION

MTBS1–MTBS3

NURSE SESSION

NS1.1–NS1.3

UEMS SESSION

UEMS1.1–UEMS1.3

ORAL COMMUNICATIONS

Calcium and Bone
OC1.1–OC1.5

Diabetes 1
OC2.1–OC2.5

Cushing’s and acromegaly
OC3.1–OC3.5

Thyroid 1
OC4.1–OC4.5

Adrenal 1
OC5.1–OC5.5

Obesity
OC6.1–OC6.5

Endocrine Connections 1
OC7.1–OC7.5

Reproduction 1
OC8.1–OC8.5

Thyroid 2
OC9.1–OC9.5

Adrenal 2
OC10.1–OC10.5

Diabetes 2
OC11.1–OC11.5

Endocrine Connections 2
OC12.1–OC12.5

Anterior and Posterior pituitary 2
OC13.1–OC13.5

Sex Hormones
OC14.1–OC14.5

GUIDED POSTERS

Adrenal and Neuroendocrine - Tumour
GP1–GP14

Calcium and Bone 1
GP15–GP25

Diabetes and Cardiovascular Disease
GP26–GP36

Metabolic Syndrome and Hypoglycaemia
GP37–GP47

Acromegaly and GH
GP48–GP60

Reproductive Axis
GP61–GP69

Thyroid Autoimmune Disorders
GP70–GP81

Thyroid Nodules and Cancer
GP82–GP93

Adrenal and Neuroendocrine - Basic
GP94–GP106

Calcium and Bone 2
GP108–GP118

Diabetes: Late Complications
GP119–GP129

Obesity
GP130–GP141

Interdisciplinary Endocrinology 1
GP142–GP152

Cushing’s
GP153–GP164

Obesity
GP165–GP175

Benign Thyroid Disorders
GP176–GP186

Adrenal and Neuroendocrine - Clinical
GP187–GP199
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes: Pharmacotherapy</td>
<td>GP200–GP211</td>
</tr>
<tr>
<td>Gestational and Type 1 Diabetes</td>
<td>GP272–GP222</td>
</tr>
<tr>
<td>Adrenal and Neuroendocrine - Clinical</td>
<td>GP223–GP232</td>
</tr>
<tr>
<td>Anterior and Posterior Pituitary</td>
<td>GP233–GP244</td>
</tr>
<tr>
<td>Disturbances of Reproduction</td>
<td>GP245–GP253</td>
</tr>
<tr>
<td>Thyroid Nodules and Cancer 2</td>
<td>GP254–GP264</td>
</tr>
</tbody>
</table>

POSTER PRESENTATIONS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal and Neuroendocrine Tumours 1</td>
<td>P1–P60</td>
</tr>
<tr>
<td>Calcium and Bone 1</td>
<td>P61–P120</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism 1</td>
<td>P121–P224</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology 1</td>
<td>P225–P296</td>
</tr>
<tr>
<td>Reproductive Endocrinology 1</td>
<td>P297–P336</td>
</tr>
<tr>
<td>Thyroid 1</td>
<td>P337–P406</td>
</tr>
<tr>
<td>Adrenal and Neuroendocrine Tumours 2</td>
<td>P407–P466</td>
</tr>
<tr>
<td>Calcium and Bone 2</td>
<td>P467–P525</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism 2</td>
<td>P526–P625</td>
</tr>
<tr>
<td>Interdisciplinary Endocrinology 1</td>
<td>P626–P671</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology 2</td>
<td>P672–P741</td>
</tr>
<tr>
<td>Thyroid 2</td>
<td>P742–P811</td>
</tr>
<tr>
<td>Adrenal and Neuroendocrine Tumours 3</td>
<td>P812–P881</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism 3</td>
<td>P882–P992</td>
</tr>
<tr>
<td>Environment, Society and Governance</td>
<td>P994–P1008</td>
</tr>
<tr>
<td>Interdisciplinary Endocrinology 2</td>
<td>P1009–P1045</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology 3</td>
<td>P1046–P1118</td>
</tr>
<tr>
<td>Reproductive Endocrinology 2</td>
<td>P1119–P1157</td>
</tr>
<tr>
<td>Thyroid 3</td>
<td>P1158–P1231</td>
</tr>
</tbody>
</table>

ePOSTER PRESENTATIONS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal and Neuroendocrine Tumours</td>
<td>EP1–EP23</td>
</tr>
<tr>
<td>Calcium and Bone</td>
<td>EP24–EP30</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism</td>
<td>EP31–EP72</td>
</tr>
<tr>
<td>Interdisciplinary endocrinology</td>
<td>EP73–EP84</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology</td>
<td>EP85–EP121</td>
</tr>
<tr>
<td>Reproductive Endocrinology</td>
<td>EP122–EP135</td>
</tr>
<tr>
<td>Thyroid</td>
<td>EP136–EP158</td>
</tr>
</tbody>
</table>

INDEX OF AUTHORS
Poster Presentations
P320
Gonadal Function in Human Immunodeficiency Virus (HIV)-Infected Men: comparison between Isotopic Dilution-Liquid Chromatography-Tandem Mass Spectrometry (ID-LC-MS/MS) and Chemiluminescent Immunoassay (CI).

Sara De Vincentis1,2, Maria Chiara Decaroli1,2, Flaminia Fanelli3, Marco Mezzullo1, Chiara Dizaji2, Fabio Morina1, Davide Bertani1, Daniele Santi1,2, Enrica Baraldi1, Simonetta Tagliavini1, Laura Rolì4, Tommaso Trenti1, Uberto Pagotto1, Giovanni Guaraldi2 & Vincenzo Rochira4

1Unit of Endocrinology, Department of Biomedical, Metabolical and Neurological Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy; 3Endocrinology Unit and Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences, University of Bologna – S. Orsola-Malpighi Hospital, Bologna, Italy; 4Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy; 5Multidisciplinary Metabolic Clinic, Unit of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy.

Background
HIV-infection is associated to premature decline of serum T. However, prevalence and biochemical characterization of hypogonadism in HIV-infected men are still to be well defined.

Aim
To evaluate the gonadal status in HIV-infected men by assessing circulating total T (TT) with either ID-LC-MS/MS or CI.

Methods
Prospective, cross-sectional, observational study on HIV-infected men with ongoing Highly Active Antiretroviral Therapy (HAART). Serum TT, gonadotropins and sex hormone-binding globulin (SHBG) were measured by CI (Architect, Abbott, USA). TT was also assessed by a validated in house ID-LC-MS/MS. Free T (FT) was calculated by Vermeulen equation. Hypogonadism was defined as serum TT levels below 320 ng/dl and/or free T levels below 4.3 pmol/l in women and 6.2 pmol/l in men > 50 years old (n=33); < 6.2 pmol/l in women < 50 years old (n=34) and < 4.3 pmol/l in women > 50 years old (n=23).

Results
315 consecutive HIV-infected men were enrolled (mean age 45.56 ± 6.16 years; average duration of HIV-infection 16.57 ± 10.45 years). Serum TT levels assessed by LC-MS/MS (mean 652.1 ± 229.1 ng/dl) were significantly lower compared to CI (mean 740.2 ± 274.7 ng/dl) (P < 0.0001). As a consequence, prevalence of T deficiency was significantly higher comparing LC-MS/MS to CI (5.4% vs 3.2%, P < 0.0001). FT assessed by LC-MS/MS was significantly lower compared to CI (Beta = 0.956, R² = 0.913, P < 0.0001), as well as FT (Beta = 0.934, R² = 0.873, P < 0.0001). TT combined with luteinizing hormone (LH) levels was used to classify hypogonadism. By including compensated form of hypogonadism, the prevalence raised to 15.6% for TT and to 17% for FT.

Conclusions
To the best of our knowledge, this is the first properly-designed prospective study aiming to investigate the gonadal status of HIV-infected men with both LC-MS/MS and CI, together with gonadotropins. Notwithstanding the strong correlation found between the two methodologies, the prevalence of hypogonadism results underestimated when CI is used compared to ID-LC-MS/MS in HIV-infected patients. In clinical practice, SHBG for calculated FT is essential for the detection of T deficiency, revealing the real prevalence of hypogonadism in this clinical setting.

DOI: 10.1530/endoabs.63.P320

P321
Automated free testosterone assay: validation and usual values
Fideline Bonnet-Serrano1,2, Amina Bouzerara1, Theo Roussel1, Marie-Claude Menet1,2 & Jean Guibourdenche1,2

1Hormonology Department, Cochin Hospital, Paris, France; 2INSERM U1109, CNRS UMR1604, Unité Paris Descartes, Cochin Institute, Paris, France; 3INSERM UMR S1144, Université Paris Descartes, Paris, France; 4INSERM U1139, Université Paris Descartes, Paris, France.

Introduction
Testosterone circulates under different forms in blood, mainly bound to proteins i.e. Sex Hormone Binding Globulin (SHBG) and albumin. Free testosterone (FT), the biologically active form, represents 2% of total testosterone (TT). FT measurement is mainly indicated when TT level is discordant with clinical picture but remains technically challenging. Indeed, as for all free hormones, gold standard method relies on equilibrium dialysis, unusable in routine. Direct immunoassays by competition have thus been designed, traditionally based on sensible radioactive detection signal (RIA). FT can also be calculated from TT, SHBG and albumin levels. Our work aimed to compare a new automated immunoassay to preexisting dosages and to propose adapted usual values.

Materials and methods
Analytical performances of this new FT assay were evaluated. FT was therefore determined in 164 patients (68 women, 96 men) using the new immunoassay (IS-5300, IDS-iSYS Free Testosterone), a RIA immunoassay (KIPv0000, DIAsource), and a calculation based on TT (RIA TESTO-CT2, Cisbio), SHBG, and albumin (Cobas ROCHE) concentrations. Usual values for the new dosage were established.

Results
Analytical performances of the new assay claimed by the manufacturer were confirmed and comparable with those of the RIA assay except for a higher detection limit. Correlation between immunoassays was satisfactory in men (R² = 0.77) but weaker in women (R² = 0.15 and 0.13). Calculated FT was much higher than measured FT, as the corresponding reference values proposed by the manufacturers. This discrepancy was confirmed by the analysis of external quality controls results whatever the direct immunoassays were used.

Discussion
This work aimed to compare a new automated immunoassay to preexisting dosages and to propose adapted usual values.

DOI: 10.1530/endoabs.63.P321

P322
Assessment of biochemical hyperandrogenism in PCOs by liquid chromatography tandem mass spectrometry using a multistroid kit: focus on testosterone and androstenedione
Giorgia Grassi1, Valentina Morelli1, Elisia Polledri1, Silvia Fustinoni1,3, Iacopo Chiudini1,4, Ferruccio Cerrotti1, Simona D’Agostino3, Francesca Filippis3, Edgardo Somigliana1, Giovanna Mantovani1,3 & Maura Arosio1,2

1Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 2Laboratory of Toxicology Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 3Department of Clinical Sciences and Community Health University of Milan, Milan, Italy; 4Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research IRCCS Istituto Auxologico Italiano, Milan, Italy; 5Clinical Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 6Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy.

Objective
The identification of hyperandrogenism represents the cornerstone for the assessment of polycystic ovary syndrome (PCOs). However, its definition has always been troubling, mostly because of the poor accuracy shown by routine
Author Index

Åkermann, A-K P431
Aancute, A GP116
Aas, FE GP181
Abad, M P850
Abad, RSDc EP39
Abaimou, L P246
Abbas, A P517 & P518
Abd-Elraoof, M P768
Abd-EIstar, M P138
Abd-Elraoof, M P202 & P385
Abd-Elraoof, M P768
Abdelmonem, H P61
Abdussalam, H P120 & P425
Abdelkari, AB P52 & P385
Abdelkari, M P1086, P702 & P827
Abdelkafi, M P153, P1164, P1188, P395 & P787
Abdellaoui, W EP134 & P683
Abdellah, S EP134 & P683
Abdelmalek, H P61
Abdelmalek, H P1017
Abdulla, H P124 & P340
Abdulladjanova, N GP206
Abduvakhabova, M P238
Abduvaliev, A GP116 & P385
Abe, H EP17 & P248
Abeillon, J GP238
Abeillos, J GP238
Abe, H EP17 & P248
Abdulghalim, B GP149
Abdelmajid, B GP149
Abdelmajid, B GP149 & P351
Abdelhak, S EP80 & P88
Abdelkader, M P202, P385 & P88
Abdelkarim, B GP138 & P385
Abdelkarim, M P1086, P702 & P827
Abdelkafi, M P153, P1164, P1188, P395 & P787
Abdellah, W EP134 & P683
Abdelmonem, H P61
Abderrahmane, S EP50
Abdellaoui, M P1158 & P1175
Abdelmonem, H P61
Abdou, M P1072 & P1086
Abdulladjanova, N GP206
Abduvakhabova, M P238
Abduvaliev, A GP116 & P385
Abe, H EP17, P31, P387 & P92
Abed, YHE P822, P886 & P891
Abell, E GP238
ABELD, ED S30.1 & P159
Abeigita, BU P347
Abir, T EP107, P289 & P290
Abijanda, EP P1116
Abijanda, JEP P869
Aboromia, M GP131, P122 & P61
Abou Joude, M P211
Abraham, A GP123
Abrahamsen, B OC14.4
Abreu, AP GP62
Abridat, T OC6.1 & P15
Abrosoin, A EP143 & P15
Abucham, J MTE16
Abud, M EP20
Acacrinei, E P13
Accardo, G P319
Acerini, G GP197
Ach, K P1072, P1086, P1137, P702, P778, P779, P827 & P879
Acha Pérez, J P959
Acigoz, A GP248
Acitores, A P225
Ackermann, D GP570
Acuña García, M P243
Adachi, H P205
Adamcova, K P316
Adamcova, K P1142
Adamidou, F P1158, P1163, P357, P467, P523, P851 & P889
Adamsbaum, C OC7.3
Adamska, P P1159
Adana, MRD P184
Ader, M GP120 & P425
Adler-Cohen, C P750
Adorni, M GP69
Aers, X OC14.2
Afanasayev, D P104, P210, P389 & P540
Afentoulidis, A P366, P367 & P401
Ahshen, K EP3, P1160, P456 & P892
Agachi, I P420
Agapito, A EP101 & P716
Agarwal, A EP158
Agea, L P1134
Aggarwal, A P489
Aggelis, G GP9, P20 & P877
Agha, A P535, P696 & P789
Aghayan, M P653
Aghayi, H P1215
Aghiliemandi, S P1103
Agius, R EP129
Agoulunik, A GP223
Agoulunik, I GP223
Agredos, AG-MV P1061
Agrogannis, G OC2.4
Aguayo, FJ P386
Aguilar, M GP156 & P167
Aguirre, N P1106
Aguirre, M P372
Ahlawatia, R OC3.2
Ahmad, F P124
Ahmad, T P413
Ahmadova, K P454
Ahmed Koceir, E P559
Ahmed, F GP197
Ahmed, R EP112
Ahn, C P127
Ahn, CW GP28, GP85 & P583
Ahn, JH P533
Ahn, KJ P536
Ahn, SY P90
Aillaoud, S P1148
Aim, LB OC5.1
Ainhoa, I OC9.1
Aja-Curbelo, VSD EP41
Ajenberg, C OC5.1
Akalin, A P857
Akalin, A P482
Akay, OM P482
Akbıyık, F P1024
Akdemir, AY P816
Akdien, Y P352
Akdien, YS P28
Akhrarova, N P572
Akirov, A GP119
Akkalp, AK P817
Akkan, K P454
Akkan, T P114, P496 & P773
Akkari, I EP73, P636, P650 & P883
Akloul, L GP61
Akrar, M EP3, P1160, P456 & P892
Aktas, A GP88 & P807
Akulejvic, N P1032
Al Ghuzlan, A GP33
Al Salam, RA P300 & P341
Al Sebaei, H P473
Al-Tawil, D P980
Alagüen, E P482
Alam, SMK P136
Alaminos, MEL GP183, P1122, P1225, P1227 & P1229
Albani, A GP156
Albarell, F P288
Albert, L P39, P527 & P810
Albissiini, S P812
Alboim, S GP8
Albu, A EP76, P1169, P1186, P304 & P479
Albu, D P1169
Albuerque, I P906 & P910
Albuerque, L P1093, P1113 & P1118
Alcántara-Laguna, M-D P534, P576 & P581
Alcántara-Laguna, MD P287
Alcázar, V P746
Alcaín-Martínez, G P609
Alcobas, N P384
Aldama, P P44 & P443
Alday, IH P1216 & P946
Aldiss, P S15.1
Alduk, A-M P824
Aleo, AM P131 & P132
Alejnait, A P1190
Aleksandra Kravos, N GP247
Alemań, GB P529
Aleric, I P447
Alevizakis, M GP86 & GP90
Alexander Wudy, S GP96
Alexander, P P143, P145, P153 & P154
Alexandra Hanzu, F P1107
Alexandra, API P835
Alexandraki, K P383 & P385
Alexandraki, K P833, P873 & P877
Alexandre, M P699
Alexandre, P P699
Alexandrescu, D P1065
Alexiev, A P1012
Alfano, S GP52, GP60, GP96 & P399
Alfaqih, M P128
Alfayate, R GP168 & GP233
Alfi, G P735
Alfonso, AP GP233
Alfonso, FP GP122, GP209 & P1061
Alhambra-Expósito, M-R P581
Alhambra-Expósito, MR GP207 & P651
Ali, H EP95

Endocrine Abstracts (2019) Vol 63