The abstracts were marked by the Abstract marking Panel selected by the Programme Organising Committee.
The ESE would like to thank its Corporate Members and the ECE 2019 sponsors

ECE Corporate Members
- Ipsen
- Pfizer
- Takeda

Premium Corporate Members
- Ipsen
- Pfizer
- Takeda

Corporate Members
- Aegerion
- Advanced Accelerator Applications
- Laboratoire HRA Pharma
- Merck Serono
- Novo Nordisk
- Otsuka Pharmaceuticals Europe
- Sandoz International GmbH
- Siemens-Healthineers
- Strongbridge Biopharma
- Uni-Pharma

Supporter
- Chiasma

Gold Sponsors
- Ipsen
- Takeda
- Pfizer

Bronze Sponsors
- Merck
- Advanced Accelerator Applications

ECE 2019 Congress Team
- **Bioscientifica Ltd**
 - Starling House
 - 1600 Bristol Parkway North
 - Bristol BS34 8YU, UK
 - Tel: +44 (0)1454 642240
 - E-mail: ece2019@endocrinology.org
 - Website: www.ece2019.org

ESE Office
- **Starling House**
 - 1600 Bristol Parkway North
 - Bristol BS34 8YU, UK
 - Tel: +44 (0)1454 642247
 - Fax: +44 (0)1454 642222
 - E-mail: info@euro-endo.org
 - Website: www.ese-hormones.org
CONTENTS

21st European Congress of Endocrinology 2019

PRIZE LECTURES AND BIOGRAPHICAL NOTES
The European Journal of Endocrinology Prize Lecture ... EJE1
The Geoffrey Harris Prize Lecture .. GH1
European Hormone Medal Lecture .. EHM1
Clinical Endocrinology Trust Lecture ... CET1

PLENARY LECTURES
Designing Cities and Homes as Exercise Machines: Helping endocrinologists to fight metabolic disease PL1
Genetic epidemiology of puberty timing and reproductive lifespan (Endorsed by the European Journal of Endocrinology) . PL2
Pancreatic beta-cell ageing: Novel mechanisms and consequences in the management of diabetes PL3
Exercise Training in the Management of Type 2 Diabetes ... PL4
Paracrine regulation of the adrenal cortex ... PL5
Graves orbitopathy ... PL6
Control of Integrative Physiology by the Melanocortin Circuitry PL7

SYMPOSIA
Thyroid in cancer ... S1.1–S1.3
Trends in puberty ... S2.1–S2.3
Circadian clocks: from pathophysiology to chronomedicine S3.1–S3.3
Immunology and endocrinology (Endorsed by Endocrine Connections) S4.1–S4.3
Microbiota as new treatment for diabetes and metabolic disease S5.1–S5.3
A better life with thyroid hormone (Endorsed by the European Journal of Endocrinology) S6.1–S6.3
Endocrine disrupting chemicals (Endorsed by Endocrine Connections) S7.1–S7.3
Genderdysphoria delayed puberty .. S8.1–S8.3
Controversies in adrenal disease ... S9.1–S9.3
Cancer drug-induced osteoporosis (Endorsed by Endocrine Connections) S10.1–S10.3
EDCs & reproduction ... S11.1–S11.3
Craniopharyngioma: a challenging tumour to treat and a difficult aftermath S12.1–S12.3
Central control of metabolism: Brain rules all ... S13.1–S13.3
Innovations in NETs ... S14.1–S14.3
European Young Endocrine Scientists (EYES) ... S15.1–S15.6
Thyroid in pregnancy ... S16.1–S16.3
Where do pituitary tumours come from? .. S17.1–S17.3
Congenital hypogonadotropic hypogonadism: New insights into GnRH Regulation S18.1–S18.3
Adrenal insufficiency ... S19.1–S19.3
News on nutrition: when to eat what ... S20.1–S20.3
Rare bone disorders ... S21.1–S21.3
The pituitary as metabolic sensor (Endorsed by Endocrine Connections) S22.1–S22.3
PCOS: can we personalise treatment? ... S23.1–S23.3
What’s new in the Adrenal Cortex? (Endorsed by the European Journal of Endocrinology) ... S24.1–S24.3
Late Breaking Session ... S25.1–S25.3
Impact of thyroid disease on... S26.1–S26.3
What’s new in reproductive endocrinology? ... S27.1–S27.3
Vitamin D - non-skeletal effects in RCT ... S28.1–S28.3
Endocrine controversies in sport .. S29.1–S29.3
Personalised medicine in diabetes and obesity (Endorsed by the European Journal of Endocrinology) S30.1–S30.3
Special Symposium: ESE, the International Society of Endocrinology and the Endocrine Society Joint Session - Endocrinology of Aging SS1.1–SS1.3
NEW SCIENTIFIC APPROACHES ... NSA1–NSA6

DEBATES
Food addiction in humans: to be or not to be? ... D1.1–D1.2
Surgical treatment of phaeochromocytoma - query pre-treatment D2.1–D2.2
T4 is not enough ... D3.1–D3.2
Pituitary pathology: Do we care? ... D4.1–D4.2
MicroRNAs as hormones? ... D5.1–D5.2
Should we treat young osteoporotic patients? ... D6.1–D6.2

MEET THE EXPERT SESSION ... MTE1–MTE16
... EYIJC1

MEET THE BASIC SCIENTIST SESSION ... MTBS1–MTBS3

NURSE SESSION ... NS1.1–NS1.3
... NPD1–NPD5
... MTNE1

UEMS SESSION .. UEMS1.1–UEMS1.3

ORAL COMMUNICATIONS
Calcium and Bone .. OC1.1–OC1.5
Diabetes 1 ... OC2.1–OC2.5
Cushing’s and acromegaly .. OC3.1–OC3.5
Thyroid 1 ... OC4.1–OC4.5
Adrenal 1 ... OC5.1–OC5.5
Obesity ... OC6.1–OC6.5
Endocrine Connections 1 .. OC7.1–OC7.5
Reproduction 1 .. OC8.1–OC8.5
Thyroid 2 ... OC9.1–OC9.5
Adrenal 2 ... OC10.1–OC10.5
Diabetes 2 ... OC11.1–OC11.5
Endocrine Connections 2 .. OC12.1–OC12.5
Anterior and Posterior pituitary 2 ... OC13.1–OC13.5
Sex Hormones .. OC14.1–OC14.5

GUIDED POSTERS
Adrenal and Neuroendocrine - Tumour ... GP1–GP14
Calcium and Bone 1 ... GP15–GP25
Diabetes and Cardiovascular Disease ... GP26–GP36
Metabolic Syndrome and Hypoglycaemia .. GP37–GP47
Acromegaly and GH .. GP48–GP60
Reproductive Axis .. GP61–GP69
Thyroid Autoimmune Disorders ... GP70–GP81
Thyroid Nodules and Cancer .. GP82–GP93
Adrenal and Neuroendocrine - Basic ... GP94–GP106
Calcium and Bone 2 .. GP108–GP118
Diabetes: Late Complications .. GP119–GP129
Obesity ... GP130–GP141
Interdisciplinary Endocrinology 1 .. GP142–GP152
Cushing’s ... GP153–GP164
Obesity ... GP165–GP175
Benign Thyroid Disorders .. GP176–GP186
Adrenal and Neuroendocrine - Clinical .. GP187–GP199
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes: Pharmacotherapy</td>
<td>GP200–GP211</td>
</tr>
<tr>
<td>Gestational and Type 1 Diabetes</td>
<td>GP272–GP222</td>
</tr>
<tr>
<td>Adrenal and Neuroendocrine - Clinical</td>
<td>GP223–GP232</td>
</tr>
<tr>
<td>Anterior and Posterior Pituitary</td>
<td>GP233–GP244</td>
</tr>
<tr>
<td>Disturbances of Reproduction</td>
<td>GP245–GP253</td>
</tr>
<tr>
<td>Thyroid Nodules and Cancer 2</td>
<td>GP254–GP264</td>
</tr>
</tbody>
</table>

POSTER PRESENTATIONS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal and Neuroendocrine Tumours 1</td>
<td>P1–P60</td>
</tr>
<tr>
<td>Calcium and Bone 1</td>
<td>P61–P120</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism 1</td>
<td>P121–P224</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology 1</td>
<td>P225–P296</td>
</tr>
<tr>
<td>Reproductive Endocrinology 1</td>
<td>P297–P336</td>
</tr>
<tr>
<td>Thyroid 1</td>
<td>P337–P406</td>
</tr>
<tr>
<td>Adrenal and Neuroendocrine Tumours 2</td>
<td>P407–P466</td>
</tr>
<tr>
<td>Calcium and Bone 2</td>
<td>P467–P525</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism 2</td>
<td>P526–P625</td>
</tr>
<tr>
<td>Interdisciplinary Endocrinology 1</td>
<td>P626–P671</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology 2</td>
<td>P672–P741</td>
</tr>
<tr>
<td>Thyroid 2</td>
<td>P742–P811</td>
</tr>
<tr>
<td>Adrenal and Neuroendocrine Tumours 3</td>
<td>P812–P881</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism 3</td>
<td>P882–P992</td>
</tr>
<tr>
<td>Environment, Society and Governance</td>
<td>P994–P1008</td>
</tr>
<tr>
<td>Interdisciplinary Endocrinology 2</td>
<td>P1009–P1045</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology 3</td>
<td>P1046–P1118</td>
</tr>
<tr>
<td>Reproductive Endocrinology 2</td>
<td>P1119–P1157</td>
</tr>
<tr>
<td>Thyroid 3</td>
<td>P1158–P1231</td>
</tr>
</tbody>
</table>

ePOSTER PRESENTATIONS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal and Neuroendocrine Tumours</td>
<td>EP1–EP23</td>
</tr>
<tr>
<td>Calcium and Bone</td>
<td>EP24–EP30</td>
</tr>
<tr>
<td>Diabetes, Obesity and Metabolism</td>
<td>EP31–EP72</td>
</tr>
<tr>
<td>Interdisciplinary endocrinology</td>
<td>EP73–EP84</td>
</tr>
<tr>
<td>Pituitary and Neuroendocrinology</td>
<td>EP85–EP121</td>
</tr>
<tr>
<td>Reproductive Endocrinology</td>
<td>EP122–EP135</td>
</tr>
<tr>
<td>Thyroid</td>
<td>EP136–EP158</td>
</tr>
</tbody>
</table>

INDEX OF AUTHORS
Poster Presentations
hormones. However, there were differences depending on vaginal versus planned cesarean section deliveries. In women carrying a male fetus we found significantly higher levels of 17-OH-pregnenedione, progesterone, cortisol, corticosterone and significantly lower levels of estradiol in those undergoing spontaneous vaginal delivery. However, we found no significant differences in the cord blood of newborn males from either delivery type. We established reference ranges for our analysis methods, which should be useful for further studies as well as in standard clinical practice.

Acknowledgments
The study was supported by the project MH CZ - DRO (Institute of Endocrinology - EU, 00023761), and by the grant MH CR 17-30528 A from the Czech Health Research Council.

DOI: 10.1530/endoabs.63.P316

P317
Characterization of the expression and physiological roles of thyroid-stimulating hormone receptor in the male testis
Hsun Wang & Ching-Wei Luo
Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.

Thyroid-stimulating hormone receptor (TSHR) is typically known to be expressed in the thyroid gland of mammals for the control of body metabolism. However, because the TSHR ancestor is the only glycoprotein hormone receptor found in invertebrates, we hypothesized that TSHR evolves much earlier than FSHR and LH-R and thus can be expressed in mammalian gonads for certain uncharacterized impacts. To prove this, real-time PCR quantification against Tshr in all male mouse reproductive organs was performed. The results indicated, that Tshr is mainly expressed in the testis where it is increased in an age-dependent manner. TSHR is located mainly in Sertoli cells and moderately in germ cells; such a profile was further confirmed using isolated primary mouse Sertoli cells. Gene regulatory test using the TM4 Sertoli cell line showed that Tshr expression can be increased via the cAMP cascade. In terms of the cognate ligands for TSHR, we demonstrated that the testicular TSHR is likely to be activated via an endocrine loop through the pituitary-secreted TSH since the negligible level of the genes encoding TSH or thyroidstimulin can be detected in male reproductive organs. Furthermore, using cultured testes tubules or explants, TSH treatment can not only promote the proliferation of germ cells *in vivo* but also increase the transcripts of Tgn, Tpo and Sertoli-Sertoli. Taken together, activation of the TSHR signalling in situ can influence spermatogenesis and may potentially regulate the amounts of thyroid hormones locally. Therefore, our findings overthrow the traditional concept regarding the physiological roles of TSHR and may open a new era of TSHR functions in the reproductive system.

DOI: 10.1530/endoabs.63.P317

P318
Semen quality in uncontrolled acromegalic patients with hypogonadism
Mikkel Andreassen1, Anders Juul2, Ulla Feldt-Rasmussen1 & Niels Jørgensen2
1Department of Endocrinology, University of Copenhagen, Copenhagen, Denmark; 2Department of Growth and Reproduction, University of Copenhagen, Copenhagen, Denmark.

Objective
Growth hormone (GH) activity might be implicated in male reproductive function. One previous study has suggested significantly reduced semen quality in untreated acromegalic patients due to both reduced sperm counts and motility. Design and methods
A retrospective study comprising 10 uncontrolled hypogonadal acromegalic patients (median age 29y) who delivered semen for cryopreservation before initiation of testosterone therapy. Sperm variables and hormone concentrations were compared to those of 10 non-acromegalic hypogonadal men with pituitary disease (age 31 years) and those of young healthy men (n = 340).

Results
80% of acromegalic patients vs 50% of non-acromegalic patients had total sperm counts above 39 million and progressive motile spermatozoa above 32% (P = 0.18) (WHO criteria for normal semen quality based on sperm counts and motility). The corresponding number in healthy controls was 82%. The prevalence of normal semen quality in acromegalic patients vs healthy controls was 80% vs 82% (P = 0.55) and in non-acromegalic patients vs healthy controls 50% vs 82% (P = 0.022). Serum IGF-1 was higher in acromegalic patients vs non-acromegalic patients 1017 (421–1434) vs 211 (91–271) ng/ml (P < 0.001). For reproductive hormone levels there were no differences between acromegalic patients vs non-acromegalic patients (P-values between 0.10 and 0.61). Patients (n = 20) vs healthy controls had lower serum testosterone 5.4 (2.2–7.6) vs 19.7 (15.5–24.5) nmol/l (P = 0.001), calculated free testosterone 145 (56–183) vs 464 (359–574) pmol/l (P < 0.001), LH (P = 0.002), and inhibin b (P < 0.001). Levels of FSH were similar (P = 0.63).

Conclusions
Despite severe Leydig cell insufficiency acromegalic patients had semen quality similar to healthy controls based on determination of the number of progressively motile spermatozoa. By contrast non-acromegalic patients had reduced semen quality. Our data do not support reduced semen quality in acromegaly.

DOI: 10.1530/endoabs.63.P318

P319
Characteristics, geographical distribution and age at diagnosis of patients with Klinefelter syndrome in Italy: a cohort study from the Klinefelter Italian Group (KING)
Daniela Pasquali1, Andrea Garolla2, Giacomo Accardo3, Rosa di Fria4, Vittorio Simeoni5, Alberto Ferlin6, Mario Maggi7, Carlo Foresta8, Linda Vignozzi9, Giovanni Corona10, Fabio Lanfranco11, Vincenzo Rochira12, Aldo E Cälgero13, Vito A Giagulli14, Marco Bonomi15, Rosario Pivonello15, Giancarlo Baleria16, Alessandro Pizzocaro17, Pietro Salacca18, Antonio Aversa16 & Arcangelo Barbonetti19
1University of Campania “L. Vanvitelli, Naples, Italy; 2University of Padoa, Padoa, Italy; 3Università della Campania “L. Vanvitelli, Napoli, Italy; 4University of Brescia, Brescia, Italy; 5University of Florence, Florence, Italy; 6Endocrinology, Bologna, Italy; 7University of Torino, Torino, Italy; 8University of Modena & Reggio Emilia, Modena, Italy; 9University of Catania, Catania, Italy; 10Endocrinology, Bari, Italy; 11University of Milano and IRCCS Istituto Auxologico Italiano, Milano, Italy; 12University Federico II, Naples, Italy; 13University of Marche, Ancona, Italy; 14IRCCS, Istituto Clinico Humanitas, Rozzano-Milano, Italy; 15Santa Maria Goretti Hospital, Latina, Italy; 16University of Catanarzo, Catanarzo, Italy; 17University of ‘Aquila, l’Aquila, Italy.

Introduction
Klinefelter syndrome (KS) is the most frequent chromosomal disorders, occurring in 1:500 to 1:1000 live male births, associated to male infertility. Although significant research has been conducted, KS remains frustratingly underdiagnosed with a remarkable portion of cases being unidentified. Under diagnosis may be due to man’s hesitancy about seeking medical counseling, low awareness of KS among health professionals, and failure by health professionals to perform routine genital examinations in adult men.

Aim
Our purpose was to describe the phenotypic characteristics and the hormonal patterns of a cohort of patients currently attending a national network of academic or general hospitals of the Klinefelter Italian Group (KING). Moreover, we focused our interest on the geographical distribution, and age at diagnosis of KS in Italy.

Methods
A multicenter, observational study of 594 KS was performed among the patients regularly attending the KING centers, after written informed consent has been obtained.

Results
The mean age was 37.4 ± 13.4 years (median IQR 28–46). The mean testicular volume was 3 ml in both tests, BMI was 26.6 ± 5.5 ± 8 and 25.5% of KS meet the diagnostic criteria for metabolic syndrome (Mets). Mean total testosterone was 330 ± 9.1 ng/dl, LH and FSH mean levels were 16.6 (median IQR 8.8–22.5) and 28.5 (median IQR 17.5–39), respectively. A descriptive analysis performed in 594 KS, showed that 329 KS were referred to KING centers of Northern Italy, 65 and 200 KS patients to KING facilities in Central and Southern Italy, respectively. Analysis of variance showed significant statistical differences (P < 0.00000) between the age at diagnosis of the KS of the three geographical groups. In particular, the age of KS patients was significantly lower in KS (33.3 ± 13.3 years) compared to Central and Northern Italy (40.2 ± 12.5 s.d. and 39.2 ± 13.3 s.d.).

Conclusions
Our preliminary data showed that KS is highly underdiagnosed in Italy, raising the question of the true prevalence of KS. Our patients presented with a wide spectrum of the classical Klinefelter symptoms. KS were overweight and, surprisingly, only 25.5% of them were diagnosed with Mets. This figure is very close to the Mets prevalence in the Italian general population which is around 26%.

In adulthood, two features were consistently present in every subject: small testes and high FSH and LH/testosterone ratio, despite normal testosterone levels. The

Endocrine Abstracts (2019) Vol 63
P320
Gonadal Function in Human Immunodeficiency Virus (HIV)-Infected Men: comparison between Isotope Dilution-Liquid Chromatography-Tandem Mass Spectrometry (ID-LC-MS/MS) and Chemiluminescent Immunoassay (CI)
Sara De Vincentis1,2, Maria Chiara Decaroli1,2, Flaminia Fanelli3, Marco Mezzullo1, Chiara Diizzu1, Fabio Morina1, Davide Bertani1, Daniele Santi1, Enrica Baraldi1, Simonetta Tagliavini1, Laura Roli1, Tommaso Trenti1, Uberto Pagotto1, Giovanni Guaraldi1 & Vincenzo Rochira1
1 Unit of Endocrinology, Department of Biomedical, Metabolic and Nuclear Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2 Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy; 3 Endocrinology Unit and Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences, University of Bologna – S. Orosio-Malpighi Hospital, Bologna, Italy; 4 Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy; 5 Multidisciplinary Metabolic Clinic, Unit of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy.

Background
HIV-infection is associated to premature decline of serum T. However, prevalence and biochemical characterization of hypogonadism in HIV-infected men are still to be well defined.

Aim
To evaluate the gonadal status in HIV-infected men by assessing circulating total T (TT) with either ID-LC-MS/MS or CI.

Methods
Prospective, cross-sectional, observational study on HIV-infected men with ongoing Highly Active Antiretroviral Therapy (HAART). Serum TT, gonadotropins and sex hormone-binding globulin (SHBG) were measured by CI (Architect, Abbott, USA). TT was also assessed by a validated in house ID-LC-MS/MS. Free T (FT) was calculated by Vermeulen equation. Hypogonadism was defined as serum TT levels below 320 ng/dl and/or free T levels below 0.956. Statistical analysis: Parameters were not normally distributed and Mann-Whitney U test was used to compare continuous variables. Categorical variables were compared using Chi-Square test, while correlations were performed using linear regression models.

Results
315 consecutive HIV-infected men were enrolled (mean age 45.56 ± 5.61 years; average duration of HIV-infection 16.57 ± 10.45 years). Serum TT levels assessed by LC-MS/MS (mean 652.1 ± 229.1 ng/dl) were significantly lower compared to CI (mean 740.2 ± 274.7 ng/dl) (P < 0.0001). As a consequence, prevalence of T deficiency was significantly higher comparing LC-MS/MS to CI (5.4 vs 3.2%, P < 0.0001), 56 patients (17.8%) showed SHBG above the normal range (> 71.4 nmol/l). Considering calculated FT, the prevalence of hypogonadism was 9.8% using LC-MS/MS and 7.0% using CI, with a significant difference between methodologies (P < 0.0001). TT assessed by LC-MS/MS was directly related to TT assessed with CI (Beta = 0.956, R² = 0.913, P < 0.0001), as well as FT (Beta = 0.934, R² = 0.873, P < 0.0001). TT combined with luteinizing hormone (LH) levels was used to classify hypogonadism. By including compensated form of hypogonadism, the prevalence raised to 15.6% for TT and to 17% for FT.

Conclusions
To the best of our knowledge, this is the first properly-designed prospective study aiming to investigate the gonadal status of HIV-infected men with both LC-MS/MS and CI, together with gonadotropins. Notwithstanding the strong correlation found between the two methodologies, the prevalence of hypogonadism results underestimated when CI is used compared to ID-LC-MS/MS in HIV-infected patients. In clinical practice, SHBG for calculated FT is essential for the detection of T deficiency, revealing the real prevalence of hypogonadism in this clinical setting.

DOI: 10.1530/endoabs.63.P320

P321
Automated free testosterone assay: validation and usual values
Fideline Bonnet-Serrano1,2, Amina Bouzerara1, Théo Roussel1, Marie-Claude Menet1,3 & Jean Guibourdenche1,4
1 Hormoneonology Department, Cochin Hospital, Paris, France; 2 INSERM U1016, CNRS UMR1144, Université Paris Descartes, Paris, France; 3 INSERM U1149, Université Paris Descartes, Paris, France.

Introduction
Testosterone circulates under different forms in blood, mainly bound to proteins i.e. Sex Hormone Binding Globulin (SHBG) and albumin. Free testosterone (FT), the biologically active form, represents 2% of total testosterone (TT). FT measurement is mainly indicated when TT level is discordant with clinical picture but remains technically challenging. Indeed, as for all free hormones, gold standard method relies on equilibrium dialysis, unusable in routine. Direct immunoassays by competition have thus been designed, traditionally based on sensible radioactive detection signal (RIA). FT can also be calculated from TT, SHBG and albumin levels. Our work aimed to compare a new automated immunoassay to preexisting dosages and to propose adapted usual values.

Materials and methods
Analytical performances of this new FT assay were evaluated. FT was therefore determined in 164 patients (68 women, 96 men) using the new immunoassay (IS-5300, IDS-iSYS Free Testosterone), a RIA immunoassay (KIP10000, DIAsource), and a calculation based on TT (RIA TESTO-CT2, Cisbio), SHBG, and albumin (Cobas ROCHE) concentrations. Usual values for the new dosage were established.

Results
Analytical performances of the new assay claimed by the manufacturer were confirmed and comparable with those of the RIA assay except for a higher detection limit. Correlation between immunoassays was satisfactory in men (R² = 0.77) and weaker in women (R² = 0.45), results with the new automated dosage being globally 30% lower. Correlation between both immunoassays and calculated FT was also satisfactory in men (respectively R² = 0.68 for automated and 0.76 for RIA immunoassays) and poor in women (respectively R² = 0.15 and 0.13). Calculated FT was much higher than measured FT, as the corresponding reference values proposed by the manufacturers. This discrepancy was confirmed by the analysis of external quality controls results whatever the direct immunoassay. We proposed preliminary usual values (minimal and maximum values observed in the subgroup of patients with normal testosterone and SHBG levels): 18.9–51.7 pmol/l in men < 50 years old (n = 23); 7.4–39.5 pmol/l in men > 50 years old (n = 33); < 6.2 pmol/l in women < 50 years old (n = 34) and < 4.3 pmol/l in women > 50 years old (n = 23).

Conclusion
IDS-iSYS FT assay is one of the first automated assays allowing FT dosage. Its analytical performances are suitable and provide valuable results in comparison to both RIA immunoassay and calculated FT, at least in men. Clinicians should pay attention to FT usual values indicated by the laboratories, given the large differences observed, particularly between direct immunoassays and calculated FT.

DOI: 10.1530/endoabs.63.P321

P322
Assessment of biochemical hyperandrogenism in PCOs by liquid chromatography tandem mass spectrometry using a multistroid kit: focus on testosterone and androstenedione
Giorgia Grasso1, Valentina Morelli1, Elsa Polledri1, Silvia Fustinioni1,2, Iacopo Chiudini1,4, Ferruccio Cerrotti1, Simona D’Agostino3, Francesca Filippis, Edgardo Somigliana1, Giovanna Mantovani1,3 & Maura Arosio1,3
1 Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 2 Laboratory of Toxicology Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 3 Department of Clinical Sciences and Community Health University of Milan, Milan, Italy; 4 Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research IRCCS Istituto Auxologico Italiano, Milan, Italy.

Objective
The identification of hyperandrogenism represents the cornerstone for the assessment of polycystic ovary syndrome (PCOs). However, its definition has always been troubling, mostly because of the poor accuracy shown by routine
Author Index

AKERMAN, A-K P431
AANCUTE, A GP116
AAS, FE GP181
ABAD, M P850
ABAD, RSDC EP39
ABAINOUN, L P246
ABBAS, A P517 & P518
ABD-ELRAOOF, M P768
ABD-ELSTAR, H P768
ABDALLAH, N P49
ABDELGHANI, T EP119 & P351
ABDELHAK, S EP80
ABDELKAIFI, M P202, P385 & P88
ABDELMARIM ASMA, B P368
ABDELKARIM, A P778
ABDELKARIM, AB P1086, P702 & P827
ABDELKEFI, M EP153, P1164, P1188, P395 & P787
ABDELLAOUI, W EP134 & P683
ABDELMONEM, H P61
ABDERRAHMANE, Y P517 & P518
ABDULLAH, H P124 & P340
ABDULLADJANOVA, N GP206
ABDUVAKHBOVA, M P238
ABDUVALIEV, A P175
ABE, H EP17, P31, P387 & P92
ABED, YEP822, P886 & P891
ABELLON, J GP238
ABEL, ED S30.1
ABIEGA, BU EP47
ABIR, T EP107, P289 & P290
ABIZANDA, EP P1116
ABIZANDA, JP P869
ABORMIA, MM GP131, P122 & P61
ABOUT JAOUDE, M P211
ABRAHAM, A GP123
ABRAHAMSEN, B OC14.4
ABREU, AP GP62
ABRIBAT, T OC6.1
ABROSIMOVA, A EP143 & P15
ABUCHAM, J MTE16
ABUD, M EP20
ACATREINEI, E P13
ACCARDO, G P319
ACERINI, C GP197
ACH, K P1072, P1086, P1137, P702, P778, P779, P827 & P971
ACHA PEÑA, J EP59
ACIGÖZ, A GP248
ACITORES, A P225
ACKERMANN, D P570
ACUÑA GARCÍA, M P243
ADACHI, H P205
ADAMCOVA, K P316
ADAMCOVA, K P1142
ADAMIDOU, F P1158, P1163, P357, P467, P523, P851 & P889
ADAMSBAM, C OC7.3
ADAMSKA, P P1159
ADANA, MRD P184
ADEL, M EP120 & P425
ADLER-COHEN, C P750
ADORNI, MP GP69
AERS, X OC14.2
AFANASYEVA, D P104, P210, P389 & P540
AFENTOULIDIS, A P366, P367 & P401
AFSHAN, K EP3, P1160, P456 & P892
AGACHI, I P420
AGAPITO, A EP101 & P716
AGARWAL, A EP158
AGEA, L P1134
AGGARWAL, A P489
AGGELI, C GP9, P20 & P877
AGHA, A P535, P696 & P789
AGHAYAN, M P653
AGHAYI, H P1215
AGHILMANDI, S P1013
AGIUS, R EP129
AGOUNILIK, A GP223
AGOUNILIK, I GP223
AGREDOS, AG-MV P1061
AGROGANIS, G OC2.4
AGUAYO, FJ P386
AGUILAR DOSDADO, M P165 & P167
AGUIRRE MORENO, N P1106
AGUIRRE, M P372
AHLUWALIA, R OC3.2
AHMAD, F P124
AHMAD, T P413
AHMADOVA, K P454
AHMED KOCEIR, EP559
AHMED, F GP197
AHMED, R EP112
AHN, C P127
AHN, CW GP28, GP85 & P583
AHN, JH P533
AHN, KJ P156
AHN, SV P90
AILLÔUD, S P1148
AIM, LB OC5.1
AINHOA, I OC9.1
AJA-CURBELO, VSD EP41
AJENZBERG, C OC5.1
AKALIN, A P857
AKALIN, A P482
AKAY, OM P482
AKBIYIK, F P1024
AKDEMIR, AY P816
AKDENIZ, Y P352
AKDENIZ, YS P28
AKHRAROVA, N P572
AKIROV, A GP119
AKKALP, AK P817
AKKAN, K P454
AKKARI, I P114, P496 & P773
AKKARI, I EP73, P636, P650 & P883
AKLOUL, L GP61
AKRAM, M EP3, P1160, P456 & P892
AKTAS, A GP88 & P807
AKULEVICH, N P1032
AL GHUZLAN, A P433
AL SALAM, RA P300 & P341
AL SEBAEIY, H P473
AL-TAWIL, D P980
ALAGÜEN, ES P482
ALAM, SMK P136
ALAMINOS, MEL GP183, P1224, P1225, P1227 & P1229
ALBANI, A GP156
ALBAREL, F P288
ALBERT, L P39, P527 & P810
ALBISINNI, S P812
ALBOIM, S GP8
ALBU, A EP76, P1169, P1186, P304 & P479
ALBU, D P1169
ALBUQUERQUE, I P906 & P910
ALBUQUERQUE, L P1093, P1113 & P1118
ALCÁNTARA-LAGUNA, M-D P534, P576 & P581
ALCÁNTARA-LAGUNA, MD P287
ALCÁZAR, V P746
ALCAÑIZ-Martínez, G P609
ALDABE, N P384
ALDAMA, P P44 & P443
ALDAY, IH P1216 & P946
ALDISS, P S15.1
ALDUK, A-M P824
ALEALI, AM P131 & P132
ALEKNAITE, A P1190
ALEKSANDRA KRASOV, N GP247
ALEMAÑ, GB P529
ALERIC, I P447
ALEVAZIKI, M GP86 & GP90
ALEXANDER WUDY, S GP96
ALEXANDER, P P143, P145, P153 & P154
ALEXANDRA HANZU, F P1107
ALEXANDRA, API P835
ALEXANDRAKI, K P833, P873 & P877
ALEXANDRE, MI P699
ALEXANDRESCU, D P1065
ALEXIEV, A P1012
ALFANO, S GP52, GP60, GP96 & P399
ALFAQIH, M P128
ALFAYATE, R GP168 & GP233
ALFII, G P735
ALFONSO, AP GP233
ALFONSO, FJG EP122, GP209 & P1061
ALHAMBRA-EXPÓSITO, M-R P581
ALHAMBRA-EXPÓSITO, MR GP207 & P651
ALI, H EP95