The ESE would like to thank its Corporate Members and the ECE 2019 sponsors

ECE Corporate Members

Premium Corporate Members
- Ipsen
- Pfizer
- Takeda

Corporate Members
- Aegerion
- Advanced Accelerator Applications
- Laboratoire HRA Pharma
- Merck Serono
- Novo Nordisk
- Otsuka Pharmaceuticals Europe
- Sandoz International GmbH
- Siemens-Healthineers
- Strongbridge Biopharma
- Uni-Pharma

Supporter
- Chiasma

Gold Sponsors
- Ipsen
- Takeda
- Pfizer

Bronze Sponsors
- Merck
- Advanced Accelerator Applications

ESE Office
Starling House
1600 Bristol Parkway North
Bristol BS34 8YU, UK
Tel: +44 (0)1454 642247
Fax: +44 (0)1454 642222
E-mail: info@euro-endo.org
Web site: www.ese-hormones.org

ECE 2019 Congress Team
Bioscientifica Ltd
Starling House
1600 Bristol Parkway North
Bristol BS34 8YU, UK
Tel: +44 (0)1454 642240
E-mail: ece2019@endocrinology.org
Website: www.ece2019.org
21st European Congress of Endocrinology 2019

PRIZE LECTURES AND BIOGRAPHICAL NOTES

The European Journal of Endocrinology Prize Lecture .. EJE1
The Geoffrey Harris Prize Lecture .. GH1
European Hormone Medal Lecture .. EHM1
Clinical Endocrinology Trust Lecture .. CET1

PLENARY LECTURES

Designing Cities and Homes as Exercise Machines: Helping endocrinologists to fight metabolic disease PL1
Genetic epidemiology of puberty timing and reproductive lifespan (Endorsed by the European Journal of Endocrinology) .. PL2
Pancreatic beta-cell ageing: Novel mechanisms and consequences in the management of diabetes PL3
Exercise Training in the Management of Type 2 Diabetes .. PL4
Paracrine regulation of the adrenal cortex ... PL5
Graves orbitopathy .. PL6
Control of Integrative Physiology by the Melanocortin Circuitry PL7

SYMPOSIA

Thyroid in cancer .. S1.1–S1.3
Trends in puberty .. S2.1–S2.3
Circadian clocks: from pathophysiology to chronomedicine .. S3.1–S3.3
Immunology and endocrinology (Endorsed by Endocrine Connections) S4.1–S4.3
Microbiota as new treatment for diabetes and metabolic disease S5.1–S5.3
A better life with thyroid hormone (Endorsed by the European Journal of Endocrinology) ... S6.1–S6.3
Endocrine disrupting chemicals (Endorsed by Endocrine Connections) S7.1–S7.3
Genderdysphoria delayed puberty .. S8.1–S8.3
Controversies in adrenal disease ... S9.1–S9.3
Cancer drug-induced osteoporosis (Endorsed by Endocrine Connections) S10.1–S10.3
EDCs & reproduction ... S11.1–S11.3
Craniopharyngioma: a challenging tumour to treat and a difficult aftermath S12.1–S12.3
Central control of metabolism: Brain rules all .. S13.1–S13.3
Innovations in NETs .. S14.1–S14.3
European Young Endocrine Scientists (EYES) .. S15.1–S15.6
Thyroid in pregnancy .. S16.1–S16.3
Where do pituitary tumours come from? ... S17.1–S17.3
Congenital hypogonadotrophic hypogonadism: New insights into GnRH Regulation S18.1–S18.3
Adrenal insufficiency .. S19.1–S19.3
News on nutrition: when to eat what ... S20.1–S20.3
Rare bone disorders ... S21.1–S21.3
The pituitary as metabolic sensor (Endorsed by Endocrine Connections) S22.1–S22.3
PCOS: can we personalise treatment? .. S23.1–S23.3
What’s new in the Adrenal Cortex? (Endorsed by the European Journal of Endocrinology) ... S24.1–S24.3
Late Breaking Session .. S25.1–S25.3
Impact of thyroid disease on ... S26.1–S26.3
What’s new in reproductive endocrinology? ... S27.1–S27.3
Vitamin D - non-skeletal effects in RCT ... S28.1–S28.3
Endocrine controversies in sport .. S29.1–S29.3
Personalised medicine in diabetes and obesity (Endorsed by the European Journal of Endocrinology) .. S30.1–S30.3
Special Symposium: ESE, the International Society of Endocrinology and
the Endocrine Society Joint Session - Endocrinology of Aging SS1.1–SS1.3
NEW SCIENTIFIC APPROACHES

DEBATES

Food addiction in humans: to be or not to be? D1.1–D1.2
Surgical treatment of phaeochromocytoma - query pre-treatment D2.1–D2.2
T4 is not enough D3.1–D3.2
Pituitary pathology: Do we care? D4.1–D4.2
MicroRNAs as hormones? D5.1–D5.2
Should we treat young osteoporotic patients? D6.1–D6.2

MEET THE EXPERT SESSION MTE1–MTE16

MEET THE BASIC SCIENTIST SESSION MTBS1–MTBS3

NURSE SESSION NS1.1–NS1.3

UEMS SESSION UEMS1.1–UEMS1.3

ORAL COMMUNICATIONS

Calcium and Bone OC1.1–OC1.5
Diabetes 1 OC2.1–OC2.5
Cushing’s and acromegaly OC3.1–OC3.5
Thyroid 1 OC4.1–OC4.5
Adrenal 1 OC5.1–OC5.5
Obesity OC6.1–OC6.5
Endocrine Connections 1 OC7.1–OC7.5
Reproduction 1 OC8.1–OC8.5
Thyroid 2 OC9.1–OC9.5
Adrenal 2 OC10.1–OC10.5
Diabetes 2 OC11.1–OC11.5
Endocrine Connections 2 OC12.1–OC12.5
Anterior and Posterior pituitary 2 OC13.1–OC13.5
Sex Hormones OC14.1–OC14.5

GUIDED POSTERS

Adrenal and Neuroendocrine - Tumour GP1–GP14
Calcium and Bone 1 GP15–GP25
Diabetes and Cardiovascular Disease GP26–GP36
Metabolic Syndrome and Hypoglycaemia GP37–GP47
Acromegaly and GH GP48–GP60
Reproductive Axis GP61–GP69
Thyroid Autoimmune Disorders GP70–GP81
Thyroid Nodules and Cancer GP82–GP93
Adrenal and Neuroendocrine - Basic GP94–GP106
Calcium and Bone 2 GP108–GP118
Diabetes: Late Complications GP119–GP129
Obesity GP130–GP141
Interdisciplinary Endocrinology 1 GP142–GP152
Cushing’s GP153–GP164
Obesity GP165–GP175
Benign Thyroid Disorders GP176–GP186
Adrenal and Neuroendocrine - Clinical GP187–GP199
Diabetes: Pharmacotherapy .. GP200–GP211
Gestational and Type 1 Diabetes GP212–GP222
Adrenal and Neuroendocrine - Clinical GP223–GP232
Anterior and Posterior Pituitary GP233–GP244
Disturbances of Reproduction GP245–GP253
Thyroid Nodules and Cancer 2 GP254–GP264

POSTER PRESENTATIONS
Adrenal and Neuroendocrine Tumours 1 P1–P60
Calcium and Bone 1 ... P61–P120
Diabetes, Obesity and Metabolism 1 P121–P224
Pituitary and Neuroendocrinology 1 P225–P296
Reproductive Endocrinology 1 P297–P336
Thyroid 1 ... P337–P406
Adrenal and Neuroendocrine Tumours 2 P407–P466
Calcium and Bone 2 .. P467–P525
Diabetes, Obesity and Metabolism 2 P526–P625
Interdisciplinary Endocrinology 1 P626–P671
Pituitary and Neuroendocrinology 2 P672–P741
Thyroid 2 ... P742–P811
Adrenal and Neuroendocrine Tumours 3 P812–P881
Diabetes, Obesity and Metabolism 3 P882–P992
Environment, Society and Governance P994–P1008
Interdisciplinary Endocrinology 2 P1009–P1045
Pituitary and Neuroendocrinology 3 P1046–P1118
Reproductive Endocrinology 2 P1119–P1157
Thyroid 3 ... P1158–P1231

ePOSTER PRESENTATIONS
Adrenal and Neuroendocrine Tumours EP1–EP23
Calcium and Bone .. EP24–EP30
Diabetes, Obesity and Metabolism EP31–EP72
Interdisciplinary endocrinology EP73–EP84
Pituitary and Neuroendocrinology EP85–EP121
Reproductive Endocrinology EP122–EP135
Thyroid ... EP136–EP158

INDEX OF AUTHORS
Poster Presentations
P254

IgG4-related hypophysitis: A case report
Fatih Kilicli, Hatice Sebile Dokmetas, Gunes Cavusoglu, Merci Dokmetas, Kubra Karapek, Bugra Erol & Aysemur Cila
1 İstanbul Medipol University, Department of Endocrinology, İstanbul, Turkey; 2 İstanbul Medipol University, Department of Internal Medicine, İstanbul, Turkey; 3 İstanbul Medipol University, Department of Radiology, İstanbul, Turkey.

Introduction

IgG4-dependent disease is a newly defined fibroinflammatory disease. This disease has been shown to affect almost all organs in the body, especially the pancreas, salivary gland, orbital tissue, lymph node, lung and kidney. IgG4 hypophysitis is a rare and inflammatory process that mimics pituitary tumors. The diagnosis of IgG4-related hypophysitis can be done in many ways. The definitive diagnosis is biopsy; however, it is not necessary in most cases. If the other organs are diagnosed with IgG4-related disease with biopsy, the appearance of pituitary mass is also diagnostic.

Case

A 28-year-old woman was admitted to our clinic with blurred vision and double vision during her pregnancy. Our patient was receiving replacement therapy due to total hypophyseal insufficiency. In June 2018, pituitary biopsy was performed and the pathology report was revealed as IgG4 pituitary. In November 2018, outward shifting started in the right eye. The patient presented with a Gamma-knife recommendation. TSH: 0.026 (N: 0.27–4.2 IU/ml), free T4: 0.836 (N: 0.93–1.7 ng/dl), FSH: 1.24 (N: 3.5–12.5 mIU/ml), LH: 0.4 (2.5–11.2 IU/ml), E2 (3 pg/ml), Prolactin: 0.466 (N: 4.79–23.3 ng/ml), IgG: 340 (N: 80–140 mg/dl), Pituitary MRI revealed bilateral cavernous sinus, optic chiasm and infundibulum infiltration, and T2 hypointense hypophysitis. The patient was diagnosed with IgG4-releated hypophysitis and pulse steroid treatment was started, but because there was no clinical and radiological improvement, rituximab 1000 mg was given twice daily for 15 days.

Conclusion

There is still no consensus about the treatment of IgG4-releated hypophysitis, and in patients with steroid resistance, rituximab therapy may be required.

DOI: 10.1530/endoabs.63.P254

P255

Trunk fat increase is prevented both in patients undergoing long-lasting continuous r-hGH therapy and in those who discontinued r-hGH compared to untreated patients: results from baseline data of the MAGHD study
Maria Laura Monzani, Elisa Magnani, Chiara Daziazi, Simone Pederzoli, Laura Vulpis & Vincenzo Rochira
Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Background

Adult growth hormone (GH) deficiency (AGHD) is related with alterations in body composition, increased abdominal and visceral adiposity, decrease in lipid and carbohydrate metabolism, and reduction of bone mineral density (BMD). Aim

To compare baseline outcomes concerning body composition and biochemical/hormonal data among adult patients with AGHD referring to a single endocrinological center and grouped according to their history of r-hGH therapy.

Methods

The Management of Adult Growth Hormone Deficiency Study (MAGHD) is a prospective, single-center trial aiming to improve AGHD management through a smartphone app (MAGHD App: Manage AGHD) and a wearable device (MAGHD study) compared to untreated patients: results from baseline data of the MAGHD study. Up-to-now, a total of 74 patients during first generation SSA treatment before pasireotide LAR start. Results

Mean duration of AGHD disease was 121.2 ± 105.8 months; it was lower in Group 3 compared to both Group 1 and 2 (P < 0.05). Waist circumference (Group 1 95.1 cm; Group 2 96.5 cm; Group 3 109.0 cm), total fat mass (Group 1 25013g; Group 2 26491g; Group 3 33887g) and trunk fat mass (Group 1 11743g; Group 2 12598g; Group 3 16761g) were significantly higher in Group 3 compared to both Group 2 and 1 (P < 0.05). While total fat mass and trunk fat mass did not differ significantly among Group 2 and 3, serum insulin (%) were significantly higher in Group 3 than Group 1 (P < 0.05). IGF-1 and IGFBP3 were significantly higher in Group 1 compared to both Group 2 and 3 (P < 0.0001).

BMD, circulating lipids, and fasting glucose did not differ among the 3 groups.

Conclusions

r-hGH therapy seems to confer a long-lasting beneficial effect on body fat, especially trunk fat even after its discontinuation in AGHD patients, but not on metabolic parameters.

Acknowledgment

This clinical study is conducted thanks to the competitive assignment of an Independent Grant for Learning & Change (‘IGCL’): Dissemination & Implementation (‘D&I’) by Pfizer Inc.

DOI: 10.1530/endoabs.63.P255

P256

Hyperglycemia and pasireotide lar in acromegaly: a study with continuous glucose monitoring
Lucia Russo, Sara Mazzocut, Francesca Dassie, Matteo Parolin, Chiara Martini, Eugenio De Carlo, Francesco Fiallo, Roberto Mioni, Roberto Vettor, Alberto Maran & Pietro Maflesi
DIMED, Università di Padova, Padova, Italy.

Background

Pasireotide LAR is a multireceptor targeted somatostatin analogue that has been shown to obtain a better biochemical control of acromegaly. However, pasireotide LAR could induce hyperglycemia in acromegalic patients with higher baseline glucose values. The devices that can track interstitial glucose levels such as continuous glucose monitoring (CGM) could be a useful for studying the impact of SSA on patients’ glucose status.

Aim

We aimed to study the glucose metabolism with CGM in a group of acromegalic patients during first generation SSA treatment before pasireotide LAR start.

Methods

We studied 10 patients with uncontrolled acromegaly (Male 5; median age 58y) in therapy with first generation SSA eligible for the treatment with pasireotide. At pasireotide start (T0) we performed a CGM of 9 days to investigate the glucose variability (J whole, GRADE, MAGE, CONGA). We also collected endocrinological and metabolic data (GH, IGF 1, fasting plasma glucose -FPG-, HbA1c) at T0 and after at least 3 months of therapy (T1).

Results

Analysis of the data, revealed a significant decrease in GH (T0 2.06 vs T1 1.02 ug/L, P < 0.01) and in IGF1 (T0 275.5 vs T1 193.5 ug/L, P = NS) after treatment with pasireotide, with a median treatment duration of 9 months. There was also a significant increase in FPG and HbA1c (FPG T0 97 vs T1 124 mg/dl, P 0.01; HbA1c T0 41.5 vs T1 44.5 mmol/ml, P 0.01) At T0, 5 patients (50%) had glycemic alterations: 2 patients had diabetes mellitus (DM) in therapy with metformin and 3 patients had an impaired fasting glucose (IFG). At T1, 5 patients (50%) received antidiabetic medications and among this 60% started antidiabetic treatment after T0. Patients with FPG >100 mg/dl at T0 showed higher glucose variability for most important CGM-based variability indexes (FPG <100 vs FPG >100: J whole 17.3 vs 25.2 P < 0.03, GRADE 2 vs 4 P < 0.03, MAGE 54.7 vs 96.1 P < 0.01, CONGA1 12.8 vs 28.3 P < 0.03).One patient discontinued the drug due to severe hyperglycemia (>500 mg/dl). At T1 there were no significant correlations between HbA1c/FPG and glycemic indexes.

Conclusions

We confirm the efficacy of pasireotide and the effect on glucose metabolism. For the first time in literature we found higher glycemic variability indexes in acromegalic patients with known alterations of glucose metabolism. Further studies are needed to determine the role of CGM in acromegalic patients on pasireotide treatment.

DOI: 10.1530/endoabs.63.P256
Author Index

Åkermann, A-K P431
Aancute, A GP116
Aas, FE GP181
Abad, M P880
Abad, RSDc EP39
Abainou, L P246
Abbas, A P517 & P518
Abd-Ellaouf, M P768
Abd-Elster, H P768
Abbaldah, N P49
Abdelghani, T EP149 & P351
Abdelhak, S EP80
Abdelkafi, M P202, P385 & P88
Abdelkarim Asma, B P368
Abdelkarim, A P778
Abdelkarim, AB P1086, P702 & P827
Abdelkefi, M EP153, P1164, P1188, P395 & P787
Abdellaooui, W EP134 & P683
Abdelmonem, H P61
Abderrahmane, M P517 & P518
Abainou, L P246
Abad, M P850
Aancute, A GP116
Abreu, AP GP62
Abrirat, T OC6.1
Abrosimov, A EP143 & P15
Abucham, J MTE16
Abud, M EP20
Acatrinely, E P13
Accardo, G P319
Acerini, C GP197
Ac, K P1072, P1086, P1137, P702, P778, P779, P827 & P971
Acha Pérez, J P959
Acigoz, A GP248
Acitores, E P225
Ackermann, D P570
Acuña García, M P243
Adachi, H P205
Adamcová, K P316
Adamcová, K P1142
Adamidou, E P1158, P1163, P357, P467, P523, P851 & P889
Adamsbaum, C OC7.3
Adamska, P P1159
Adana, MRd P184
Adams, M EP120 & P425
Adler-Cohen, C P750
Adorni, MP GP69
Aers, X OC14.2
Afanasjev, D P104, P210, P389 & P540
Afentoulidi, A P366, P367 & P401
Afshar, K EP3, P1160, P456 & P892
Agachi, I P420
Agapito, A EP101 & P716
Agarwal, A EP158
Agea, L P1134
Aggarwal, A P489
Aggelis, C GP9, P20 & P877
Agha, A P353, P696 & P789
Aghayan, M P653
Aghayi, H P1215
Aghlmandi, S P1013
Agius, R EP129
Aguilín, A GP223
Aguilín, I GP223
Agredos, AG-MV P1061
Agrogannis, G OC2.4
Aguayo, FJ P386
Aguilar Diosdado, M P165 & P167
Aguirre Moreno, N P1106
Aguirre, M P372
Ahlouwalia, R OC3.2
Ahmad, F P124
Ahmad, T P413
Ahmadova, K P454
Ahmed Kocéir, E P559
Ahmed, F GP197
Ahmed, R EP112
Ahn, C P127
Ahn, CW GP28, GP85 & P583
Ahn, JH P533
Ahn, KJ P516
Ahn, SV P90
Ailloud, S P1148
Aim, LB OC5.1
Ainhoa, I OC9.1
Aja-Curbelo, Vsd EP41
Ajenberg, C OC5.1
Akalin, A P857
Akalin, A P482
Akar, OM P482
Akkik, Y P1042
Akkemik, AY P816
Akkemik, Y P352
Akkemik, YS P28
Akhbarrova, N P572
Akirov, A GP119
Akkaalp, AK P817
Akkan, K P545
Akkan, T P114, P496 & P773
Akkari, I EP73, P636, P650 & P883
Akloul, L GP61
Akrak, M EP3, P1160, P456 & P892
Akteas, A GP88 & P807
Akulevich, N P1032
Al Ghazlan, A P433
Al Salam, RA P300 & P341
Al Sebahi, H P473
Al-Tuwi, D P980
Alagüen, ES P482
Alami, SMK P136
Alaminos, MEL GP183, P1224, P1225, P1227 & P1229
Albani, A GP156
Albarel, F P288
Albert, L P39, P527 & P810
Albisini, S P812
Alboim, S GP8
Albu, A EP76, P1169, P1186, P304 & P479
Albu, D P1169
Albuquerque, I P906 & P910
Albuquerque, L P1093, P1113 & P1118
Alcántara-Laguna, M-D P534, P576 & P581
Alcántara-Laguna, MD P287
Alcázar, V P746
Alcain-Martínez, G P609
Albadé, N P384
Al-dama, P P44 & P443
Alday, IH P1216 & P946
Aldiss, P S15.1
Alduk, A-M P824
Alei, AM P131 & P132
Aleknaita, A P1190
Aleksandra Kravos, N GP247
Alemañ, GB P529
Aleric, I P447
Aleveziak, M GP56 & GP90
Alexander Wudy, S GP96
Alexander, P P143, P145, P153 & P154
Alexandra Hanzu, F P1107
Alexandra, API P835
Alexandraki, K P833, P873 & P877
Alexandre, M P699
Alexandrescu, D P1065
Alexiev, A P1012
Alfano, S GP52, GP60, GP96 & P399
Alaffiql, M P128
Alfayate, R GP168 & GP233
Alflh, G P735
Alfonso, AP GP233
Alfonso, FJG EP122, GP209 & P1061
Alhambra-Expósito, M-R P581
Alhambra-Expósito, MR GP207 & P651
Ali, H EP95

Endocrine Abstracts (2019) Vol 63