Endocrine Abstracts

21st European Congress of Endocrinology
18–21 May 2019, Lyon, France

EDITORS
The abstracts were marked by the Abstract marking Panel selected by the Programme Organising Committee

Programme Organising Committee
Marta Kerbouis (UK)
ESE Scientific Programme Chair
Manuel Ten-Sempere (Spain)
Base Science Joint Chair
Sebastian Nergers (The Netherlands)
Clinical Science Joint Chair
Francesco Borsani-Chaufat (France) Chair
Local Organising Committee Chair
Agnieszka Podolak-Wilkowska (Poland)
Anton Luger (Austria)

Ex officio members
Al van der Lely (The Netherlands) ESE President
Sandra Pekic (Serbia) EYES Representative

Abstract Marking Panel
C Acemouk (UK)
M Cobo-Solaz France
S Akhmedova Greece
W Ark
A deC directly selected by the Programme Organising Committee

Local Organising Committee
Francesco Borsani-Chaufat (Lyon) Chair
Antonie Tait (Bordeaux)
Bertrand Caress (Nantes)
Bruno Vogue (Dijon)

Abstracts were marked by the Abstract marking Panel selected by the Programme Organising Committee

European Journal of Endocrinology
18–21 May 2019, Lyon, France
21st European Congress of Endocrinology

European Journal of Endocrinology
18–21 May 2019, Lyon, France
21st European Congress of Endocrinology

Volume 63
May 2019
The ESE would like to thank its Corporate Members and the ECE 2019 sponsors

ECE Corporate Members

Premium Corporate Members
Ipsen
Pfizer
Takeda

Corporate Members
Aegerion
Advanced Accelerator Applications
Laboratoire HRA Pharma
Merck Serono
Novo Nordisk
Otsuka Pharmaceuticals Europe
Sandoz International GmbH
Siemens-Healthineers
Strongbridge Biopharma
Uni-Pharma

Supporter
Chiasma

Gold Sponsors
Ipsen
Takeda
Pfizer

Bronze Sponsors
Merck
Advanced Accelerator Applications
CONTENTS

21st European Congress of Endocrinology 2019

PRIZE LECTURES AND BIOGRAPHICAL NOTES
The European Journal of Endocrinology Prize Lecture .. EJE1
The Geoffrey Harris Prize Lecture ... GH1
European Hormone Medal Lecture ... EHM1
Clinical Endocrinology Trust Lecture .. CET1

PLENARY LECTURES
Designing Cities and Homes as Exercise Machines: Helping endocrinologists to fight metabolic disease PL1
Genetic epidemiology of puberty timing and reproductive lifespan (Endorsed by the European Journal of Endocrinology) PL2
Pancreatic beta-cell ageing: Novel mechanisms and consequences in the management of diabetes PL3
Exercise Training in the Management of Type 2 Diabetes .. PL4
Paracrine regulation of the adrenal cortex ... PL5
Graves orbitopathy ... PL6
Control of Integrative Physiology by the Melanocortin Circuitry ... PL7

SYMPOSIA
Thyroid in cancer .. S1.1–S1.3
Trends in puberty .. S2.1–S2.3
Circadian clocks: from pathophysiology to chronomedicine .. S3.1–S3.3
Immunology and endocrinology (Endorsed by Endocrine Connections) S4.1–S4.3
Microbiota as new treatment for diabetes and metabolic disease S5.1–S5.3
A better life with thyroid hormone (Endorsed by the European Journal of Endocrinology) S6.1–S6.3
Endocrine disrupting chemicals (Endorsed by Endocrine Connections) S7.1–S7.3
Genderdysphoria delayed puberty ... S8.1–S8.3
Controversies in adrenal disease ... S9.1–S9.3
Cancer drug-induced osteoporosis (Endorsed by Endocrine Connections) S10.1–S10.3
EDCs & reproduction .. S11.1–S11.3
Craniopharyngioma: a challenging tumour to treat and a difficult aftermath S12.1–S12.3
Central control of metabolism: Brain rules all .. S13.1–S13.3
Innovations in NETs .. S14.1–S14.3
European Young Endocrine Scientists (EYES) .. S15.1–S15.6
Thyroid in pregnancy .. S16.1–S16.3
Where do pituitary tumours come from? .. S17.1–S17.3
Congenital hypogonadotropic hypogonadism: New insights into GnRH Regulation S18.1–S18.3
Adrenal insufficiency .. S19.1–S19.3
News on nutrition: when to eat what .. S20.1–S20.3
Rare bone disorders .. S21.1–S21.3
The pituitary as metabolic sensor (Endorsed by Endocrine Connections) S22.1–S22.3
PCOS: can we personalise treatment? ... S23.1–S23.3
What’s new in the Adrenal Cortex? (Endorsed by the European Journal of Endocrinology) S24.1–S24.3
Late Breaking Session .. S25.1–S25.3
Impact of thyroid disease on ... S26.1–S26.3
What’s new in reproductive endocrinology? ... S27.1–S27.3
Vitamin D - non-skeletal effects in RCT ... S28.1–S28.3
Endocrine controversies in sport ... S29.1–S29.3
Personalised medicine in diabetes and obesity (Endorsed by the European Journal of Endocrinology) S30.1–S30.3
Special Symposium: ESE, the International Society of Endocrinology and the Endocrine Society Joint Session - Endocrinology of Aging ... SS1.1–SS1.3
NEW SCIENTIFIC APPROACHES

DEBATES

Food addiction in humans: to be or not to be?…………………………………………………………D1.1–D1.2
Surgical treatment of phaeochromocytoma - query pre-treatment……………………………………D2.1–D2.2
T4 is not enough…………………………………………………………………………………………D3.1–D3.2
Pituitary pathology: Do we care?………………………………………………………………………………D4.1–D4.2
MicroRNAs as hormones?…………………………………………………………………………………………D5.1–D5.2
Should we treat young osteoporotic patients?……………………………………………………………D6.1–D6.2

MEET THE EXPERT SESSION………………………………………………………………………………MTE1–MTE16

MEET THE BASIC SCIENTIST SESSION……………………………………………………………………MTBS1–MTBS3

NURSE SESSION…………………………………………………………………………………………NS1.1–NS1.3

UEMS SESSION…………………………………………………………………………………………UEMS1.1–UEMS1.3

ORAL COMMUNICATIONS

Calcium and Bone…………………………………………………………………………………………OC1.1–OC1.5
Diabetes 1……………………………………………………………………………………………………OC2.1–OC2.5
Cushing’s and acromegaly………………………………………………………………………………OC3.1–OC3.5
Thyroid 1……………………………………………………………………………………………………OC4.1–OC4.5
Adrenal 1……………………………………………………………………………………………………OC5.1–OC5.5
Obesity……………………………………………………………………………………………………OC6.1–OC6.5
Endocrine Connections 1………………………………………………………………………………OC7.1–OC7.5
Reproduction 1…………………………………………………………………………………………OC8.1–OC8.5
Thyroid 2……………………………………………………………………………………………………OC9.1–OC9.5
Adrenal 2……………………………………………………………………………………………………OC10.1–OC10.5
Diabetes 2……………………………………………………………………………………………………OC11.1–OC11.5
Endocrine Connections 2………………………………………………………………………………OC12.1–OC12.5
Anterior and Posterior pituitary 2………………………………………………………………………OC13.1–OC13.5
Sex Hormones…………………………………………………………………………………………OC14.1–OC14.5

GUIDED POSTERS

Adrenal and Neuroendocrine - Tumour…………………………………………………………………………GP1–GP14
Calcium and Bone 1…………………………………………………………………………………………GP15–GP25
Diabetes and Cardiovascular Disease……………………………………………………………………GP26–GP36
Metabolic Syndrome and Hypoglycaemia………………………………………………………………GP37–GP47
Acromegaly and GH…………………………………………………………………………………………GP48–GP60
Reproductive Axis…………………………………………………………………………………………GP61–GP69
Thyroid Autoimmune Disorders………………………………………………………………………GP70–GP81
Thyroid Nodules and Cancer………………………………………………………………………………GP82–GP93
Adrenal and Neuroendocrine - Basic………………………………………………………………………GP94–GP106
Calcium and Bone 2…………………………………………………………………………………………GP108–GP118
Diabetes: Late Complications………………………………………………………………………………GP119–GP129
Obesity………………………………………………………………………………………………………GP130–GP141
Interdisciplinary Endocrinology 1………………………………………………………………………GP142–GP152
Cushing’s……………………………………………………………………………………………………GP153–GP164
Obesity………………………………………………………………………………………………………GP165–GP175
Benign Thyroid Disorders…………………………………………………………………………………GP176–GP186
Adrenal and Neuroendocrine - Clinical……………………………………………………………………GP187–GP199
Guided Posters
Calcium to Phosphorus (Ca/P) ratio as an accurate index for the diagnosis of primary hyperparathyroidism (PHPT) and hypoparathyroidism (HypoPT)

Sara De Vincenzi,1,2 Andrea Repaci,1 Paola Altieri,3 Elda Kara,4 Fabio Vescini,1 Pierlugi Amadori,2 Antonio Balestrieri,3 Vincenzo Rochira,5 & Bruno Madero3

1 Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2 Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy; 3 Unit of Endocrinology, Policlinico S. Orsola-Malpighi, DIMEC Alma Mater Studiorum Bologna, Bologna, Italy; 4 Endocrinology and Metabolism Unit, University Hospital S. Maria della Misericordia of Udine, Udine, Italy; 5 Unit of Endocrinology, Azienda Provinciale Servizi Sanitari Trento, Trento, Italy; 6 Unit of Endocrinology and Diabetology, Hospital ‘M. Bufalini di Cesena’, AUSL of Romagna, Cesena, Italy.

Background The diagnosis of PHPT and chronic HypoPT is still challenging, mainly due to the wide spectrum of clinical and biochemical presentation and the lack of validated diagnostic index in literature. The serum Ca/P ratio has been proposed as an accurate tool to diagnose PHPT in a small sample of patients, while no data is available about its possible application for HypoPT.

Aim To validate the serum Ca/P ratio as a diagnostic index for PHPT and to investigate its diagnostic performance in the diagnosis of HypoPT by analyzing a large series of data coming from a multicenter study.

Methods Multicenter, retrospective, case-control study, including 432 PHPT patients and 217 HypoPT patients, compared with 389 controls. Main outcomes: serum Ca, P, albumin, creatinine, parathyroid hormone (PTH) and 25-OH vitamin D (only for PHPT and controls). Statistical analysis: Comparisons among groups were performed by the nonparametric Kruskal-Wallis, followed by the Dunn’s post hoc test. The diagnostic accuracy of Ca/P ratio was investigated by receiver operator characteristics (ROC) curves in order to define cut-off points (with the highest specificity and sensitivity).

Results

Aim To validate the serum Ca/P ratio as a diagnostic index for PHPT and to investigate its diagnostic performance in the diagnosis of HypoPT by analyzing a large series of data coming from a multicenter study.

Methods Multicenter, retrospective, case-control study, including 432 PHPT patients and 217 HypoPT patients, compared with 389 controls. Main outcomes: serum Ca, P, albumin, creatinine, parathyroid hormone (PTH) and 25-OH vitamin D (only for PHPT and controls). Statistical analysis: Comparisons among groups were performed by the nonparametric Kruskal-Wallis, followed by the Dunn’s post hoc test. The diagnostic accuracy of Ca/P ratio was investigated by receiver operator characteristics (ROC) curves in order to define cut-off points (with the highest specificity and sensitivity).

Calcium to Phosphorus (Ca/P) ratio as an accurate index for the diagnosis of primary hyperparathyroidism (PHPT) and hypoparathyroidism (HypoPT)

Sara De Vincenzi, Andrea Repaci, Paola Altieri, Elda Kara, Fabio Vescini, Pierlugi Amadori, Antonio Balestrieri, Vincenzo Rochira, & Bruno Madero

1 Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2 Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy; 3 Unit of Endocrinology, Policlinico S. Orsola-Malpighi, DIMEC Alma Mater Studiorum Bologna, Bologna, Italy; 4 Endocrinology and Metabolism Unit, University Hospital S. Maria della Misericordia of Udine, Udine, Italy; 5 Unit of Endocrinology, Azienda Provinciale Servizi Sanitari Trento, Trento, Italy; 6 Unit of Endocrinology and Diabetology, Hospital ‘M. Bufalini di Cesena’, AUSL of Romagna, Cesena, Italy.

Background The diagnosis of PHPT and chronic HypoPT is still challenging, mainly due to the wide spectrum of clinical and biochemical presentation and the lack of validated diagnostic index in literature. The serum Ca/P ratio has been proposed as an accurate tool to diagnose PHPT in a small sample of patients, while no data is available about its possible application for HypoPT.

Aim To validate the serum Ca/P ratio as a diagnostic index for PHPT and to investigate its diagnostic performance in the diagnosis of HypoPT by analyzing a large series of data coming from a multicenter study.

Methods Multicenter, retrospective, case-control study, including 432 PHPT patients and 217 HypoPT patients, compared with 389 controls. Main outcomes: serum Ca, P, albumin, creatinine, parathyroid hormone (PTH) and 25-OH vitamin D (only for PHPT and controls). Statistical analysis: Comparisons among groups were performed by the nonparametric Kruskal-Wallis, followed by the Dunn’s post hoc test. The diagnostic accuracy of Ca/P ratio was investigated by receiver operator characteristics (ROC) curves in order to define cut-off points (with the highest specificity and sensitivity).

Calcium to Phosphorus (Ca/P) ratio as an accurate index for the diagnosis of primary hyperparathyroidism (PHPT) and hypoparathyroidism (HypoPT)

Sara De Vincenzi, Andrea Repaci, Paola Altieri, Elda Kara, Fabio Vescini, Pierlugi Amadori, Antonio Balestrieri, Vincenzo Rochira, & Bruno Madero

1 Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2 Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy; 3 Unit of Endocrinology, Policlinico S. Orsola-Malpighi, DIMEC Alma Mater Studiorum Bologna, Bologna, Italy; 4 Endocrinology and Metabolism Unit, University Hospital S. Maria della Misericordia of Udine, Udine, Italy; 5 Unit of Endocrinology, Azienda Provinciale Servizi Sanitari Trento, Trento, Italy; 6 Unit of Endocrinology and Diabetology, Hospital ‘M. Bufalini di Cesena’, AUSL of Romagna, Cesena, Italy.

Background The diagnosis of PHPT and chronic HypoPT is still challenging, mainly due to the wide spectrum of clinical and biochemical presentation and the lack of validated diagnostic index in literature. The serum Ca/P ratio has been proposed as an accurate tool to diagnose PHPT in a small sample of patients, while no data is available about its possible application for HypoPT.

Aim To validate the serum Ca/P ratio as a diagnostic index for PHPT and to investigate its diagnostic performance in the diagnosis of HypoPT by analyzing a large series of data coming from a multicenter study.

Methods Multicenter, retrospective, case-control study, including 432 PHPT patients and 217 HypoPT patients, compared with 389 controls. Main outcomes: serum Ca, P, albumin, creatinine, parathyroid hormone (PTH) and 25-OH vitamin D (only for PHPT and controls). Statistical analysis: Comparisons among groups were performed by the nonparametric Kruskal-Wallis, followed by the Dunn’s post hoc test. The diagnostic accuracy of Ca/P ratio was investigated by receiver operator characteristics (ROC) curves in order to define cut-off points (with the highest specificity and sensitivity).
Author Index

Åkermann, A-K P431
Aancute, A GP116
Aas, FE GP181
Abad, M P850
Abad, RSDc EP39
Abainou, L P246
Abbas, A P517 & P518
Abd-Ella, M P768
Abd-Elstarr, H P768
Abdallah, N P49
Abdelghani, T EP149 & P351
Abdelhak, S EP80
Abdelkafi, M P202, P385 & P88
Abdelkarim Asma, B P368
Abdelkarim, A P778
Abdelkarim, AB P1086, P702 & P827
Abdelkarif, M EP153, P1164, P1188, P395 & P787
Abdellaoui, W EP134 & P683
Abdelmonem, H P61
Abderrahmane, S EP50
Abderrahmane, A MP1066
Abdelkarim, A P778
Abdelkarim Asma, B P368
Abdelghani, T EP149 & P351
Abdelhak, S EP80
Abdelkafi, M P202, P385 & P88
Abdelkarim Asma, B P368
Abdelkarim, A P778
Abdelkarim, AB P1086, P702 & P827
Abdelkarif, M EP153, P1164, P1188, P395 & P787
Abdellaoui, W EP134 & P683
Abdelmonem, H P61
Abderrahmane, S EP50 & P159
Abdoul, H P1017
Abdulla, H P124 & P340
Abdulladjanova, N GP206
Abduvakhabova, M P238
Abduvaliev, A P175
Abe, H EP17, P31, P387 & P92
Abed, YHE P822, P886 & P891
Abellan, J GP238
Abel, ED S30,1
Abiежa, BU P347
Abir, T EP107, P289 & P290
Abizanda, EP P1116
Abizanda, JEP P869
Aboromia, MM GP131, P122 & P61
Abou Javaoude, M P211
Abraham, A GP123
Abrahamsen, B OC14,4
Abreu, AP GP62
Abribat, T OC6,1
Abrosimov, A EP143 & P15
Abucham, J MTE16
Abud, M EP20
Acatrinei, E P13
Accardo, G P319
Acerini, C GP197
Ach, K P1072, P1086, P1137, P702, P778, P779, P827 & P971
Acha Pérez, J P959
Acicgoz, A GP248
Acitores, A P225
Ackermann, D P570
Acuña García, M P243
Adachi, H P205
Adamcová, K P316
Adamcová, K P1142
Adamidou, F P1158, P1163, P357, P467, P523, P851 & P889
Adamsbaum, C OC7,3
Adamska, P P1159
Adana, MRD P184
Adel, M EP120 & P425
Adler-Cohen, C P750
Adorni, MP GP69
Aers, X OC14,2
Afansayev, D P1104, P210, P389 & P540
Afrontoulidi, A P366, P367 & P401
Afşan, K EP3, P1160, P456 & P892
Agachi, I P420
Agapito, A EP101 & P716
Agarwal, A EP158
Agea, L P1134
Aggarwal, A P489
Aggelis, C GP9, P20
Aggelis, C GP9, P20 & P877
Agha, A P535, P696 & P789
Aghayan, M P653
Agha, H P1215
Aghimandi, S P1013
Agius, R EP129
Agoulnik, A GP223
Agoulnik, I GP223
Agredos, AG-MV P1061
Agrogannis, G OC2,4
Aguayo, FJ P386
Aguilar Diosdado, M P165 & P167
Aguirre Moreno, N P1106
Aguirre, M P372
Ahlawatia, R OC3,2
Ahmad, F P124
Ahmad, T P413
Ahmadova, K P454
Ahmed Kocéir, E P559
Ahmed, F GP197
Ahmed, R EP112
Ahn, C P127
Ahn, CW GP28, GP85 & P583
Ahn, JH P533
Ahn, KJ P56
Ahn, SV P90
Ailoued, S P1148
Aim, LB OC5,1
Ainhoa, I OC9,1
Aja-Curbelo, Vd EP41
Ajenberg, C OC5,1
Akalan, A P857
Akalin, A P482
Akay, OM P482
Akbik, Y P1024
Akdemin, AY P816
Aldeniz, Y P352
Aldeniz, YS P28
Akhrarova, N P572
Akirov, A GP119
Akkalp, AK P817
Akkan, K P454
Akkan, T P114, P496 & P773
Akkarari, I EP73, P636, P650 & P883
Aklour, L GP61
Akram, M EP3, P1160, P456 & P892
Alday, IH P2116 & P946
Al-Assaad, N P583
Aldama, P P44 & P443
Alday, IH P1216 & P946
Aldiss, P S15,1
Alduk, A-M P824
Alealii, AM P131 & P132
Aleksnaite, A P1190
Aleksandras Kravos, N P247
Alemañ, GB P529
Aleric, I P447
Alexiakis, M GP66 & GP90
Alexandru, M P1065
Alexeiev, A P1012
Alexandrakis, K P833, P873 & P877
Alexandre, MI P699
Alexandrescu, D P1065
Aldespado, S GP52, GP60, GP96 & P399
Alféqih, M P128
Alfayate, R GP168 & GP233
Ali, G P735
Alfonso, AP GP233
Alfonso,]. FJGP EP122, GP209 & P1061
Alhambra-Exposito, M-R P581
Alhambra-Exposito, MR GP207 & P651
Ali, H EP95