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Abstract. The internal rate of return (IRR) is often used by managers and practitioners for 

investment decisions. Unfortunately, it has serious  flaws: (i) multiple real-valued IRRs 

may arise, (ii) complex-valued IRRs may arise, (iii) the IRR is, in general, incompatible 

with the net present value (NPV) in accept/reject decisions (iv) the IRR ranking is, in 

general, different from the NPV ranking, (v) the IRR criterion is not applicable with 

variable costs of capital. The efforts of economists and management scientists in providing 

a reliable project rate of return have generated over the decades an immense bulk of 

contributions aiming to solve these shortcomings. This paper offers a complete solution to 

this long-standing issue by changing the usual perspective: the IRR equation is dismissed 

and the evaluator is allowed to describe the project as an investment or a borrowing at his 

discretion. This permits to show that any arithmetic mean of the one-period return rates 

implicit in a project reliably informs about a project’s profitability and correctly ranks 

competing projects. With such a measure, which we name ”Average Internal Rate of 

Return”, complex-valued numbers disappear and all the above mentioned problems are 

wiped out. The economic meaning is compelling: it is the project return rate implicitly 

determined by the market. The traditional IRR notion may be found back as a particular 

case. 
 

 

Keywords. Decision analysis, investment criteria, capital budgeting, internal rate of return, 

investment stream, market rate, mean.  
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Introduction 

The inception of the internal rate of return (IRR) traces back to Keynes (1936) and Boulding (1935, 

1936a,b). This index is massively used as a tool for decision-making by scholars, managers, 

analysts, practitioners, and is taught to every student of any business and management school. 

The IRR decision criterion suggests to accept a project if and only if the IRR is greater than the 

cost of capital (usually, the market rate) and to rank competing projects via their IRRs: the higher 

a project IRR the higher its rank. Unfortunately, the IRR gives rise to serious conceptual and 

technical problems: (i) a real-valued IRR may not exist, so that the comparison with the cost of 

capital is not possible; (ii) multiple IRRs may arise, in which case the above mentioned 

comparison is problematic; (iii) compatibility with the Net Present Value (NPV) is not 

guaranteed, not even if the IRR is unique;1 (iv) the IRR ranking is not equivalent to the NPV 

ranking; (v) the IRR may not be used if the cost of capital is variable over time. The economic and 

managerial literature has thoroughly investigated the IRR shortcomings and a huge amount of 

contributions in the past eighty years have been devoted to searching for corrective procedures 

capable of healing its flaws (e.g. Boulding 1935, 1936b, Samuelson 1946; Lorie and Savage 1955; 

Solomon 1956; Hirshleifer 1958; Pitchford and Hagger 1958; Bailey 1959; Karmel 1959;  Soper 

1959; Wright 1959; Kaplan 1965, 1967; Jean 1968; Arrow and Levhari 1969; Adler 1970; Ramsey 

1970; Norstrøm 1967, 1972; Flemming and Wright 1971; Fairley and Jacoby 1975; Aucamp and 

Eckardt 1976; Bernhard 1967, 1977, 1979, 1980; De Faro 1978; Herbst 1978; Ross, Spatt and Dybvig 

1980; Dorfman 1981; Cannaday, Colwell and Paley 1986; Gronchi 1986; 1987; Hajdasinski 1987, 

2004; Promislow and Spring 1996; Tang and Tang 2003; Rocabert, Tarrío and Pérez 2005; Zhang, 

2005; Kierulff 2008; Simerská 2008).   

In particular, Pitchford and Hagger (1958), Soper (1959),  Kaplan (1965, 1967), Gronchi 

(1986) individuate classes of projects having a unique real-valued IRR in the interval ��1, �∞�. 

Jean (1968), Norstrøm (1972), Aucamp and Eckardt (1976), De Faro (1978), Bernhard (1979, 1980) 

individuate classes of projects with a unique IRR in the interval �0, �∞�.  Karmel (1959), Arrow 

and Levhari  (1969), Flemming and Wright (1971), Ross, Spatt and Dybvig (1980) use the 

                                                        
1 For example, the cash flow stream ��4, 12, �9� has a unique IRR equal to 50%. According to the IRR 

criterion, the project must be accepted if the market rate is smaller than 50%, but the NPV is negative for 

any rate different from 50%, so the project is not worth undertaking. (Note that this example implicitly 

introduces a further class of problems: if a project is not unambiguously individuated as either an 

investment or a borrowing, the IRR profitability rule introduced in section 1 below is ambiguous.) 
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assumption of project truncability in order to make the IRR unique. Teichroew, Robichek and 

Montalbano (1965a,b) and Gronchi (1987) circumvent the IRR problems by using a pair of 

different return rates applied to the project balance depending on its sign (one of which is the 

market rate itself). The notion of relevant internal rate of return has been studied by Cannaday, 

Colwell and Paley (1986), Hajdasinski (1987) Hartman and Schafrick (2004). Issues related to the 

reinvestment assumptions in the IRR criterion and the adoption of the Modified Internal Rate of  

Return have been analyzed in several contributions, among which Lorie and Savage (1955), Lin 

(1976), Lohmann (1988), Hajdasinski (2004), Kierulff (2008) (see also the historical perspective of 

Biondi 2006).  

No complete solution to the issue has so far appeared in the literature. Among the  

proposals, Hazen’s (2003, 2009) approach stands out for the insights it gives on the problem. The 

author makes use of the notion of ‘investment stream’, which is the sequence of capitals 

periodically invested in the project. He shows that the problems of uniqueness and nonexistence 

of the IRR are overcome by considering that any IRR is univocally associated with its 

corresponding investment stream. One just has to compare the real part of the (possibly complex-

valued) IRR with the market rate, and a positive sign signals profitability if the project is a net 

investment or value destruction if the project is a net borrowing.  

However, three issues remain unsolved: 
 

• complex-valued return rates and complex-valued capitals are devoid of economic 

meaning 

• project ranking with the IRR is not compatible with NPV ranking 

• the IRR may be applied only if the cost of capital is constant. 

 

This paper offers a complete solution to the long-standing issue by providing a generalization of 

the IRR notion. The basic idea is that the capital invested in a project is arbitrarily selected by the 

evaluator, which means that the evaluator has complete freedom as for the financial 

interpretation of the project: any project may be seen, at the same time, as a net investment or as a 

net borrowing of any monetary amount. Any sequence of capitals (investment stream) univocally 

determines a sequence of one-period IRRs (internal return vector). The corresponding arithmetic 

mean is shown to represent an unfailing economic yield, here named ‘Average Internal Rate of 

Return’ (AIRR). This return rate correctly signals desirability of a project and correctly ranks any 
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bundle of competing projects. The traditional IRR is obtained back as a particular case 

corresponding to a well-determined class of investment streams.  

The approach purported in this work is computationally very simple and gets rid of 

complex-valued roots of polynomials; it admits of a straightforward economic interpretation as 

the  project is reduced to its basic ingredients: (i)  capital invested, (ii) average internal rate of 

return, (iii) cost of capital. The AIRR may then be interpreted as the unique real-valued rate of 

return on the capital invested in the project. 

Three fundamental notions are brought into play to achieve the results:  

I. the notion of Chisini mean (Chisini 1929; Graziani and Veronese 2009) 

II. the notion of return (or income) alongside its relation with capital and cash 

flows (e.g. Teichroew, Robichek and Myers 1965a,b; Lee 1985; Brief and 

Peasnell 1996) 

III. the notion of residual income (Preinreich 1936, 1937, 1938; Edwards and Bell 

1961; Solomons 1965; Peasnell, 1982; Ohlson 1995; Egginton 1995; Magni 

2009a). 

 

The paper is structured as follows. Section 1 presents the mathematical notation and provides the 

notions of investment stream and internal return vector along with the notion of return as well as the 

recurrence equation for capital. Section 2 summarizes the approach of Hazen (2003) which 

essentially consists of deriving investment streams from the project’s IRRs. Section 3 deals with 

accept/reject decisions: the IRR equation is dismissed and complex-valued numbers are swept 

away: the AIRR is derived as a real-valued rate of return from a linear equation. Hazen’s decision 

criterion follows as a particular case of the AIRR criterion. Section 4 underlines that even a simple 

arithmetic mean of the period rates suffices to produce the correct result to the accept/reject 

problem. Section 5  deals with the economic interpretation of the AIRR: it is shown that it may be 

interpreted as the rate of return of the project obtained from the original one by reframing it as a 

one-period project and, in particular, as the rate of return of the capital actually invested in the 

project. Section 6 shows that the AIRR correctly ranks a bundle of projects: the AIRR ranking is 

the same as the NPV ranking. Some  concluding remarks end the paper. 
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1. Mathematical notation and preliminary results 

A project or cash flow stream is a sequence � � ���, ��, ��, … , ��� � ���� of cash flows (monetary 

values). The net present value (NPV) of project �  is 

               ���� | �� � � ��
�

���
· �1 � ��!�  

where � " �1 is the market rate.2 The net future value (NFV) is the future value of ���� | �� at 

some future date: 

 

����� | ��: � ���� | ���1 � ���                     $ % 1. 
 

We say that a project is profitable (or is worth undertaking) if and only if ���� | �� " 0. Evidently, 

this is equivalent to ����� | �� " 0 for every t. 

An internal rate of return for project x is a constant rate & ' �1 such that  ���� | &� � 0 or, which 

is the same, ����� | &� � ∑ ���� · �1 � ���!� � 0. The IRR profitability rule may be stated as 

follows: 

 

If the project is an investment, it is profitable if and only if & " �; if the project is a 

borrowing, it is profitable if and only if  & ) �.  
 

Let *� � � , $ � 0,1, … , +, and let  

 

,� - *� � *�!� � �� ,            $ � 1, … , +,       with    *� � ���, *� � 0.                                          �1a� 

 

The term *�!�  represents the capital invested (or borrowed) in the period /$ � 1, $0, so the term ,�  

is the return generated by the project in that period. If *�!� ' 0, eq. (1a) may be framed as 

 

*� � *�!��1 � &�� � �� ,            $ � 1, … , +, with    *� � ��� , *� � 0                                          �1b� 

 

where  &�:� ,�/*�!� is the period rate of return. Equation (1b) may be economically interpreted in 

the following way: at the beginning of every period, the capital *�!� is invested (or borrowed) at 

the return rate &�. The capital increases by the return generated in the period but decreases by the 

amount cash flow ��, which is paid off to (or by) the investor. The return is often called income in 

business economics and accounting (Lee 1985; Penman 2010); the capital *� , $ � 0,1, … , +, is also 

                                                        
2 The approach is compatible with a bounded-rationality perspective: in this case � is a subjective threshold 

(Magni 2009b). 
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known as project balance (Teichroew, Robichek and Montalbano 1965a,b), outstanding capital 

(Lohmann 1988; Peccati 1989; Gallo and Peccati 1993), unrecovered capital (Lohmann, 1988), 

unrecovered balance (Bernhard, 1962; Hajdasinski, 2004), and may also be interpreted as the book 

value of the project (therefore, the return rate &� is interpretable as an accounting rate of return). 

Equation (1) is called ‘clean surplus relation’ in accounting (see Brief and Peasnell 1996).  

 

Any vector 3 � �*�, *�, … , *�!�� � �� satisfying (1) is here labeled ‘investment stream’.  

 

Consider one-period project �4 � �54!6, �*�!�, *� � �� , 57!4� � ���� where 58 � �9 is the null 

vector. Any such project represents an  investment (or borrowing) of amount *�!� at time t�1, 

which generates an end-of-period payoff equal to �*� � ���, $ � 1, 2, … , +. Given that *� � ��� and 

*� � 0,  the equality 

� �4�

���
� � 

holds, irrespective of the investment stream 3 � �� . Any project may then be viewed as a 

portfolio of T one-period projects. The possibility of splitting up any multi-period project into T 

one-period projects is conspicuous: it opens up the opportunity of interpreting &� as the unique 

IRR of project �4, for (1b) may be reframed as 

 

�*�!� � *� � ��
1 � &�

� 0                                                                                   �2a� 

or, which is the same, 

*�!��1 � &�� � *� � ��                                                                                    �2b� 

 

(the latter allows one to accept &� � �1). It is easy to see that that such an equation leads to 

*� � � ∑ ���1 � &�����1 � &���� : �1 � &������ . Letting �����, 8�: � ∑ ���1 � &�����1 �����

&���� : �1 � &�� and using the terminal condition *� � 0, one gets �����, 8� � 0, which means 

that the sequence 8 � �&�, &�, … , &�� � ��  of one-period IRRs represents an internal return vector 

(see Weingartner 1966; Peasnell 1982; Peccati 1989; Magni 2009a). There are infinite sequences 8 

of real-valued numbers that satisfy �����, 8� � 0; an IRR (if it exists in the real interval) is only a 

particular case of internal return vector such that all components are constant: 8 � �&, &, … , &�.  

It is important to underline that the internal return vector 8 and the investment stream 3 are 

in a biunivocal relation: once the capitals are arbitrarily fixed first, the corresponding one-period 

IRRs are univocally determined. This means that the analyst is free to describe the project with 
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his own preferred investment stream. (Equation (1) may also be read from the internal return 

vector to the investment stream, which implies that, once the one-period rates are arbitrarily fixed 

first, the capitals are then univocally derived.)  

 

2. Hazen’s (2003) criterion: from IRRs to investment streams 

Hazen (2003) focuses on multiple roots drawn from the classic IRR equation. If a real-valued IRR 

exists, the author considers the investment stream 3�&� � �*� , *��&�, *��&�, … , *�!��&�� derived 

from the IRR, so that *��&� � *�!��&��1 � &� � ��. The decision criterion the author proposes may 

be summarized in the following  

 

Theorem 2.1. Suppose & � � � ;�1< is an IRR of project �. Then, 

(i) if ���3�&� | �� " 0, project � is profitable if and only if & " � 

(ii) if ���3 �&�| �� ) 0, project � is profitable if and only if & ) � 

 

where ���3 | ��: � ∑ *��!�� �1 � ��!� (Hazen 2003, Theorem 4. See also Hazen 2009). The project is 

a net investment if ���3 | �� " 0, a net borrowing if ���3 | �� ) 0. In the former case, an IRR is a rate 

of return, whereas in the latter case an IRR is a rate of cost. Theorem 2.1 entails that the analyst 

should follow the following steps: 

 

a. solve the IRR equation and pick any one of the IRRs 

b. compute the corresponding investment stream 3�&� and calculate its present value 

���3�&� | �� to ascertain its financial nature (investment or borrowing) 

c. if the project is an investment (borrowing), accept the project if and only if the IRR 

is greater (smaller) than the market rate. 

 

This criterion brilliantly solves the problem of multiple roots, because to every root k there 

corresponds a unique ���3�&�| ��. The choice of which root to use is immaterial, for the project 

NPV may be written as 

�& � ��
1 � � · ���3�&� | �� � ���� | ��                                                                          �3� 

 

 (see Hazen, 2003, Theorem 1; Lohman, 1988, eq. (43)). Equation (3) shows that the NPV of the 

project is obtained as the product of two factors: (i) the (discounted) difference between a project 

IRR and the market rate, (ii) the present value of the IRR-derived investment stream. The left-
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hand side of (3) is invariant under changes in the IRR. That is, let &> and &? be any two real-

valued IRRs and let 3�&>� and 3�&?� be the corresponding investment streams. Then,  

 

&> � �
1 � � · ��@3�&>� | �A � &? � �

1 � � · ���3�&?�| �� � ����, ��. 
This unfolds the opportunity of depicting the project in different ways: for each internal rate of 

return &>, B � 1,2, … , +, the project may be interpreted as a net investment (borrowing) of amount 

��@3�&>� | �A with rate of return (cost) equal to  &>. Far from generating ambiguity, this multiple 

description of a project is computationally unfailing and economically meaningful: the NPV does 

not change under changes in the project description. 

 In a similar vein, the author successfully deals with complex-valued IRRs as well (see his 

Theorem 5), but the economic significance of the result is obfuscated: “We are currently unaware 

of an economic interpretation of complex-valued rates of return and complex-valued investment 

streams, and without such an interpretation it would be hard to justify any economic 

recommendation without resort to other performance measures such as present value” (p. 44).  

 

Hazen’s approach is quite successful in accept/reject decisions, but does not allow for a sufficient 

degree of freedom, so that complex-valued numbers may not be dismissed and competing 

projects may not be correctly ranked. In the next sections we show that allowing flexibility on the 

investment stream solves all the problems: first, one freely chooses an investment stream, then 

one computes the corresponding one-period return rates &�, and, finally, calculates the arithmetic 

mean. This wipes out complex-valued numbers, and Hazen’s criterion is derived as a particular 

case. 

 

3. The use of AIRR in accept/reject decisions 

We  first provide a generalization of eq. (3). 

Lemma 3.1. Consider an arbitrary investment stream 3 � �*�, *�, *�, … , *�!�� � �� . Then, the 

following equality holds: 

���� | �� � � �,�
�

���
� �*�!�� · �1 � ���$                                                  �4� 

 

Proof: By eq. (1),  �� � ,� � *�!� � *� for $ % 1. Also, �1 � ��!����� � �1 � ��!� � �� · �1 � ��!�����. 
Reminding that *� � 0,  
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���� | �� � � ,��1 � ���$ � � *�!�
�

�
�1 � ���$ � � *�

�

�
�1 � ���$ � �� 

�

�
                                             

                 � � ,��1 � ���$�

�
� *��1 � ���1 � � *�

�!�

�
�1 � ����$�1� � � *�

�!�

�
�1 � ���$� *� 

                 � � ,��1 � ���$�

�
� � �

�!�

�
*��1 � ����$�1� � �*��1 � ���1 

                 � � �,� � �*�!���1 � ���$�

�
. 

(QED) 

 

The term �,� � �*�!�� in (4) represents a  “residual income”, that is, it measures the return in 

excess of what could be earned by investing the capital *�!� at the market rate �. The notion of 

residual income is well-known in managerial accounting and value-based management (Edwards 

and Bell 1961; Peasnell 1982;  Egginton 1995; Martin and Petty 2000; Young and O'Byrne 2001; 

Martin, Petty and Rich 2003; Pfeiffer 2004. Baldenius and Reichelstein 2005; Pfeiffer and 

Schneider, 2007. See Magni, 2009a, for a review). If *�!� ' 0 for every $ � 1,2, … , +, &� is defined so 

that (4) may be framed as ���� | �� � ∑ *�!��&� � ���1 � ���$�� . The margin �&� � �� measures the 

residual income per unit of capital invested, so we henceforth call it “residual rate of return” 

(RRR). By replacing &� with an internal rate of return &, the residual income becomes *�!��& � ��, 

which Lohmann (1988) labels “marginal return”. Lohmannn’s marginal return is then a particular 

case of residual income, and the IRR-determined investment stream 3�&� is just one choice of an 

investment stream 3 � �7 among infinite possible ones. In other words, eq. (4) holds whatever the 

choice of 3 � �7 and eq. (3) is only a particular case of it. 

Now we search for a Chisini mean (Chisini 1929; Graziani and Veronese 2009) of the one-

period IRRs. That is, we search for that constant return rate &C which, replaced to each one-period 

rates &� in the residual-income expression, generates the project NPV: from  

 

∑ *�!��&����� � ���1 � ��!� � ∑ *�!��&C���� � ���1 � ��!�  

one gets 

&C � ∑ &�*�!��1 � ��!���
∑ *�!��1 � ��!���

� ∑ &�*�!��1 � ��!��!����
���3, �� .                                          �5� 

The mean &C is an average of the one-period IRRs, and the weighs are given by the (discounted) 

capitals (see also Peccati 1989). We name this mean ‘Average Internal Rate of Return’ (AIRR).  
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We are now able to prove the following 

Theorem 3.1. For any investment stream 3 � �� ,  
(i) if ���3 | �� " 0, project � is profitable if and only if &C " � 

(ii) if ���3 | �� ) 0, project � is profitable if and only if &C ) � 

(iii) project  � is value-neutral (i.e. NPV = 0) if and only if &C � �  

 

Proof: Owing to Lemma 3.1 and eq. (5), the equality  

���� | �� � @&C � �A � *�!�
�

�
· �1 � ��!� � &C � �

1 � � ���3 | ��                                      �6� 

holds for any arbitrary investment stream. Hence, the thesis follows immediately.         (QED) 

 

Contrasting Theorem 2.1 and Theorem 3.1 from a formal point of view, we note that the margin 

�& � �� is replaced by the residual rate of return �&C � ��; in other terms, the AIRR replaces the 

IRR. From a computational and conceptual point of view, a radical departure from Theorem 2.1 is 

consummated: the latter presupposes that the decision maker solves a T-degree equation in order 

to find a (real-valued or complex-valued) IRR; hence, the investor univocally determines the 

investment stream 3�&� (and, therefore, ���3�&� | ��). In contrast, Theorem 3.1 leaves the decision 

maker free to choose any desired investment stream 3, whence an internal return vector 8 is 

univocally individuated, and the AIRR is consequently computed.  

The average rate &C is a reliable return rate because Theorem 3.1 just says that the product 

of ���3 | ��@&C � �A is invariant under changes in 3. It is important to stress that the AIRR itself is 

invariant under changes in 3, as long as ���3 | �� is unvaried. To see it, just consider that (6) 

implies  

&C � &C@���3 | ��A � � � ����� | ��
���3 | ��    

 

which means that the AIRR is a (hyperbolic) function of ���3 | ��.  For any fixed � � � the 

equation � � ∑ *�!��� · �1 � ��!�  has infinite solutions, so any given ���3 | �� � � is associated 

with infinitely many investment streams which give rise to the same AIRR. Figure 1 illustrates the 

graph of the AIRR function for a positive-NPV project. The AIRR is greater (smaller) than the 

market rate for every positive (negative) ���3 | ��. The triplet ����3 | ��, &C, �� univocally 

determines the NPV: precisely, ���3 | ��@ &C � �A � ���� | ���1 � �� � ����� | ��. Graphically, 

����� | �� is the area of any rectangle with base 0�CCCC and height F&C��� � �F. Therefore, a project may 

always be viewed as either a net investment or a net borrowing of any amount at the decision 



10 

 

maker’s discretion: the overall economic analysis does not change, given that the NPV does not 

change: this is actually the reason why the choice of the investment stream is irrelevant. Using the 

notion of internal return vector and computing the Chisini mean of the one-period rates &�, no 

complex-valued roots ever appear: only real numbers come into play, with the precise meaning of 

return rates. In other words, complex-valued numbers are removed a priori so that economic 

intuition is always preserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computationally, the steps an analyst should follow are: 

a. arbitrarily pick an investment stream 3 so that the project is described as either an 

investment or a borrowing 

b. compute the corresponding one-period return rates and their average 

c. if the project is an investment (borrowing), accept the project if and only if the 

AIRR is greater (smaller) than the market rate. 

 

Figure 1. The graph of the AIRR function for a positive-NPV project. No matter which 

investment stream one chooses, the AIRR is always greater than the market rate for positive 

���3 | ��  and smaller than the market rate for negative ���3 | �� (i.e., the project is worth 

undertaking). 

 ���3 | ��   �� 

 &C ��2� 

 �� 

 &C ��1� 

�����|�� 

 

�����|�� 

 �  

 &C  
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Remark 3.1. While &� � GH�IH
GHJK

� 1 is not defined if *�!� � 0, the AIRR is nonetheless defined, for the 

return ,�  is well-defined for every *�!� � �. Owing to Lemma 3.1 and the notion of Chisini mean, 

we may write 

&C � ∑ ,��1 � ��!��!����
���3 | ��                                                                    �7� 

 

so the AIRR is well-defined even if some capital is equal to zero, as long as the denominator is 

nonzero. (Obviously, given that the analyst arbitrarily chooses the investment stream, he will 

always pick one such that ���3, �� ' 0). In such a way, in order to calculate the AIRR one does 

not even need compute rates of return, but only returns. 

 

EXAMPLE 

Consider the cash flow stream  � � ��10, 30, �25� studied by Hazen (2003, p. 44), where a 

market rate equal to 10% is assumed. The project NPV is ���� | �� � �3.39, so the project is not 

profitable. No real IRR exists, but two complex-valued IRRs exist: &� � 0.5 � 0.5M and &� � 0.5 �
0.5M. Instead of focusing on the complex-valued IRRs and calculating the complex-valued 

investment streams (whose economic meaning is obscure), one may more conveniently choose, 

at discretion, an investment stream and then compute the corresponding (real-valued) AIRR. 

For illustrative purposes, Table 1 collects four arbitrary investment streams. Any of the 

corresponding AIRRs provides correct information: for example, the first pattern is such that 

��@36 | 10%A � 4.55 " 0; this means that the project is framed as a net investment. The AIRR is 

&C � �72%, which is smaller than the market rate 10%.  Hence, by Theorem 3.1, the project is not 

worth undertaking. As for the second choice, we find ��@3O | 10%A � �8.18 ) 0 so the project is 

depicted as a net borrowing; by Theorem 3.1, the project is not worth undertaking, because the 

AIRR (now interpreted as a rate of cost) is &C � 55.56%, which is greater than the market rate 

10%. As for the third pattern, ��@3Q | 10%A � �15.45 ) 0 so the project is seen as a net 

borrowing at a rate of cost of &C � 34.12%, which is greater than the market rate 10%. Again, the 

project is deemed unprofitable. Analogously for the fourth case, where eq. (7) is used for 

computing the AIRR. Note that in any possible case the product of the RRR and the present 

value of the investment stream is invariant under changes in vector 3: for example, in the first 

case the RRR is �82%, which, applied to the amount invested 4.55, leads to the time-1 NFV 
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which, discounted by one period, leads back to the NPV:  �82% · 4.55 · 0.91 = �3.39. 

Analogously in any other case. 

 

 

We now show that the IRR is just an AIRR associated with a specific class of investment streams. 

We first need the notion of PV-equivalent investment streams. 

 

Definition. Two or more investment streams are said to be PV-equivalent if they have equal  

���3 | ��.  
 

Consider the class of those investment streams 3 which are PV-equivalent to 3�&�; that is, 

���3 | �� � ���3 �&�| ��. We call this class ‘Hotelling class’ (after Hotelling 1925). This class 

contains infinite elements, because there exist many infinite vectors 3 � �� that fulfill the 

equation ∑ *��1 � ��!��!�� � ���3 �&�| ��. Now, it is obvious that the AIRR generated by 3�&� is & 

itself, for ∑ &*��&��1 � ��!��!�� /���3�&�, �� � &. But any investment stream contained in the same 

class generates the same AIRR, since, as seen above, the AIRR does not depend on 3 as long as 

���3 | �� is unvaried. That is, &C@���3|��A � & for any 3 contained in the Hotelling class. For such 

investment streams, eq. (6) is identical to eq. (3). We have then proved the following  

 

Theorem 3.2. A (real-valued) IRR is a particular case of AIRR generated by a Hotelling class of 

investment streams. The class contains infinite elements, so there exist infinite investment streams 

which give rise to that IRR as the AIRR of the class. 

 

 
 

 

Table 1. Complex-valued IRRs, real-valued AIRRs 

Time 0 1 2 ���3| 10%� AIRR (%) Market rate (%) 

Cash Flows �10 30 �25 

NPV �3.39      

       

36 10 �6 0    

Period rate  140% 316.7% 4.55 �72.00 10 

3O 10 �20 0    

Period rate  0% 25% �8.18 55.56 10 

3Q 10 �28 0    

Period rate (%)  �80% �10.7% �15.45 34.12 10 

3R 10 0 0    

Period rate (%)  200% undefined 10 �27.27 10 
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EXAMPLE 

Consider the cash flow stream � � ��10, 5, 8, 3� and assume the market rate is 5%. The project has 

a unique real-valued IRR equal to & � 29.59%. This IRR is but the AIRR corresponding to the 

Hotelling class, i.e. the set of those investment streams such that ���3 | 5%� � 19.68. An element 

of this class is 3 � �10, 8, 2.27�, as can be easily verified. Its associated internal return vector is 

8 � �30%, 28.4%, 32.02%� which leads to &C � 29.59%. Another PV-equivalent investment 

stream is 3 � �10, 7, 3.32�, which generates the internal return vector 8 � �20%,
61.75%, �9.7%�, whence &C � 29.59%. There are infinitely many investment streams in the same 

class that lead to &C � 29.59%. The IRR-determined vector is 3�&� � �10, 7.96, 2.31�, which is 

obviously associated with 8 � �29.59%, 29.59%, 29.59%�, so that &C � 29.59%. We stress that 

3�&� is only one element of the class; any other PV-equivalent investment stream supplies the 

same AIRR and the same answer on desirability of the project: the project is worth undertaking, 

for &C � 29.59% " 5% � �. 

  

Theorem 3.2 allows us to set aside the traditional interpretation of the IRR as that constant rate of 

return which is applied to the capital periodically invested in the project. The IRR is, more 

properly, an average AIRR corresponding to infinitely many PV-equivalent investment streams; 

the constant internal return vector 8 � �&  &, … , &� is only one among other ones contained in the 

Hotelling class. And given that Theorem 3.1 tells us that the decision makers may freely choose 

their own preferred investment stream (and, therefore, their own preferred class of investment 

streams), the role of the IRR is diminished: only the AIRR notion counts and any AIRR correctly 

solves the accept/reject decision problem: the IRR is only one instance of it.  

 

Remark 3.3. Evidently, Theorem 3.2 implies that Hazen’s decision criterion is a particular case of 

the AIRR criterion. The former requires the solution of the IRR equation, but such a solution is 

just the AIRR corresponding to any investment stream belonging to a Hotelling class. And a 

Hotelling class is only one class among other infinitely many classes that the analyst may use. 

 

EXAMPLE 

Consider the following mineral-extraction project, first illustrated by Eschenbach (1995, Section 

7.6) and, later, by Hazen (2003). The cash flow stream is 

� � ��4, 3, 2.25, 1.5, 0.75, 0, �0.75, �1.5, �2.25� and the real-valued IRRs are &� � 10.43% and 
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&� � 26.31%. Assuming a market rate equal to � � 5%, the NPV is ���� | 5%� � �0.338. We 

compute the AIRRs associated with ten different investment streams, collected in Table 2. The 

first five investment streams depict the project as a net borrowing (���3 | 5%� ) 0), whereas the 

remaining five investment streams depict the project as a net investment (���3 | 5%� " 0�. As the 

reader may note, the AIRRs associated with the borrowing-type (investment-type) description are 

greater (smaller) than the market rate; no matter how the investment stream is chosen, the 

comparison between AIRR and market rate always supplies the correct answer: the project is not 

worth undertaking. In particular, the first three investment streams are PV-equivalent and belong 

to a Hotelling class: ��@36 | 5%A � ��@3O | 5%A � ��@3Q | 5%A � �6.53 so the AIRR is the same: 

&C � 10.43%. The fourth investment stream belongs to another Hotelling class and is just the 

investment stream determined by &�.  The fifth one is such that ��@3S | 5%A � �7.195 and 

&C � 9.93%. Among the other five investment streams, 3T and 3U are PV-equivalent: ��@3T | 5%A �
��@3U | 5%A � 27.145, so they belong to the  same class and therefore supply the same AIRR, 

which is equal to 3.69%. The last investment stream is 365 � �4, 0, 0, 0, 0, 0, 0, 0�. In this case, eq. (7) 

is employed to compute the AIRR.  Figure 2 depicts the graph of the AIRR function associated 

with this project. We stress again that the areas of the rectangles with base 0 ���3|��CCCCCCCCCCCCC  and height 

F&C � �F are equal and correspond to the project’s time-1 NFV. 

 

4. The simple arithmetic mean 

The AIRR is a weighted average, the weighs being the capitals discounted at the market rate. This 

section shows that it is possible to rest on the simple arithmetic mean. For example, consider  

again the project described in Table 2 and focus on 3V � �4, 4.2, 4.41, 4.63, 4.862, 5.105, 5.36,
5.628�. This choice implies ��@3V | 5%A � 32. Rather than computing the weighted arithmetic 

mean of the period rates, let us compute the simple arithmetic mean of the period rates: 

 

1
8 �80% �  58.57% � 39.01% � 21.19% � 5% � 9.69% � 22.98% � 139.97%� � 3.89%. 

 

But 3.89% � &C�32�. That is, the weighted arithmetic mean is equal to the simple arithmetic mean. 

The reason is that the capitals in 3V grow at the market rate:  

3V � �4, 4�1.05�, 4�1.05��, 4�1.05�W, 4�1.05�X, 4�1.05�Y, 4�1.05�Z, 4�1.05�[�. 
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In general, suppose 3 � ����, ����1 � ��, … , ����1 � ���!��. Then *�!� � ����1 � ���!� for 

$ � 1, … , +, so that 
 

&C � ∑ &�*�!��1 � ��!��!����
���3, �� � � ∑ &�����

�+��
� &� � &� � : � &�

+ . 

 

 

Table 2. A mineral extraction project (market rate= 5%) 

 
Time 0 1 2 3 4 5 6 7 8  

Cash flows −4 3 2.25 1.5 0.75 0 −0.75 −1.5 −2.25  

           

Net borrowing                 AIRR 

36 4 1.417 −0.685 −2.256 −3.242 −3.58 −3.203 −2.037 0  

Period rate  10.43% 10.43% 10.43% 10.43% 10.43% 10.43% 10.43% 10.43% 10.43%

3O 4 2 1 −0.5 −1 −4 −2 −10.5 0  

  25% 62.5% 0% −50% 300% −31.25

% 

499.9% −78.57% 10.43%

3Q 4 2.05 0.34 −1.068 −2 −4 −3 −6.826 0  

Period rate  26.25% 26.34% 27.06% 17.04% 100% −6.25% 177.52% −67.04% 10.43%

���36 | 5%� � ���3O | 5%� � ���3Q | 5%� � �6.53 

3R 4 2.052 0.342 −1.068 −2.098 −2.65 −2.598 −1.781 0  

Period rate  26.31% 26.31% 26.31% 26.31% 26.31% 26.31% 26.31% 26.31% 26.31%

���3R| 5%� � �1.665 

3S 4 2 −2 −3 −4.08 −4 −2 −1 0  

Period rate  25% −87.5% �25% 11% −1.96% �31.25

%% 

25% 125% 9.93%

��@3S | 5%A � �7.195 

Net investment 

3\ 4 2 1 1 −0.1 −0.3 −2 −1 0  

Period rate  25% 62.5% 150% −35% 200% 816.67

% 

25% 125% −1.88%

���3\ | 5%� � 5.155 

3T 4 4 4 4 4 4 4 4 0  

Period rate  75% 56.25% 37.5% 18.75% 0% −18.75

% 

�37.5% �156.25

% 

3.69%

3U 4 3 5 6 1 8 3 1.745 0  

Period rate  50% 141.67

% 

50% −70.8% 700% −71.87

% 

−91.8% −228.9% 3.69%

���3T | 5%� � ���3U | 5%� � 27.145 

3V 4 4.2 4.41 4.63 4.862 5.105 5.36 5.628 0  

Period rate  80% 58.57% 39.01% 21.19% 5% −9.69% −22.98% −139.97% 3.89%

���3V | 5%� � 32 

365 4 0 0 0 0 0 0 0 0  

Period rate   −25% undef. 

def. 

undef. undef. undef. undef. undef. undef. −3.87%

���365 | 5%� � 4 
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5% 

4    5.155 

27.145           32 

3.89% 

3.69% 

–1.88%  

–3.87% 

10.43% 

9.93% 

26.31%% 

–7.195    –6.53                 –1.665 ���3 |�� 

&C 

&C 

Figure 2. Mineral extraction example (see Table 2)― any AIRR is a reliable return rate associated 

with a class of PV-equivalent investment streams: contrasted with the market rate, it signals that the 

project is not worth undertaking. The project’s IRRs (10.43% and 26.31%) are but two different 

values taken on by the AIRR function corresponding to two different Hotelling classes. 
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The same result applies if the investment stream is PV-equivalent to  3 � ����, ����1 �
��, … , ����1 � ���!��, because the AIRR does not depend on 3 as long as ���3 | �� is unvaried. 

Then, from Theorem 3.1, the following result holds. 

 

Theorem 4.1. Suppose the investment stream is 3 � ����, ����1 � ��, … , ����1 � ���!�� or PV-

equivalent to it. If �� ) 0 (respectively, �� " 0) a project is profitable if and only if the simple 

arithmetic mean of its period rates is greater (respectively, smaller) than the market rate: 

∑ 9H]H^K
� " �  (respectively, 

∑ 9H]H^K
� ) �). 

 

Theorem 4.1 is intriguing in that the simple arithmetic mean is the easiest one to use and 

understand, and the financial nature of the project is unambiguously revealed by the sign of the 

first cash flow (the project is a net investment if �� ) 0, a  net borrowing if �� " 0). 

 

EXAMPLE 

Consider the cash flow stream � � ��10, 4, 5, 6�; the market rate is � � 10%. If one chooses 

3 � �10, 11, 12.1�, the assumption of Theorem 4.1 holds. The internal return vector is 8 � �50%,
55.45%, �50.41%� and the simple arithmetic mean of the period rates is 

Y�%�YY.XY%!Y�.X�%
W �

18.35% " 10%. Therefore, the project is profitable. This is confirmed by the NPV, which is equal 

to ���� | 10%� �2.28. The latter may be found by applying the RRR (=8.35%) to ���3 | 10%� � 30 

and discounting back by one period. 

 

5. Economic  interpretation of AIRR. 

We have shown that the economic analysis of a project depends on the fundamental triplet 

����3 | ��, &C, ��. While the third component is exogenously given, the first one and the second 

one depend on a choice upon the decision maker. The latter may choose any investment stream, 

and the fundamental triplet determines the project NPV: 

 

���� | �� � ���3 | ���&C � ��
1 � �  . 

 

To economically interpret the above equality, suppose a decision maker has the opportunity of 

investing in a one-period project _ � �`�, `��, with `� � ����3 | �� and `� � ���3 | ��@1 � &CA. The 

NPV of _  is 
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���_ | �� � ����3 | �� � ���3 | ��@1 � &CA
1 � �                                                                     

which evidently coincides with ���� | ��. This means that the use of AIRR enables the decision 

maker to transform project � into an economically equivalent  one-period project. The IRR of _ is 

the solution of ����_ | �� � 0, which is just &C. We then maintain that the correct economic yield is 

just &C, bearing the unambiguous meaning of internal rate of return. 

One may wonder whether, among the infinite values the AIRR may take on, there is any one 

which is particularly significant from an economic point of view. While we stress that the choice 

of 3 is subjective (and irrelevant to the decision-making process), it actually seems “natural” in  

many cases to consider *� as the total capital invested. After all, if one invests 10 dollars at time 0, 

it is natural to search for the rate of return of those 10 dollars. That is, one may choose 3 such that 

���3 | �� � 10. In general, one may pick 3 such that ���3 | �� � ���   (there are infinite investment 

streams that fulfil the requirement, the simplest of all being 3 � ���� , 0, 0 , … , 0); so doing, 

project � is turned into an equivalent one-period project  _ � a ��, ����1 � &C����b whose NPV is 

���_ | �� � �� � ���@1 � &C����A
1 � � �  ���� | ��.       

Note that this implies  

��� a1 � &C����b � � ���1 � ��!��!���

���
 

so that the cash flows which will be generated from time 1 to time T are all compressed back to 

time 1. The interpretation is economically interesting: reminding that �9 - ∑ ���1 � ��!��!9����9��  

is the so-called market value of the project as of time &, & � 0, 1, … , + � 1, we have ∑ ���1 �����

��!��!�� � �� � ∑ ���1 � ��!��!�� � �� ����� ��. Therefore, if the investor invests ��� in project �, it 

is as if he invested ��� in a one-period project generating a terminal payoff consisting of the cash 

flow �� and the end-of-period market value ��. That is, ��� a1 � &C����b � �� � ��. Therefore, 

&C����  represents the rate of return on the *�  dollars invested.  Such a return rate, depending on 

��, is implicitly determined by the market. Note that, in such a way, the project NPV is reduced to 

the economically evident relation “value minus cost”: 

���� | �� � �� � ��
1 � � ��� �   ��  c

value

�   *�  c
cost

. 
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Should other outlays occur after the initial one, the investor may well consider, more generally, 

the sum of the outlays as the total capital invested, so that 3 is selected such that ���3 | �� � 

� ∑  ���:IHd�  (or  ���3 | �� �  � ∑  ���:IHe�  if the initial cash flow is an inflow). 

 

Remark 5.1. An interpretation of project � as a one-period project is provided in Hazen (2009, eqs. 

(1)-(2)) as well, but the author’s interpretation is bounded by the use of the IRR, which  univocally 

determines ���3�&� | ��, so making it impossible to consider ���3 | �� � ��� (let alone ���3 | �� �
� ∑  ���:IHd� ) , which is the only way to compute the rate of return on the capital actually invested. 

 

EXAMPLE 

Consider a cash flow stream  � � ��10, 2, 8, 3, 1�. The market rate is 3% so that ���� | 3%� �
3.116.  Consider now project _ � ��10, 13.51�. Its unique real-valued IRR is &f � 35.1%, which 

is equal to project �’s AIRR &C�*�� � &C�10�. The NPV of _ is ���_ | 3%� � �10 � 13.51�1 �
0.03�!� � 3.116 � ���� | 3%�. Note that 11.51 represents the market value of project � as of time 

1. Therefore, _ is just the very project � disguised as a one-period project:  the investor invests 10 

and receives the time-1 cash flow along with the market value of project �: 2 � 11.51 � 10 ·
�1 � 0.1351�: we may say that the investor invests his 10 dollars in a project whose economic 

yield, implicitly determined by the market, is 35.1%.  

Consider the project described in Table 1, which entails an investment of  10 dollars. As seen, the 

traditional IRR does not exist. This is irrelevant to the analyst, for the rate of return of those 10 

dollars does exist: it is �27.27%, the AIRR associated with the fourth investment stream. 

Consider the project described in Table 2, which entails an investment of 4 dollars. The rate of 

return of those 4 dollars is �3.87%, corresponding to 365. However, should the analyst consider 

all the negative outflows as investments, then it means that the overall investment is equal to 8.5 

dollars. In this case, one may choose, for example,  3 � �4, 4.725, 0, 0, 0, 0, 0, 0� so that ���3 | �� �
8.5 and the rate of return of those 8.5 dollars invested is  0.827%, as may be easily checked. 

 

6. Ranking projects  

It is well-known in the economic and managerial literature as well as in real-life applications that 

ranking competing projects by comparing their IRRs clashes with the NPV ranking.  The 

economic and managerial literature have strived to overcome the IRR faults, but project ranking 

with the IRR is so far an unsolved problem. The reason is that the use of a traditional IRR 
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determines the present value of investment stream univocally. More precisely, suppose that 

competing cash flows � and _ are under consideration and let 3�&I� and 3�&f� be the investment  

stream associated with the IRRs,  & I and &f, respectively.  We have 

 

���� | �� � ���3�& I� | �� · &I � �
1 � �                    ���_ | �� � ���3�&f� | �� · &f � �

1 � � . 
 

 

According to the IRR decision criterion, the higher a project IRR, the higher its rank. But for 

consistency with NPV to hold, ���3�&I�| �� and ���3�&f�| �� must be equal: “if the net 

investments … are very different, then comparing the internal rates … will tell us little about the 

relative desirability of � and _ in present value terms.” (Hazen, 2003, p. 42). The conceptual and 

formal shift accomplished by the AIRR approach (let the investment stream be arbitrarily chosen) 

unlocks the bounds on the investment stream (and, therefore, on its present value) so that the 

analyst may soundly rank competing projects via their AIRRs. This is substantiated in the 

following 

 

 

Theorem 6.1. Consider competing projects �6, �O, … , �g. The ranking of the projects via their 

AIRRs is equal to the NPV ranking, provided that the investment streams of the projects are 

chosen so as to be PV-equivalent. 

 

Proof: First of all, we note that there are infinitely many ways to get the same ���3| �� for the h 

projects at hand, so the requirement of PV-equivalence gives no problem. Let 3> be the investment 

stream selected for project  �i, B � 1,2, … h such that  

 

���3� | �� � ���3�  | �� � : � ���3j  | ��. 

Let &C> be the AIRR associated to 3> . From eq. (6),  it follows that  max�m>mj ��@�i | �A is equivalent 

to  max�m>mj &C>  if ��@3>  | �A " 0 and to  min�m>mj &C>   if ��@3>  | �A ) 0.                                     (QED) 
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EXAMPLE 

Consider the following projects: �6 � ��100, 10, 10, 110�, �O � ��90, 69, 10, 12, 20�, �Q �
��35, 50, �18� and let � � 5% (see Table 3). Because ����6| 5%� � 13.6, ����O| 5%� � 11.6, 

����Q| 5%� � �3.7, the NPV ranking is : �6 p �O p �Q. The IRR of the first project is 10%, the IRR 

of the second project is 12.61%, no real IRR exists for the third project. This means that the IRR 

ranking of the three projects is not even possible; also, the first two projects are incorrectly 

ranked, given that the second project’s IRR is greater than the first one’s. Let us choose three PV-

equivalent investment streams. Among the infinite possible choices, we choose, for illustrative 

purposes, 

  3� � �100, 20, 10� 

 3� � �90, 10, 5, 27.85� 

  3W � �35, 97.77�. 

 

Hence, ���31| 5%� � ���32�| 5%� � ���33| 5%� � 128.12. After calculating the one-period rates 

for all projects, one finds the following AIRRs for the three projects: &C� � 16.16% " &C� �
14.51% "  &CW � 1.96%. The projects are described as net investments, so the higher the AIRR, the 

higher the rank. Therefore, �6 p �O p �Q, which is just the NPV ranking (see also Figure 3).  

 

The ranking via the AIRR may be even more fruitfully reframed in terms of residual rate of return 

&C � �. The latter provides, at one time, information about profitability and information about 

rank. In the above example, the RRRs are  

 

  &C� � � � 11.16%.    

  &C� � � � 9.51%     

  &CW � � � �3.04%. 
 

Note that the third RRR is negative, so signaling that the project is not profitable. The second RRR 

is positive, so, while project 1 is preferred to project 2, the latter is worth undertaking. By 

discounting the RRR and multiplying it by the present value of the investment stream one gets 

back the NPV: 11.16%(1.05)−1∙128.12=13.6 for the first one, 9.5%(1.05)−1∙128.12=11.6 for the second 

one, −3.04%(1.05)−1∙128.12=−3.7 for the third one.  

Either the AIRR or, equivalently, the RRR is a perfect substitute of the NPV, in both accept/reject 

decisions and project ranking. 
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Table 3. Project ranking 
 

Time 0 1 2 3 4 

Project �6 

Cash flows 

 

—100 

 

10 

 

10 

 

110 

 

Inv. Stream 100 20 10 0  

Period rate  —70% 0% 1000%  

AIRR 

RRR 

16.16% 

11.16% 
   

 

Project �O      

Cash flows —90 69 10 12 20 

Inv. stream 90 10 5 27.85 0 

Period rate  —12.2% 50% 697% —28.2% 

AIRR 

RRR 

14.51% 

9.51% 
    

Project �Q      

Cash flows —35 50 —18   

Inv. stream 35 97.77 0   

Period rate  322.2% —118.4%   

AIRR 

RRR 

1.96% 

—3.04% 
    

ranking �6 p �O p �Q 

 

 

 

 

 

 

 

 

 

 

 

 

 

128.12  ���*|5%� 

5% 

16.16% 

14.51% 

1.96% 

&C  

Figure 3. Project ranking with the AIRR (see Table 3).  The greater the AIRR, the 

higher the project rank. Evidently, the result holds for every ���3 | 5%�. (We omit 

the graph for ���* | 5%� ) 0). 

            project 1        project 2                project 3 
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The simple arithmetic mean may be employed for ranking projects as well, if proper care 

is taken. Let us begin with projects with equal initial outflow (or inflow), which is the case of a 

decision maker who is endowed with a capital to be invested in some alternative. 

Theorem 6.2. Consider competing projects �6, �O, … , �g with respective length +�, +�, … , +j and 

equal initial cash flow �� . Suppose that the investment stream for each project is  PV-equivalent to 

3 � ����, ����1 � ��, … , ����1 � ���!��, where + � max� +�, +�, … , +j�. Then, the ranking of the 

projects via the arithmetic mean of the period rates is equivalent to the NPV ranking. 

 

Proof: If 3>  is PV-equivalent to 3 � ����, ����1 � ��, … , ����1 � ���!�� for all B � 1,2, … , h, then, 

owing to Theorem 4.1, the AIRR is equal to the simple arithmetic mean. The thesis follows from 

Theorem 6.1.                  (QED) 

 

EXAMPLE 

Suppose the manager of a firm is endowed by the shareholders with additional equity to be 

invested in some business. Suppose he has the opportunity of employing the capital in three 

economic activities: �6 � ��100, 40, 0, 80, 0�, �O � ��100, 60, 10, 10, 20�, 

�Q � ��100, 113, 10, 0, 0�. The market rate is 5% so that  
 

  ����6| 5%� � 7.2   

  ����O| 5%� � �8.69   

  ����Q| 5%� � 16.69. 
For simplicity, we pick the same investment stream for all projects: 

  3� � 3� � 3W � �100, 105, 110.25, 115.76� 

which is just  3 � ����, ����1 � ��, … , ����1 � ���!��, with �� � �100, � � 5%, + � 4. The 

internal return vectors are, respectively,  

  8� � �45%, 5%, 77.56%, �100%�,  

  8� � �65%, 14.5%, 14.1%, �82.7%�  

  8W � �118%, 14.5%, 5%, �100%�.  
 

The simple arithmetic means are:   

project �6 6.89% 

project �O 2.72% 

project �Q 9.38%. 

The ranking is  then �Q p �6 p �O, which is the same as the NPV ranking.  
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Let us now focus on a bundle of projects �6, �O, … , �g with different initial cash flows. We exploit 

the fact that the NPV of a project does not change if the project is virtually integrated with a 

value-neutral investment. For example, let q � �r�, 0, 0, … , �r��1 � ����. Project q is a mute 

operation: ���q | �� � 0 for any r� � �   Thus, ���� � q | �� � ����| ��, so one may always use 

the integrated project vector � � q  rather than q for economic analysis purposes. Pick any project 

�s and consider the mute operation qi , B � 1,2, , … , h, such that the integrated project �i � qi has 

the same initial cash flow as �s for all B (obviously, if some projects have the same initial cash 

flow as �s, then qi is the null vector). Then, Theorem 6.2 may be applied to �6 � q6 , �O �
qO, … , �g � qg. But the latter are financially equivalent to �6, �O, … , �g. We have then proved the 

following 

 

Theorem 6.3. Consider competing projects �6, �O, … , �g with different initial cash flows. Using the 

appropriate (fictitious) mute operations in order to harmonize the initial cash flows, the ranking 

via the simple arithmetic means coincides with the NPV ranking.3 

 

EXAMPLE 

Consider the following three projects:  

 

  �6 � ��100, 40, 0, 80, 0� 

  �O � ��100, 60, 10, 10, 20� 

   �Q � ��10, 30, �25, 0, 0�  
 

and let 5% be the market rate, which implies 
 

  ����6| 5%� � 7.2   

  ����O| 5%� � �8.69   

  ����Q| 5%� � �4.1. 
 

The initial outlay of �6 and �O is 100, whereas the initial outlay of �Q is only 10, so we use the 

following mute operations: q6 � qO � �0, 0, 0, 0, 0�,   qQ � ��90, 0, 0, 0, 109.4� . The latter implies 

�Q � qQ � ��100, 30, �25, 0, 109.4�. We then apply Theorem 6.3 to the integrated projects 

�6,  �O, �Q � qQ. Consider, for example, 3 � �100, 105, 110.25, 115.76� for all the projects. It is 

straightforward to compute the economic yields (simple arithmetic means): 

 

                                                        

3 Note that the theorem includes those cases where �� � 0 (i.e., the project starts at time $ " 0.) 
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project �6  6.89% 

project �O  2.72%  

project �Q � qQ 3.92%. 

 

Then, the project ranking is  �6 p �Q p �O, the same as the NPV ranking. 

 

Remark 6.1. As a final remark, we notice that we have implicitly assumed throughout the paper 

that the market rate is constant. While the IRR criterion is not capable of handling variable market 

rates, our approach is easily generalized. The NPV of a project will be ����| �� � ∑ *�!��&C ���

��� t� , where ��  is the market rate holding in the period [$ � 1, $] and t�: � /�1 � ����1 � ��� · … ·
�1 � ���0!� is the discount factor.  Searching for a Chisini mean �u of the market rates, one solves 

∑ *�!��&C � ����� t� � ∑ *�!��&C � �u�t���   getting  to 

�u � ∑ *�!���t���
∑ *�!�t���

. 
 

All results proved in the paper hold with �u replacing �.  
 

Concluding remarks 

Scholars, managers, practitioners have long since recognized that the NPV criterion is a 

theoretically sound decision criterion for capital budgeting in most circumstances (e.g. Fisher 

1930; Weston and Copeland 1988; Brealey and Myers 2000; MacMinn 2005), and even real options 

may be framed in terms of an ‘expanded’ NPV.4 However, managers, analysts, practitioners often 

find it useful (or are explicitly required) to supply a performance measure in terms of rates rather 

than present values. Unfortunately, the venerable internal rate of return (IRR) is not a reliable 

profitability index because it may not exist, multiple roots may arise and, in general, is 

incompatible with the NPV.  This paper presents the notion of Average Internal Rate of Return 

(AIRR), which generalizes the usual IRR notion. The AIRR  is an average of one-period return 

rates derived from investment streams which are freely chosen by the analyst. An investment 

(borrowing) is worth undertaking if and only the AIRR is greater (smaller) than the market rate 

and the AIRR ranking is the same as the NPV ranking. One may also equivalently use the 

                                                        
4 The real options approach is but a sophisticated version of the traditional NPV model, where the set of 

alternatives is inclusive of the options implicit in the project: ‘‘one can always redefine NPV by subtracting 

from the conventional calculation the opportunity cost of exercising the option to invest, and then say that 

the rule ‘invest if NPV is positive’ holds once this correction has been made’’ (Dixit and Pindyck 1994, p. 7. 

See also Smith and Nau 1995). 
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residual rate of return (RRR), which is defined as the difference between AIRR and market rate: 

this index signals, at one time, desirability of a project and its rank among other competing 

projects. The RRR is then a perfect substitute of the NPV and represents the excess return on one 

unit of invested capital.  

The AIRR notion, which is defined even when the one-period rates are not, is a general notion 

encompassing the IRR notion: the latter is only one particular case of AIRR: it is the AIRR 

associated with a specific class of present-value-equivalent investment streams, here named 

“Hotelling class”. Any one AIRR works well in association with its own investment stream, 

because any combination AIRR/investment stream univocally determines the NPV of the project. 

The analyst may emphasize any one combination to the neglect of the others. A natural choice is 

such that the present value of the investment stream is equal to the initial outlay of the project (or 

the sum of all outlays); in this case, the resulting AIRR is conveniently interpreted as the market-

determined rate of return on the capital actually invested in the project. Among the various 

AIRRs, the simple arithmetic mean is particularly salient because it is easily understood by real-

life decision makers and the financial nature of the project is unambiguously determined by the 

sign of the first cash flow. 

The results obtained stem from a basic idea: the capital periodically invested (or borrowed) in the 

project is conventionally determined by the analyst. In other words, it is not a project that is 

intrinsically an investment or a borrowing, but it is the very evaluator who decides whether the 

project is an investment or a borrowing. The approach here endorsed is thus radically different 

from the usual approach centered on the IRR notion, because it dismisses the IRR equation, 

guarantees description flexibility and warrants correctness of decisions (i.e., equivalence with the 

NPV criterion). The AIRR approach solves the long-standing problem of finding an economically 

significant return rate capable of helping decision makers make correct decisions.  

 

NPV and AIRR are perfectly equivalent performance measures: whether one will make use of the 

NPV criterion or the AIRR criterion is only a matter of practical issues, subjective tastes, purpose 

of the analysis or institutional commitment. 
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