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Abstract: Financial portfolio optimization is a challenging problem. First, the problem is 

multiobjective (i.e.: minimize risk and maximize profit) and the objective functions are often multimodal 

and non smooth (e.g.: value at risk). Second, managers have often to face real-world constraints, which 

are typically non-linear. Hence, conventional optimization techniques, such as quadratic programming, 

cannot be used. Stochastic search heuristic can be an attractive alternative. In this paper, we propose a 

new multiobjective algorithm for portfolio optimization: DEMPO - Differential Evolution for 

Multiobjective Portfolio Optimization. The main advantage of this new algorithm is its generality, i.e., the 

ability to tackle a portfolio optimization task as it is, without simplifications. Our empirical results show 

the capability of our approach of obtaining highly accurate results in very reasonable runtime, in 

comparison with quadratic programming and another state-of-art search heuristic, the so-called NSGA II.  
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1 Introduction 

Since the pioneer work of Markowitz (Markowitz 1952), modern portfolio optimization has 

become a core topic for academics and practitioners. In the classic Markowitz mean-variance 

approach, the target is to find the asset allocation which minimizes the risk and maximises the 

return. Since asset returns are assumed to be normally distributed, the variance-covariance 

matrix of the asset allocations is used to quantify the risk, while the expected returns quantify 

the profit. Such an optimization problem can be solved efficiently using a multiobjective 

technique related to the epsilon constraint method (Haimes et al. 1971, Chankong and Haimes 

1983), which generates n points of the Pareto front by iteratively solving n single-objective 

problems with constraints using linear and quadratic programming.  

However, the standard Markowitz mean-variance model is simplistic and cannot handle 

more realistic measures of risk and typical real world constraints. In particular, the Markowitz 

approach has been criticized mainly for two reasons. First, the assumption of normality of 

financial returns does not hold (Cont 2001), because the empirical distribution is typically 

leptokurtic and has fat tails. Instead one has to consider either higher moments of a probability 

distribution or use a non-parametric approach. Hence, a possible approach could be to model 

returns by elliptical and asymmetric stable distributions (see Lamantia et al. 2006, Ortobelli et 

al. 2004, Doganoglu et al. 2006). Another approach can be to use non-parametric approaches to 

generate returns scenarios: then, in such case, most alternative risk measures, such as Value-at-

Risk, require a specification that cannot be stated by a quadratic equation (Gaivoronski and 

Pflug, 2004).  

Second, there is often the need to introduce additional non-linear constraints. Typical 

constraints are so-called cardinality constraints (e.g.: an upper bound for the number of assets in 

the portfolio), buy-in thresholds (i.e.: an asset can be included in the portfolio only if its amount 

is bigger/smaller than a lower/upper bound), and roundlots (i.e.: the smallest volume of an asset 

that can be bought) (Chang et al. 2000, Streichert 2003). Such constraints are non-linear and 

cannot be solved by conventional optimization methods, such as quadratic programming. 
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Research has mainly focused on using mixed integer solvers or metaheuristics. Mixed-integers 

optimization problems are optimization problems with some discrete decision variables. Branch 

and bound and branch and cut in combination with LP/QP are examples of mixed integer 

solvers (Meyer 1975). An alternative are metaheuristics, which are heuristics that are often 

capable to solve a broad class of optimization problems for which there is no satisfactory-

problem specific algorithm. They are usually inspired by some natural phenomena such as 

simulating annealing, evolutionary algorithms and ant colony optimization. 

In this paper, we propose a new approach based on evolutionary algorithms, which are 

population based search heuristics. Such heuristics work by iteratively evolving a population of 

candidate solutions to the optimization problem towards better solutions until a stopping 

criterion is satisfied. Among many other applications, evolutionary algorithms have been widely 

applied to multiobjective optimization problems (Deb 2001, Coello Coello et al. 2002, Coello 

Coello 1999). Their main advantage is that they can tackle optimization problems as they are 

without requiring rigid properties, such as continuity, linearity or convexity of objective 

functions and constraints. Moreover their population of candidate solutions can be used to 

search for a set of representative solutions of the Pareto front simultaneously.  

Our novel multiobjective search heuristic, which we will call henceforth DEMPO 

(Differential Evolution for Multiobjective Portfolio Optimization) is partly based on differential 

evolution (DE) (Storn and Price 1997, Price et al. 2004) and inspired by the NSGA-II algorithm 

by Deb et al. (Deb et al. 2002, Srinivas and Deb 1994). Moreover, Michalewicz's GENOCOP 

approach (Michalewicz and Fogel 2004) has been the starting point to develop our constraint 

handling techniques, and finally we implemented a custom made seed initialization approach.  

The following sections are organized as follows. Section 2 reports the formal specification of 

portfolio optimization problems considered in this work; Sections 3 describes the DEMPO 

algorithm; Section 4 describes the experimental data and settings and reports the empirical 

results and Section 5 concludes our study. Appendix A shows the comparison of using DEMPO 

and NSGA II algorithms on six multiobjective benchmark problems.  
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2 The Portfolio Optimization Problem  

2.1 Formal Specification 

 

Let us consider the following variables 
 
N   the number of available assets 

ns  the number of scenarios for the returns 

G   the number for asset classes 

rsi  the return of asset i in the sth scenario, s=1,...,ns, i=1,...,N 

iµ   the expected monthly return of asset i s
n
s sii nrs∑= =1µ  

ijσ   the covariance between the ith and the jth assets 

Π0  the portfolio value at time 0  

Πs  the portfolio value at time 1 for scenario s 

K   the number of assets to invest )( NK ≤  

iε   the minimum investment ratio allowed in the ith asset (i=1,...,N) 

iδ   the maximum investment ratio allowed in the ith asset (i=1,...,N) 

i∆   the minimum percentage change w.r.t. the previous allocation 

gζ   the minimum investment ratio allowed in the gth class (g=1,...,G) 

gϑ   the maximum investment ratio allowed in the gth class (g=1,...,G) 
TR   the maximum turnover ratio 
 

 
 
 

 
 
 
 

iw   the portfolio weight ∑
=

=≤≤
N

i
ii ww

1
1,10 of the ith asset  

 
The constrained portfolio optimization problem a-la-Markowitz can be formulated in the 

following way:  
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MV- Mean-Variance 
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The optimization problem as stated in equation (1a) and (1b) is a multiobjective optimization 

problem with the two competing objectives of minimizing the variance of the portfolio returns 

(the risk) and maximizing the expected return of the portfolio (the profit). Considering only 

constraint (1c), we can solve this problem using quadratic and linear programming (QP/LP). 

However, such a formal specification is insufficient to solve realistic portfolio optimization 

problems in which managers and investors have often to consider different measures for risk 

and real-world constraints.  

Nowadays, value at risk (VaR) and expected shortfall (ES) are among the most widely used 

measures of the portfolio risk. Value at risk (VaR(1-α)) is the α-quantile ( )(1 αα LQVaR =− , e.g.: 

α=5%) of the distribution of the losses (L) of the portfolio, while the expected shortfall is the 

conditional mean value of the losses given that the losses have exceeded VaR(1-α), that is 

)|( 11 αα −− <= VaRLLEES . 

We use a non parametric approach in order to compute VaR(1-α) and ES(1-α) (Gilli et al. 2006). 

The distribution of the losses has been computed by using the scenarios generated from time 

series data (see section 4.1 for the full description of the data). The loss Ls for scenario s=1,..., ns  

has been defined as 

0Π−Π= ssL  

where the portfolio value at time 1 is 
∑
=Π=Π
N

i
sii rw

s e 1
0  and 0Π  is the current portfolio value 

at time 0. 
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Then, we order the ns simulated losses such that L1≤L2≤...≤Lns  and we compute the value at 

risk and the expected shortfall according to  

⎡ ⎤     ns
LVaR αα =−1 and { }
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Expected shortfall was mainly introduced in order to promote diversification since value at risk 

is not a coherent risk measure and a concave function of allocation (Artzner et al. 1997). Figure 

1.a shows the non-concave objective function for VaR95 for a portfolio of three Italian equities 

(AS Roma, Acea e Acotel Group), while figure 1.b shows the concave Expected Shortfall 

function ES95. VaR and Expected Shortfall are computed on a grid of 50x50 points for w1 and 

w2, while w3 is determined by the budget constraint when short selling is not allowed. 

 

Figure 1: Objective function for VaR minimization (Figure 1.a) and for ES minimization (Figure 1.b) for 
a portfolio of three assets. 
 

When such risk measures are introduced and we want to use a non-parametric approach to 

estimate them, it is not possible to use quadratic programming (Gaivoronski and Pflug, 2004). 

In contrast, the DEMPO algorithm can easily tackle the following multiobjective portfolio 

optimization problems: 

 

 

(a) (b) 
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MVaR- Mean-VaR(1-α) 

1012

)'(max)2(

)'(min)2(

1

2

11

≤≤=

=

−=

∑
=

−

i

N

i
i

'

'

w   wc)  (

: to       subject

Lf               b

VaRLf                a

w

w

w

w α

 

 

MES- Mean-ES(1-α) 
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     corresponds to the expected absolute return of the portfolio. 

Finally, the DEMPO algorithm can tackle real-world constraints that managers have often to 

consider. Such constraints are: each asset can be included only if its weight is greater/smaller 

than its minimum/maximum investment ratio (4), assets from the same asset class cannot be 

considered if the class total investment is smaller/larger than the minimum/maximum 

investment ratio (6), the change in the asset weight from previous allocation must be greater 

than a certain threshold (5), the sum of the absolute change from the previous allocation must be 

smaller than the maximum turnover ratio (7).  
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3 The DEMPO Algorithm 

3.1 Multiobjective Portfolio Optimization and Evolutionary Approaches 

Evolutionary algorithms are population based search heuristics. They work by evolving a 

population of candidate solutions for the optimization problem. The evolution is driven by 

mathematical operators inspired by evolutionary biology. Among many other applications, they 

have been widely used in tackling multiobjective optimization problems, since, in contrast to 

standard mathematical programming techniques, they iteratively approximate the whole Pareto 

front simultaneously, they are not concern with the shape and continuity of the Pareto front, 

they can be easily applied even if the objective functions change and they can easily integrate 

special constraints. On the other hand, they are often criticized because of the extensive 

parameter tuning that is often required. 

The most popular approaches in evolutionary multiobjective optimization are: aggregating 

functions, Schaffer’s VEGA, Fonseca and Fleming’s MOGA, Srinivas and Deb’s NSGA, Horn 

and Nafpliotis’NPGA and Target vector approaches. The reader is referred to (Deb 2001, Coello 

Coello et al. 2002, Coello Coello 1999) for surveys about evolutionary multiobjective 

optimization techniques.  

Differential Evolution (DE) is a rather new evolutionary algorithm for numerical 

optimization (Storn and Price 1997). It  is simple to implement, requires little or no parameter 

tuning, and is known for remarkable performance and its superiority compared to other 

evolutionary algorithms, such as genetic algorithms or particle swarm optimization, in real-

world and artificial problems. (see Price et al. 2004, Lampinen 2006, for reviews). 

The Pareto-frontier Differential Evolution (PDE) by Abbass et al. (2001) has been, to our 

knowledge1, the first paper on Multiobjective DE. Recently, other studies have proposed to use 

DE in multiobjective optimization problems (see for example, Sarker and Abbass 2002, 2004, 

Babu et al. 2005, Quintero and Coello Coello 2005). Comparisons on benchmark problems 

show the DE superiority with respect to other evolutionary algorithms, such as Strength Pareto 

                                                 
1 We thank a referee for suggesting us this reference. 
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Evolutionary Algorithm (SPEA), Fonseca and Fleming’s genetic algorithm (FFGA), Hajela’s 

and Lin’s genetic algorithm (HLGA), Niched Pareto Genetic Algorithm (NPGA), Non-

dominated Sorting Genetic Algorithms (NSGA), Random Sampling Algorithm (RAND), Single 

Objective Evolutionary Algorithm (SOEA), Vector Evaluated Genetic Algorithm (VEGA) and 

Pareto Archived Evolution Strategy (PAES) (Sarker and Abbass 2002, 2004).  

While evolutionary algorithms, in particular genetic algorithm, have found wide application 

in tackling the financial multiobjective portfolio optimization problem (Dueck and Winker 

1992, Bertocchi and Giacometti, 1993, Vedarajan et al. 1997), even considering cardinality 

constraints (Chang et al. 2000, Streichert et al. 2003), there has been no work on using 

differential evolution for multiobjective portfolio optimization with real-world constraints to our 

knowledge.  

 

3.2 The DEMPO Algorithm 

The DEMPO algorithm is partly based on differential evolution (DE) (Storn and Price 1997, 

Price et al. 2004) and inspired by the NSGA-II algorithm by Deb et al. (Deb et al. 2002, 

Srinivas and Deb 1994). Moreover, Michalewicz's GENOCOP approach (Michalewicz and 

Fogel 2004) has been the starting point to develop our constraint handling techniques. 

 

3.2.1 Diversity Preservation 

One key aspect in using evolutionary algorithm is to have a mechanism that allow to have 

diversity in the population such that a good spread of solutions is maintained in the population. 

We use the crowding distance approach, proposed by Deb et al. (2002). After determining and 

sorting the non-dominated fronts (see Figure 2.a), for each solution we calculate the cuboid 

distance, i.e., the mean of the lower and upper distance for each objective fi, (i=1,2) to the 

nearest two solutions within the same front. The distance is an estimate of the perimeter of the 

cuboid formed by considering the nearest neighbors as vertices (see Figure 2.b). Then, during 

selection between two individuals j and k, we select the one which is dominated by less other 
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solutions and if they are dominated by the same number of solutions then we select the one with 

the larger distance value.  

 

 

Figure 2: Determination of non-dominated fronts (a), and cuboid-distance calculation (b). 
 

 
3.2.2 Constraints Handling 

In order to handle inequality constraints, we rewrite the definition of domination, such that it 

includes the constraint handling (Deb et al. 2002). Then, a solution i is said to constrained-

dominates a solution j, if any of the following conditions is true: 

1. solution i is feasible and solution j is not 

2. solutions i and j are both infeasible, but i has a smaller overall constraint violation 

3. solutions i and j are both feasible and i dominates j 

We deal with equality constraints by construction of feasible solutions or "repair" existing 

ones, i.e., a solution that violates constraints is modified until it is feasible. Such approach is 

inspired by Michalewicz's GENOCOP approach (Michalewicz and Fogel 2004) and is case to 

case dependent. 
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3.2.3 Main Loop 

After loading and setting the problem specification and the search heuristic parameters, the 

population is initialized and evaluated with respect to the fitness function. Then, iteratively the 

population is evolved with Rand/1/Exp and crossover operators (Storn and Price 1997), and the 

non-domination ranking is computed. Cuboids (Deb et al. 2002) are computed in order to obtain 

diversification of the solutions and then sorted and ranked. The candidates with equal non-

domination ranking are selected and the individual with the worst cuboid is replaced. The front 

is then determined. The algorithm stops after a fixed number of iterations. 

Figure 3 shows the pseudo-code of DEMPO algorithm. 

 
 
ExecDEMPO() 
  Load and set problem specification 
  Set DEMPO search heuristic parameters 
  Calculate candidate solution seeds (optional) 
  DEMPO(...) 
    Initialize local variables including curIt = 1 
    InitializePopulation(...) 
    Initialize the candidate solutions randomly 
    HandleEqualityConstraints(…) % "repair" solutions if necessary  
    Insert seeds if generated previously 
    for i=1:popSize 
      FitnessFunc(...)  % evaluate the candidate solutions 
    end 
    while curIt<numIt 
      for i=1:popSize 
        Create new candidate with DE operators "Rand/1/Exp" and crossover 
        HandleEqualityConstraints(…) % "repair" candidate if necessary 
        FitnessFunc(...)  % evaluate the candidate 
      end 
      Calculate non-domination ranking to allow selection for multiple 
      Objectives 
      Calculate the cuboids to obtain diversification of the solutions 
      Initialize the cuboids using normalized fitnesses 
      Sort individuals by their fitness for each obj. and calculate cuboid 
      distances 
      Sort all cuboids back, such that their order corresponds to their id 
      Rank the cuboids of the current population, i.e., smallest rank and 

smallest cuboid first 
      Consider all candidates with equal non-domination ranking and determine 
      the ids of individuals in the parent pop. with equal front rank 
      Replace the individual that has the worst cuboid in the same front 
      Determine the front 
    end 
 
Figure 3: Pseudo-code of DEMPO algorithm. 
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4 Experiments and Results 

4.1 Benchmarks and financial dataset 

In our experiments, we investigated the potential of DEMPO for multiobjective portfolio 

optimization by a comparison with the NSGA-II algorithm by Deb et al. (2002) and QP for a 

quadratic programming instance of the standard mean-variance portfolio optimization problem 

based on real data. The financial input dataset is a set of time series with daily observations for 

five years between 01/10/2001 and 02/10/2006 for 219 stocks in the Mibtel index traded on the 

Italian Stock Exchange. Data have been downloaded from Datastream.  

Following the approach of Gilli, Kellezi and Hysi (2006), we did not assume that returns are 

normally distributed and we generate returns scenarios from asset prices. Our investment 

planning holding period is one month. The set of return scenarios has been created by 

bootstrapping 800 overlapping blocks of length 20 from the matrix of daily log-returns. The 

sum of the log-return, rs., for each block defines a monthly log-return scenario. The set of 

monthly scenarios is used to compute the expected returns µ., the covariance matrix Σ=[σ..], the 

value at risk (VaR(1-α)) and the expected shortfall (ES(1-α)) in order to find the optimal portfolio. 

Section 2.1 describes the portfolio optimization problem specification. 

Moreover, we compared DEMPO with the NSGA-II for 6 classic, rather simplistic, 

multiobjective optimization benchmark problems. Appendix A reports the description and the 

empirical results of the multiobjective optimization benchmark problems. 

 
 
4.2 Comparison Criteria 

 
The comparison of results in multiobjective optimization is not a straight-forward task. In 

contrast to single objective optimization, the goal is to identify a set of candidate solutions that 

represents the Pareto front as good as possible. The main goals in multiobjective optimization 

are the convergence to the Pareto front and a good coverage of the Pareto optimal set. The true 

Pareto front is in fact a dense set. We try a discrete sampling of this set. These goals cannot be 
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achieved with one single metric and many different metrics have been proposed. The reader is 

referred to Sarker and Coello (2002) for a review.  

One possibility is to measure how close the evolved solutions are to the true Pareto front and 

how evenly they are scattered along the front. This of course requires that the true Pareto front is 

known, which is usually only the case for simplistically constructed benchmark problems. The 

point in real-world optimization is that the front is not known and shall be determined or at least 

approximated. However, another possibility is to use such measures to compare the fronts 

derived by two different algorithms in which one is used as a reference. In case of portfolio 

optimization, a QP solution to a quadratic programming problem instance can be considered as 

such a reference. For realistic non-QP applications, such a comparison is not possible. However, 

for performance comparison, i.e., to test the accuracy and robustness of the results, it can make 

sense to investigate a QP problem instance. 

Deb et al. (2002) defined two criteria that can capture the notion of distance to a front and 

good coverage of the front to which they refer as gamma and delta.  

Gamma is the average Euclidean distance of the minimum Euclidean distance between each 

solution obtained with the algorithm and the uniformly spaced solutions on the Pareto-optimal 

front. It measures the extent of convergence to a known set of Pareto-optimal solution and the 

smaller the value of this metric, the better the convergence toward the Pareto-optimal front. 

Delta aims at quantifying the extent of spread achieved among the obtained solutions. Delta 

is defined as  

dMdd

dddd

lf

M

i
ilf

)1(

||
1

1

−++

∑ −++
=∆

−

=  

where di is the Euclidean distance between consecutive solutions in the nondominated set of M 

solutions, d  is the average of these distances, df and dl are the Euclidean distances between the 

extreme solutions and the boundary solutions of the nondominated set. If delta is close to zero, 

the set of nondominated solution is widely and uniformly spread out. 
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Another useful criterion, which does not require a known or reference set of Pareto optimal 

solutions, is to consider the area (or hyper-volume for more than two objectives) that the front 

of solutions is covering. If the Pareto front is known or defined as a reference, we calculate the 

percentage of area, i.e., the ratio of covered area of an algorithm and the covered area of the 

known Pareto front.  

Evolutionary algorithms are usually run several times to end up with a set of alternative 

solutions for the problem at hand from which one has to be chosen. Hence, Fonseca and 

Fleming (1996) proposed to compare different algorithms statistically, instead of comparing 

only scalar values. They propose the so-called “attainment surfaces” method, which performs a 

statistical comparison of two algorithm on several runs. The method draws two attainment 

surfaces, one for each algorithm under investigation. Each surface divides then the objective 

space into two regions: one that contains the vectors which are dominated by the results of the 

algorithm, and another one that contains the vectors that dominate the results of the algorithm. 

Then, a number of sampling lines is drawn from the origin in order to intersect the attainment 

surfaces and for each sampling line (assuming minimization for both objectives) the intersection 

of an algorithm closer to the origin is the winner. The idea is then to consider a set of sampling 

lines which intersect the attainment surfaces across the full range of the Pareto frontier. 

Standard non-parametric statistical test can then be performed on the distribution of the 

intersections of the sampling line and the attainment surfaces of different runs. Knowles and 

Corne (2000) proposed to use the Mann-Whitney rank test to determine whether or not the 

intersection for one of the algorithms over different runs occur closer to the origin, providing 

the percentages of the surface in which each algorithm outperform the other at a chosen level of 

significance. Furthermore, Knowles and Corne (2000) also extended their method, henceforth 

MOSTATS2, in order to compare more than two algorithms.  

                                                 
2 We thank one of the referee for suggesting this comparison methodology. The code of MOSTATS can 
be downloaded at http://dbkgroup.org/knowles/multi/ 
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In this study, we use all four comparison methods described above: delta, gamma, area 

covered and MOSTATS. The reader is referred to Sarker and Coello (2002) for a more detailed 

description of the assessment methodologies for multiobjective evolutionary algorithms. 

 

4.3 Algorithmic settings and experimental set-up 

Both NSGA-II and DEMPO were compared using a population size of 100 individuals and 

500 iterations for all experiments, which were rather arbitrary settings that correspond to the 

experimentation of Deb et al. (2002). By keeping these values constant, we used equivalent 

number of fitness function evaluations for both algorithms. A summary of all algorithmic 

parameters is shown in Table 1.  

 

Table 1: Parameters of Differential Evolution (DE) and NSGA II. Pop.Size refers to the population size, 
Num.Gen. to the number of generations, M to the number of points on the frontier, N to the number of 
decision variables. For the DE: cr: crossover rate; f: scaling factor. For NSGA II: pc: crossover 
probability; pm: mutation probability. 
 

DE NSGA II 
Parameter Value Parameter Value 
Pop.Size 100 Pop.Size 100 
Num.Gen. 500 Num.Gen. 500 
M 100 M 100 
cr (0.2-0.9) pc (0.3-0.9) 
f 0.3 pm 1/N 
    

 

 

We repeated each experiment for portfolio optimization 30 times to check the robustness of 

the results. Empirical results for portfolio optimization are reported in section 4.6, while the 

reader is refereed to Appendix A for results on multiobjective benchmark functions.  

 

4.4 Preliminary experimentation and tuning of the algorithms 

LP and QP do not require any parameter tuning other than to increase the maximum number 

of iterations, such that the algorithms can obtain a correct result. Our NSGA-II implementation 
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is based on the code by A. Sheshadri3. We experiment with different values of the probability of 

crossover (from 0.3 to 0.9, with stepsize 0.1) and perform statistical comparison by MOSTATS 

over 30 runs for each parameter setting. Table 2.a shows that the percentage of space on which 

we can be 95% confident that each algorithm beats all of the other algorithms compared is 

always zero (row: “beats all”), and that the best result with respect to the percentage of the space 

for which we cannot be 95% confident that any other algorithm beats it, is obtained for a 

probability of crossover equal to 0.7 (i.e.: unbeaten: 89.4), while the worst result correspond to a 

probability of crossover of 0.4 (i.e.: unbeaten: 30.3). The reader should notice that there is not a 

monotonic relationship between the performance and the probability of crossover. 

Regarding the DEMPO algorithm, we fixed the scaling factor f equal to 0.3 and we vary the 

crossover rates cr from 0.2 to 0.9 with stepsize 0.1. Table 2.b reports the statistical comparison 

over 30 runs for each parameter setting for DEMPO. The row “unbeaten” show the better 

performance is for lower crossover rates (from 0.2 to 0.5), while the row “beats all” clearly 

show that the percentage of space on which we can be 95% confident that each algorithm beats 

all of the other algorithm compared is always very close to zero, which suggest that all the 

crossover value could be chosen and DEMPO would anyway deliver comparable results. In fact, 

DE is known for requiring little parameter tuning. 

 

Table 2.a: Statistical Comparison (MOSTATS) of  NSGA II when the probability of crossover varies 
from 0.3 to 0.9 (stepsize=0.1) over 30 runs  for each parameter setting. Entry i in the row “unbeaten” 
gives the percentage of the space on which the performance of the ith algorithm is unbeaten by any of the 
other algorithms compared (i.e.: the percentage of the fitness space for which we cannot be 95% 
confident, based on a non-parametric test - The Mann-Whitney Rank test, that any other algorithm beat 
it). Entry i in the row “beats all” gives the percentage of the space on which we can be 95% confident that 
the ith algorithm beats all of the other algorithms compared.   
 

NSGA II - mv crossover probability (pc) 
 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

unbeaten 40.1 30.3 86.3 38.4 89.4 43.3 40.9 
beats all 0 0 0 0 0 0 0 

 
 
 
 

                                                 
3The code from A.Seshadri can be downloaded from MATLAB File Exchange. 
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Table 2.b: Statistical Comparison (MOSTATS) of  DEMPO when the crossover rate varies from 0.2 to 
0.9 (stepsize=0.1) f over 30 runs for each parameter setting. Entry i in the row “unbeaten” gives the 
percentage of the space on which the performance of the ith algorithm is unbeaten by any of the other 
algorithms compared (i.e.: the percentage of the fitness space for which we cannot be 95% confident, 
based on a non-parametric test - The Mann-Whitney Rank test, that any other algorithm beat it). Entry i in 
the row “beats all” gives the percentage of the space on which we can be 95% confident that the ith 
algorithm beats all of the other algorithms compared.   
 
DEMPO- mv crossover rate (cr) 

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
unbeaten 85.8 89.8 70.5 80.8 61.7 60.5 53.9 36.4 
beats all 1.5 0 0 0.1 0 0 0 0 

 
 

4.5 Runtime performance 

In terms of CPU time, the DEMPO algorithm runs a lot faster than the NSGA-II for 

equivalent number of fitness evaluations. For instance, for mean-variance portfolio optimization 

with 219 assets without real world constraints, with population size equal to 100, number of 

iterations equal to 500 and number of points to be determined on the frontier equal to 100, QP 

needed ca 360 seconds DEMPO needed ca 360 seconds compared to ca 960 seconds for the 

NSGA-II. However, a more efficient implementation of the NSGA-II might compensate for 

some of the performance difference. 

 

4.6 Results 

Appendix A shows a comparison of NSGA II and DEMPO on six benchmark functions.  The 

statistical comparison of the two algorithms by MOSTATS (i.e.: the Mann-Whitney Rank test - 

see Table A.2) shows that DEMPO outperforms NSGA II in the four most complex benchmark 

problems, while NSGA II turns out to be better only for the simplest benchmark function. The 

area and gamma criteria (see Table A.3) confirm the better performance of DEMPO for the 

highly dimensional problems, while NSGA II turns out to be better in four out of five cases with 

respect to the delta measure, suggesting that DEMPO could be further improved with respect to 

the extent of spread achieved among the obtained solution.  

Things look very different for the simple MV-Mean Variance portfolio optimization 

problem. Here, as figure 4 shows, DEMPO obtained excellent results that closely resemble the 
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QP solutions, whereas the NSGA-II fails to obtain reasonable results. This is not just a matter of 

available runtime. Even in very long runs with 10.000 iterations, the NSGA-II could not obtain 

reasonable results in contrast to DEMPO, which can obtain a quality comparable to QP.  
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Figure 4: Mean-Variance Efficient frontier computed by QP, DEMPO and NSGAII. 
 

 

Table 3 shows a statistical comparison by MOSTATS of DEMPO with different crossover 

rates (cr=0.2, 0.3, 0.4, 0.9) and NSGA II with different probability of crossover (pc=0.4, 0.5, 

0.6, 0.7). The other parameter settings are reported in Table 1. We consider 30 runs for each 

parameter setting. DEMPO always outperform NSGA II, whichever crossover rate we consider. 

Furthermore, if we would compare 30 runs of DEMPO with a given crossover rate with all the 

results we have from NSGA II, we always have 100 and 100 in correspondence of DEMPO for 

both rows of MOSTATS output (unbeaten, beats all), which strongly supports the usage of 

DEMPO with respect to NSGA II. 



 19

Table 3: Statistical Comparison (MOSTATS) of  DEMPO and NSGA II over 30 runs for each parameter 
setting. Entry i in the row “unbeaten” gives the percentage of the space on which the performance of the 
i-th algorithm is unbeaten by any of the other algorithms compared (i.e.: the percentage of the fitness 
space for which we cannot be 95% confident, based on a non-parametric test - The Mann-Whitney Rank 
test, that any other algorithm beat it). Entry i in the row “beats all” gives the percentage of the space on 
which we can be 95% confident that the i-th algorithm beats all of the other algorithms compared. 
 

 DEMPO-mv NSGA II - mv 
 crossover rate (cr) probability of crossover (pc) 
 0.2 0.3 0.4 0.9 0.4 0.5 0.6 0.7 

unbeaten 86 89.8 76.3 53.2 0 0 0 0 
beats all 2.2 1.2 0.6 6.2 0 0 0 0 

 
 

Tables 4  and 5 show the minimum, mean, maximum values, standard deviations and 90th 

percentiles of the ratio of covered area of DEMPO or NSGAII algorithm and the QP-MV 

frontier, the gamma and delta respectively over 210 runs (DEMPO: 30 runs for cr={0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8}, NSGA II: 30 runs for pc={0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}) and over 30 

runs (DEMPO with cr=0.2, NSGA II with pc=0.7). The empirical results show that DEMPO 

clearly outperform NSGA II with respect to the ratio of the covered area and gamma, while the 

values for delta suggest that NSGA II can identify a frontier with more evenly scattered and 

spread out points than DEMPO (see also Figure 4). However, we notice that the standard 

deviation are always smaller for DEMPO algorithm, suggesting that this algorithm tends to 

converge more robustly towards the optimal front. Such result is confirmed also by the 

minimum, maximum and 90th percentiles values, which are closer to the mean values and less 

scattered for DEMPO rather than NSGA II. Furthermore, we notice that the maximum 

area/gamma for NSGA II is far below/above than the mean area/gamma for DEMPO. When we 

compare the algorithm for a given parameter setting (which we choose such that to consider the 

best/worst results achieved for NSGA II/DEMPO with respect to the area criterion), as reported 

in Table 5, we notice that it seems that also for NSGA II the increasing of the ratio of covered 

area leads to identify solutions that are less scattered along the Pareto front, which is confirmed 

by the larger mean delta value, that even turns out to be larger than the one of DEMPO. 
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Table 4: Minimum, mean, maximum values, standard deviations and 90th percentiles of  the ratio of 
covered area of DEMPO or NSGAII algorithm and the QP-MV frontier, the gamma and delta over 210 
runs (DEMPO: 30 runs for cr={0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, NSGA II: 30 runs for pc={0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9} for Mean-Variance (Problem: 1a-1c). Best values are reported in bold. 
 
  min mean max std 90th percentile 

DEMPO 75.6480 97.5224 100.0000 3.4091 99.6356 Ratio of Covered Area 
NSGA II 4.4722 46.0764 78.8925 22.4183 72.9006 
DEMPO 0.00009 0.00011 0.00025 0.00002 0.00013 Gamma 
NSGA II 0.00041 0.00156 0.00582 0.00077 0.00249 
DEMPO 0.66279 0.77962 1.05432 0.05300 0.83056 Delta 
NSGA II 0.46885 0.67903 0.92748 0.11417 0.84404 

 
 
Table 5: Minimum, mean, maximum values, standard deviations and 90th percentiles of  the ratio of 
covered area of DEMPO or NSGAII algorithm and the QP-MV frontier, the gamma and delta over 30 
runs (DEMPO with cr=0.4, NSGA II with pc=0.7 for Mean-Variance (Problem: 1a-1c). Best values are 
reported in bold. 
 
  min mean max std 90th percentile 

DEMPO 75.6480 95.2284 99.9046 7.3021 99.6948 Ratio of Covered 
Area NSGA II 26.7118 56.1974 82.0917 20.8756 78.0827 

DEMPO 0.00009 0.00011 0.00016 0.00002 0.00014 Gamma 
NSGA II 0.00091 0.00147 0.00250 0.00042 0.00208 
DEMPO 0.73282 0.79818 0.84165 0.03217 0.83309 Delta 
NSGA II 0.73503 0.81274 1.05432 0.09006 0.94397 

 
Summing up, DEMPO has always smaller standard deviation than NSGA II, converging in a 

more stable and robust way towards the optimal frontier. However, NSGA II seems, even it is 

not always the case, to identify frontiers with more evenly scattered and spread out points than 

DEMPO. Hence, we are currently working on improving DEMPO capability of identifying 

points more scattered along the frontier. One option is to use an ad hoc initialization that 

calculates candidate solution seeds more scattered using the QP-MV algorithm.  

As Figure 4 shows, DEMPO can obtain results with the same fidelity and about the same 

performance of QP for realistic portfolio optimization problems while allowing using any kind 

of objectives and constraints without any requirements for linearity or convexity. Interestingly 

the runtime for multiobjective QP solutions (ca 360 seconds for 100 solutions) is comparable to 

DEMPO (ca 360 seconds for 100 solutions) 
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Figure 5: Comparison of Efficient frontiers for mean-Var95 and mean-ES95 computed by DEMPO and 
QP-MV. DEMPO-MVaR95 is the efficient frontier in the space (-VaR95, )L computed by DEMPO 
when solving problem (2a, 2b, 2c), DEMPO-MES95 is the efficient frontier in the space (-ES95, 

)L computed by DEMPO when solving problem 3a-3c, Var95(QP-MV) is the frontier in the space (-

Var95, )L  computer by QP when solving problem (1a, 1b,1c) ES95(QP-MV) is the frontier in the space 

(-ES95, )L  computer by QP when solving problem (1a, 1b, 1c), ES95(DEMPO-MVaR95) is the frontier 

in the space (-ES95, )L computed by DEMPO when solving problem (2a, 2b, 2c), VaR95(DEMPO-

MES95) is the frontier in the space (-VaR95, )L computed by DEMPO when solving problem  (3a, 3b, 
3c). 

 

Figure 5 shows in the space of monthly loss risk (-VaR95 or –ES95) and monthly expected 

return ( )L  the frontiers identified by DEMPO when considering value at risk (DEMPO-

MVar95, (problem specification: equations 2a, 2b, 2c) and expected shortfall (DEMPO-MES95) 

as measures of risk (problem specification: equations 3a, 3b, 3c). Such frontiers lie clearly 

above the frontiers that can be plotted in the same space when considering the MV-QP asset 

allocations (Var95-QP-MV and ES95-QP-MV). Defining such different risk measures does not 

allow tackling the optimization problem by using standard quadratic programming techniques. 

Moreover, we show that the frontiers (ES95(DEMPO-MVar95)) and (VaR95(DEMPO-
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MES95)) determined respectively in correspondence of the optimal asset allocation of DEMPO-

MVar95 and DEMPO-MES95 and plotted respectively in the space (-ES95, )L  and (-VaR95, 

)L  are clearly dominated. 

Finally, DEMPO algorithm allows also determining the frontier when the real world 

constraints 4-7 are imposed. Figure 6 shows a comparison of the frontiers identified by DEMPO 

for equations (2a, 2b, 2c) and (3a, 3b, 3c) and the MV-QP solution when each asset weight 

cannot be bigger than 0.3. 
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Figure 6: Comparison of Efficient frontiers for mean-Var95 and mean-ES95 computed by DEMPO and 
QP-MV with an upper bound of 0.3 for each asset weight. DEMPO-MVaR95 is the efficient frontier in 
the space (-VaR95, )L computed by DEMPO when solving problem (2a, 2b, 2c), DEMPO-MES95 is the 

efficient frontier in the space (-ES95, )L computed by DEMPO when solving problem (3a, 3b, 3c), 

Var95(QP-MV) is the frontier in the space (-Var95, )L  computer by QP when solving problem (1a, 1b, 

1c), ES95(QP-MV) is the frontier in the space (-ES95, )L  computer by QP when solving problem (1a, 
1b, 1c). 
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5 Discussion and Conclusions 

In this paper, we have introduced a new multiobjective algorithm for portfolio optimization: 

DEMPO - Differential Evolution for Multiobjective Portfolio Optimization. Perhaps the most 

important result is that the new algorithm has the great advantage of full generality, i.e.: the 

ability to tackle a problem as it is without requiring rigid assumptions about convexity and 

linearity, while obtaining highly accurate results in very reasonable runtime. The algorithm 

allows considering different objective functions, such as value at risk and expected shortfall, 

and typical real world constraints that managers have often to satisfy. The comparison with 

quadratic programming for the standard mean-variance portfolio optimization problem shows 

that DEMPO can reach comparable results with the same runtime for high dimensional 

problem. The main drawback of DEMPO with respect to QP seems to be the inability of 

identifying solutions over the frontier as spread out as the QP solutions. We are currently 

working on this problem and preliminary results suggest that by using an ad-hoc initialization 

scheme this drawback does not exist any longer. Moreover, to our knowledge there has not been 

a comparison with a QP approach to portfolio optimization yet that has demonstrated that the 

quality of results obtained with a DE based approach and the required runtime is comparable for 

high dimensional problems. 

We have also shown that one of the most popular multiobjective search heuristics the 

NSGA-II cannot nearly obtain the same quality of results. Why is this the case? One of the main 

reasons is the great performance of differential evolution for continuous numerical problems 

compared to genetic algorithms. This insight is not new and has been reported in a variety of 

recent studies. NSGA II clearly underperforms DEMPO and QP even when we consider the 

simple mean-variance portfolio optimization problem.  

Moreover, proper constraint handling is essential in real-world optimization. The original 

constraint handling of the NSGA-II is indeed very elegant for problems with inequality 

constraints (as long as these are not too tightly defined), but clearly insufficient for equality 
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constraints. For the latter it makes a lot more sense to apply other techniques, such as "repair" 

operators as the one we use in this investigation. 
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APPENDIX A 
 

Appendix A shows the results for six multiobjective benchmark problems regarding 

MOSTATS, the distance (gamma), the dispersion (delta) and the proportion of area covered 

with respect to a known Pareto front with 100 points. Table A.1 below reports the description of 

the six benchmark problems we have considered. 

 
Table A.1: Multiobjective benchmark problems (Deb et al. 2002) 
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Problem SCH has 1 dimension, FON and KUR have 3 dimensions, whereas problems ZTD1 

and ZRD2 have 30 dimensions. SCH and ZTD1 are convex functions, while FON, KUR and 

ZTD2 are non convex. 

Table A.2 reports the results from the MOSTATS comparison, while Table A.3 reports the 

mean values and the standard deviation over 30 runs for delta, gamma and area (see section 4.2 

for a full description). The reported results are obtained with cr=0.4 for DEMPO and  with 

pc=0.7 for NSGA II, while the other parameter values are reported in Table 1.  Moreover, we 
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run the experiments with different parameter settings for pc and cr, as reported in Table 1, 

obtaining comparable results. Results are available upon request  from the authors.  

The smaller gamma and delta are, the closer to 100 the area is (we consider the ratio of the 

covered area of DEMPO or NSGA II and the area of the known Pareto optimal solution) the 

better the performance of the algorithms. Best mean values in 30 runs are reported in bold. The 

statistical comparison by MOSTATS suggests that DEMPO should clearly be preferred to 

NSGA II for the more complex problems. For the very simple benchmark problems with low 

dimensionality and without constraints, the results for the DEMPO algorithm are not better than 

the NSGA-II with respect to the gamma and delta criteria. However, there are clear differences 

for higher dimensional problems as KUR, ZTD1 and ZTD2: in such problems DEMPO is better 

than NSGA II with respect to the area and gamma criteria, but not always with respect to delta. 

NSGA II seems to have better spread out solution than DEMPO, but DEMPO tend to converge 

to better front.  

 
Table A.2: Statistical Comparison (MOSTATS) of  DEMPO and NSGA II over 30 runs for 
each benchmark problem. The rows “unbeaten” report the percentage of the space on which the 
performance of DEMPO (column 3) or of NSGA II (column 4) is unbeaten respectively by 
NSGA II or DEMPO (i.e.: the percentage of the fitness space for which we cannot be 95% 
confident, based on a non-parametric test - The Mann-Whitney Rank test, that any other 
algorithm beat it). The rows “beats” report the percentage of the space on which we can be 95% 
confident that the DEMPO (column 3) and  NSGA II (column 4) beats respectively  NSGA II 
and DEMPO. 

  DEMPO NSGA2
unbeaten 39.2 100 SCH 
beats all 0 60.8 
unbeaten 96.1 91.9 FON 
beats all 8.1 3.9 
unbeaten 94.9 14 KUR 
beats all 86 5.1 
unbeaten 100 2.7 ZDT1 
beats all 97.3 0 
unbeaten 100 1.5 ZDT2 
beats all 98.5 0 
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Table A.3: Mean values and standard deviations (in brackets) over 30 runs for DEMPO and 
NSGA II for 6 multiobjective benchmark problems. Best results are reported in bold.  
 

  SCH FON KUR ZDT1 ZDT2 
 Algorithm Mean Std Mean Std Mean Std Mean Std Mean Std 

DEMPO 98.11 3.14 98.43 1.43 98.78 1.55 100.00 0.03 100.00 0.02 Area 
NSGA2 97.24 8.07 98.46 1.02 71.38 18.35 82.19 3.27 75.39 15.41 
DEMPO 0.0166 0.0006 0.0044 0.0002 0.0235 0.0014 0.0050 0.0007 0.0040 0.0002Gamma 
NSGA2 0.0162 0.0012 0.0048 0.0002 0.5546 0.4016 0.0854 0.0160 0.1422 0.0228
DEMPO 0.8178 0.1139 0.8787 0.0160 0.9102 0.0148 0.6806 0.0507 0.6689 0.0377Delta 
NSGA2 0.4401 0.0893 0.7942 0.0120 0.8410 0.0261 0.4728 0.0281 0.8809 0.0984

 




