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Highlight

• We propose semi-supervised visual-semantic models
for the Digital Humanities domain.

• Our approaches can align artistic images and text
without paired supervision.

• We transfer the knowledge learned on ordinary
dataset to the artistic domain.

• Experiments demonstrate the effectiveness of our
distribution alignment strategy.

Keywords: Visual-semantic retrieval; Semi-supervised
learning; Cultural Heritage
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Explaining Digital Humanities by Aligning Images and Textual Descriptions

Marcella Corniaa,∗, Matteo Stefaninia, Lorenzo Baraldia, Massimiliano Corsinia, Rita Cucchiaraa

aUniversity of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Via P. Vivarelli 10, 41125 Modena, Italy

Abstract

Replicating the human ability to connect Vision and Language has recently been gaining a lot of attention in the
Computer Vision and the Natural Language Processing communities. This research effort has resulted in algorithms
that can retrieve images from textual descriptions and vice versa, when realistic images and sentences with simple
semantics are employed and when paired training data is provided. In this paper, we go beyond these limitations
and tackle the design of visual-semantic algorithms in the domain of the Digital Humanities. This setting not only
advertises more complex visual and semantic structures but also features a significant lack of training data which makes
the use of fully-supervised approaches infeasible. With this aim, we propose a joint visual-semantic embedding that
can automatically align illustrations and textual elements without paired supervision. This is achieved by transferring
the knowledge learned on ordinary visual-semantic datasets to the artistic domain. Experiments, performed on two
datasets specifically designed for this domain, validate the proposed strategies and quantify the domain shift between
natural images and artworks.

1. Introduction

As humans, we can easily link our ability to see and un-
derstand the surrounding environment with the ability to
express ourselves in natural language. In the effort of ar-
tificially replicating these connections, new models have
emerged for image and video captioning (Anderson et al.,
2018; Lu et al., 2018; Cornia et al., 2019) and for visual-
semantic retrieval (Kiros et al., 2014; Faghri et al., 2018;
Lee et al., 2018). The former architectures combine vision
and language in a generative flavor on the textual side,
the latter build common spaces to integrate the two do-
mains and retrieve textual elements given visual queries,
and vice versa.

The leading solutions for visual-semantic retrieval have
so far relied on fully supervised settings in which paired
training samples are available and have been applied to

∗Corresponding author: Tel.: +39-059-2058790; fax: +39-059-
2056129;

Email address: marcella.cornia@unimore.it (Marcella
Cornia)

Figure 1: Visual and textual data from the artistic domain are different
from those addressed by ordinary visual-semantic datasets, posing sig-
nificant challenges in the automatic understanding of arts and culture.
Our approach can align illustrations and textual elements by transfer-
ring the knowledge learned on standard datasets to match images and
captions coming from a target domain.

target images target captionssource images source captions

Distribution 
Alignment

This painting shows a girl in a yellow 
dress holding a bouquet of flowers. It is a 
typical portrait of the artist showing the 

influence of his teacher, Agnolo Bronzino.

Two people on 
surfboards with a 
third in the water.

Target 
Domain

Source 
Domain

general-purpose datasets where the state of the art of con-
cept recognition methods is useful and well assessed. In
the domain of arts and culture, however, both visual and
textual elements are far from those of ordinary datasets.
On one side, textual descriptions often contain technical
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language with symbolic reminds, metaphors and artistic
or historical connections; on the other side, artworks and
illustrations are characterized by visual features differ-
ent from those of natural images. Beyond this domain-
shift issue, the supervised training of a common visual-
semantic embedding requires sufficiently large datasets.
Instead, the artistic domain is often characterized by small
scale datasets in which the pairing between visual and tex-
tual elements is not available or expensive to obtain.

Tackling the aforementioned setting, in this paper we
propose a semi-supervised visual-semantic embedding
model (SS-VSE) for cross-modal retrieval in the artis-
tic domain. Our approach relies on the construction of a
common semantic embedding, in which the knowledge
learned on a supervised and ordinary visual-semantic
dataset is transferred to an artistic dataset in which the
pairing between images and sentences is not available.
After using global feature vectors, we also investigate
the use of auto-encoders (SS-VSE-AE) to obtain more
compact representations of input images and sentences.
Experiments are conducted on two datasets specifically
designed for the artistic domain. In particular, we use
the BibleVSA dataset (Baraldi et al., 2018) which con-
tains illustrations and textual sentences extracted from the
commentaries of a historical manuscript, and the SemArt
dataset (Garcia and Vogiatzis, 2018) that is composed of
artwork images and textual comments. Extensive experi-
ments are presented to validate the proposed solution and
to visualize the effect of the knowledge transfer between
source and target datasets.

2. Related work

Deep Learning techniques often require significant ef-
forts to be applied to the domain of Digital Humanities
and Cultural Heritage, due to the presence of specific
challenges. The research efforts of the past few years have
resulted in various works and applications spanning from
generative models to classification and retrieval solutions.
On the generative and synthesis side, promising results
have been obtained for transferring the style of a painting
to a real photograph (Gatys et al., 2016; Sanakoyeu et al.,
2018; Jing et al., 2018) and inversely, to create a realis-
tic representation of a given painting (Zhu et al., 2017;
Tomei et al., 2018, 2019a,b). On the analysis and feature
extraction side, instead, several efforts have been made on

the collection and annotation of large scale datasets con-
taining artistic images, mainly focusing on style and genre
classification (Karayev et al., 2014; Mao et al., 2017; Stre-
zoski and Worring, 2018), visual patterns detection (Shen
et al., 2019), and artwork instance recognition (Del Chiaro
et al., 2019).

Concerning the problem of linking textual descriptions
and artistic images, there is a limited bunch of works
available in the literature. In the next section, after briefly
reviewing the most important works related to visual-
semantic retrieval, we focus on image-text matching ap-
proaches applied to the artistic domain, and subdividing
them between supervised and semi-supervised methods.

2.1. Visual-semantic retrieval
Matching visual data and natural language is a chal-

lenging task in computer vision and multimedia. Since
visual and textual data belong to two distinct modalities,
one of the seminal approaches (Kiros et al., 2014) has
been that of generating a joint visual-semantic embedding
space in which images and sentences could be compared.
Even if other approaches exist, currently this is still one
of the most commonly used solutions.

Following this line, Faghri et al. (2018) introduced a
modification of the Hinge-based loss function to exploit
hard negatives, i.e. worst matching pairs, during train-
ing. This has demonstrated to be effective to improve
cross-modal retrieval performance and has been used in
almost all subsequent works. Further, Wang et al. (2018)
used a two-branch network composed of an embedding
and a similarity branch: while the embedding network
translates image and text into a feature representation, the
similarity network predicts how well the feature represen-
tations match. Differently, Dong et al. (2018) suggested
to tackle the retrieval problem exclusively in the visual
space, introducing a deep neural model that learns to pre-
dict a visual feature representation from textual input.

Recently, strong improvements have been obtained
by Lee et al. (2018) with a stacked cross-attention mech-
anism that matches images and textual descriptions by
learning a latent correspondence between detected re-
gions and words of the caption. Wang et al. (2019) ex-
tended this model by integrating an encoding of the rela-
tive position of image regions, which has proven to further
enhance the learning of the joint embedding. On the same
line, Li et al. (2019) proposed a reasoning model based on
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graph convolutional networks to generate a visual repre-
sentation that captures key objects and semantic concepts
of a scene. All of these supervised methods have been
proven effective when trained on large scale datasets, and
are not designed to work with scarce data.

Only a few works have applied image-text matching
strategies to artistic data. Among them, Garcia and Vo-
giatzis (2018) used additional metadata such as title, au-
thor, genre, and period of the paintings to find correspond-
ing image-text pairs. Stefanini et al. (2019) introduced
a new dataset and a visual-semantic model to discrimi-
nate visual and contextual sentences associated to artistic
images and, at the same time, to align the correspond-
ing visual and textual elements. While (Garcia and Vo-
giatzis, 2018; Stefanini et al., 2019) matched images and
textual descriptions in a supervised way, (Baraldi et al.,
2018; Carraggi et al., 2018) addressed the problem in a
semi-supervised setting, adapting the knowledge learned
on a given source domain to align images and text be-
longing to a different target domain and without directly
training the model on the target domain. This solution,
which is known as domain adaptation, has been used in
a wide variety of applications such as image classifica-
tion (Long et al., 2017), semantic segmentation (Hoff-
man et al., 2018; Chen et al., 2018b), object detection (In-
oue et al., 2018; Chen et al., 2018a), and image caption-
ing (Chen et al., 2017; Yang et al., 2018). Typically, it
is addressed by minimizing the distance between feature
space statistics of the source and target, or by using do-
main adversarial objectives where a domain classifier is
trained to distinguish between the source and target rep-
resentations.

3. Semi-supervised cross-modal retrieval

In the following, we describe our strategy for cross-
modal retrieval in the artistic domain. Our model has
a two-fold role: retrieving relevant images given textual
sentences as queries, and retrieve relevant sentences when
given images as queries. Parameters of the model are
learned with the objective of maximizing recall at K –
i.e. the fraction of queries for which the most relevant
item is ranked among the top K retrieved ones. As train-
ing data in the artistic domain is often scarce, we build a
proposal that does not need a paired training set in which
the associations between images and sentences are known

in advance. Rather, our model transfers the knowledge
learned on a source annotated dataset to a target dataset in
which the pairing between the two modalities is unknown
at training time.

In a nutshell, the paradigm of the common embedding
space is exploited to learn similarities between images
and sentences. In addition to using global feature vectors
to encode data from both modalities, we also investigate
the use of auto-encoders to learn more compact represen-
tations of images and sentences. To transfer knowledge
to the artistic domain without leveraging annotated pairs,
we devise a distribution alignment strategy based on the
Maximum Mean Discrepancy measure, which aims at un-
covering suitable cross-modal representation of cultural
heritage data without supervision.

3.1. Visual-semantic embeddings

Aligning works of arts and their corresponding textual
descriptions requires the ability to compare visual and tex-
tual data in this particular domain. To this end, we adopt
the strategy of creating a shared multi-modal embedding
space, in which both textual and visual elements can be
projected and compared using a similarity function.

Formally, we denote φ(I,wφ) ∈ RDφ as the feature
representation computed from an image I of the dataset
(such as the representation coming from a CNN), and
ψ(T,wψ) ∈ RDψ as the representation of a textual element
T , computed, for example, using a text encoder on one-
hot vectors, or as a function of pre-trained word embed-
dings. Here, wφ and wψ indicate, respectively, the learn-
able weights of the visual and textual encoders.

To project those representations into a common seman-
tic space, we perform a linear projection followed by a `2-
normalization step, so that the resulting embedding space
lies on the `2 unit ball:

f (I,w f ,wφ) = `2,norm(wᵀ
i φ(I,wφ)) (1)

g(T,wg,wψ) = `2,norm(wᵀ
c ψ(T,wψ)), (2)

where `2,norm is the `2 normalization function. Being D
the dimensionality of the joint embedding space, w f is a
Dφ × D matrix, and wg is a Dψ × D matrix.

Visual and textual elements can be compared in the
joint multi-modal embedding space by computing the co-
sine similarity (equivalent, in this case, to a dot product)
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between their projections, so that the similarity between
an image I and a caption T becomes

s(I,T ) = f (I,w f ,wφ) · g(T,wg,wψ). (3)

Clearly, the utility of the joint embedding space is maxi-
mized when it exhibits suitable cross-modality matching
properties, i.e. when similarities in the embedding space
correspond to meaningful similarities in both modalities.
In this case, the embedding space acts as a bridge between
the two modalities and makes it possible to retrieve textual
pieces describing a query image, and images described
by a query caption by identifying the closest neighbors in
both modalities.

Given a dataset annotated with matching visual-
semantic pairs, a good proxy of this property is to verify
that corresponding pairs are neighbours in the embedding
space. As a matter of fact, classical approaches have re-
lied on the availability of paired datasets, and have learned
the joint embedding for a specific domain in a completely
supervised way, e.g. training the parameters of the model
according to a Hinge triplet ranking loss with margin,
which imposes suitable similarities between matching and
non-matching elements. Formally, it is defined as:

`(I,T ) =
∑

T̂

[
α − s(I,T ) + s(I, T̂ )

]
+
+

+
∑

Î

[
α − s(I,T ) + s(Î,T )

]
+

(4)

where [x]+ = max(0, x) and α is a margin. In the equation
above, (I,T ) is a matching image-text pair (i.e., such that
T describes the content of I, and I represents the content
of T ), while T̂ is a negative text with respect to I (such
that T̂ does not describe I), and Î is a negative image with
respect to T (such that T does not describe Î). The terms
contained in both sums require that the difference in sim-
ilarity between the matching and the non-matching pair
is higher than a margin α: in the first sum, this is done
by considering an image anchor and matching or non-
matching captions; in the latter, instead, a caption is used
as anchor.

As reported by a recent work by (Faghri et al., 2018),
in a completely supervised setting it is often beneficial to
replace the sums in Eq. 4 with maximum operations, so to
consider only the most violating non-matching pair.

3.2. Auto-encoding images and sentences

In addition to the use of plain global feature vectors, we
also investigate an alternative projection strategy in which
images and sentences are fed to an auto-encoder to learn
a more compact yet powerful representation of the input,
which can in turn be used as the input of the projection
function defined in Eq. 1.

To this end, we design a textual auto-encoder which can
convert variable-length captions to fixed-length represen-
tations from which input sentences can be reconstructed.
In particular, our model exploits Gated Recurrent Net-
works (GRUs) (Cho et al., 2014) for both encoding and
decoding. Formally, given a sentence T = (w1,w2, ...,wN)
with length N, we firstly encode it word by word through
a single-layer GRU and take the last hidden state of the
Recurrent layer as the encoding of the sentence. Given
the recurrent relation defined by the GRU cell and the t-h
word, i.e.

ht = GRUe(wt,ht−1), (5)

the encoding of the input sentence is defined as:

hN = GRUe(wN ,hN−1). (6)

In the decoding stage, the input sentence is recon-
structed by feeding hN to a second GRU layer which is in
charge of generating the reconstructed sentence. During
training, at the t-th iteration the Recurrent layer is fed with
hN and the previous ground-truth words, and it is trained
to predict the t-h word. Formally, the training objective is
thus:

max
w

T∑

t=1

log Pr(wt |wt−1,wt−2, ...,w1,hN). (7)

The probability of a word is modeled via a softmax layer
applied to the output of the decoder. To reduce the dimen-
sionality of the decoder, a linear embedding transforma-
tion is used to project one-hot word vectors into the input
space of the decoder and, vice-versa, to project the output
of the decoder to the dictionary space.

Given the auto-encoder for the textual part, we build
an encoder-decoder model that can take an image feature
vector as input and reconstruct it starting from an interme-
diate and more compact representation. In practice, the
encoder model is composed of a single fully connected
layer. We indeed notice that a single layer leads to have a
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fairly informative representation of the image feature vec-
tor. Formally, we define the output of the encoder model
z (i.e. the intermediate representation of the input image)
as

z = tanh(Weφ(I) + be), (8)

where We and be are, respectively, the weight matrix and
the bias vector of the encoder. Notice that the output of
the encoder layer is fed through a tanh non-linearity acti-
vation function.

The decoder model has a symmetric structure. There-
fore, starting from the intermediate vector z, the decoder
applies a single fully connected layer that transforms z to
the size of the input image feature vector. Formally, the
reconstructed image feature vector φ̂(I) is defined as

φ̂(I) =Wdzi + bd, (9)

where Wd and bd are the weight matrix and the bias vector
of the decoder. Overall, the image auto-encoder is trained
to minimize the reconstruction error for each input image.
We define the decoder loss function as the mean square
error between the original image feature vector φ(I) and
the corresponding reconstruction φ̂(I).

3.3. Aligning distributions
While the knowledge of matching and non-matching

pairs on a source dataset can be exploited to train the
embedding space, as discussed in Sec. 3.1, the two re-
construction losses can be applied to both the source and
the target dataset, thus building encoded representations
which are suitable for both datasets. However, this is not
enough to transfer knowledge from the source domain to
the target domain, as there is no guarantee that encoded
words and sentences from the target dataset will lie to-
gether in the embedding space.

To this end, we match the distributions of textual and
visual data in the target domain, while learning from pairs
sampled from the source domain. Following recent works
in the field (Hubert Tsai et al., 2016; Tsai et al., 2017;
Yan et al., 2017), we use the Maximum Mean Discrep-
ancy (MMD) to compare distributions. This, basically,
computes the distance between the expectations of the two
distributions in a reproducing kernel Hilbert spaceHκ en-
dowed with a kernel κ, and can be used as an additional
loss term:

Lmmd = ‖EI∼I
[
f (I)

] − ET∼T
[
g(T )

] ‖2Hκ
, (10)

where I is the distribution of the illustrations, and T is
the distribution of captions. The kernel in the MMD cri-
terion must be a universal kernel, and thus we empirically
choose a Gaussian kernel:

κ(x, y) = exp
(
−σ‖x − y‖2

)
. (11)

At training time, we sample two mini-batches of sam-
ples, one from the supervised set and a second one from
the unsupervised dataset. The back-propagated loss is
then the sum of the supervised loss (Eq. 4) on the super-
vised set, plus the MMD lossLmmd approximated over the
batch from the unsupervised set. Additionally, the two
loss terms of the auto-encoders are evaluated over both
the supervised and the unsupervised batches.

4. Experimental results

4.1. Datasets

We perform experiments on two different visual-
semantic datasets containing artistic images and corre-
sponding textual descriptions (described below). As
source domains, we use Flickr30k and COCO which
are composed of natural images and are commonly used
to train cross-modal retrieval methods. For these two
datasets, we use the splits provided by (Karpathy and Fei-
Fei, 2015).

BibleVSA (Baraldi et al., 2018). The dataset consists of
2, 282 illustrations taken from the digitized version of the
Borso d’Este Holy Bible, one of the most significant illus-
trated manuscripts of Renaissance. Each image is associ-
ated with a single textual phrase extracted from a textual
commentary which describes the content of each page of
the manuscript. In our experiments, we use the original
training, validation, and test split, respectively composed
of 1, 671, 293, and 307 image-caption pairs.

SemArt (Garcia and Vogiatzis, 2018). This dataset is
composed of 21, 384 paintings extracted from the Web
Gallery of Art, which contains European fine-art repro-
ductions between the 8th and the 19th century. Each im-
age is associated to an artistic comment and to a set of
7 different attributes comprising the title, the author, and
the type of the painting. Overall, the dataset is divided
in training, validation and test split with 19, 244, 1, 069
and 1, 069 elements, respectively. The average length
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Figure 2: Comparison between the visual and textual features of ordinary visual-semantic datasets (Flickr30k, COCO) and those of BibleVSA and
SemArt dataset. Visualization is obtained by running the t-SNE algorithm on top of the features. Best seen in color.

BibleVSA
SemArt
Flickr30k
COCO

(a) VGG-19

BibleVSA
SemArt
Flickr30k
COCO

(b) ResNet-152

BibleVSA
SemArt
Flickr30k
COCO

(c) GloVe

BibleVSA
SemArt
Flickr30k
COCO

(d) FastText

Table 1: Semi-supervised cross-modal retrieval results using different
visual features. Results are reported on BibleVSA and SemArt test set.

Method CNN Feat.
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

COCO→ BibleVSA
SS-VSE VGG-19 13.1 29.5 36.1 3.9 16.7 27.5
SS-VSE ResNet-152 9.8 31.1 50.8 6.2 22.3 30.8
SS-VSE-AE VGG-19 9.8 27.9 34.4 3.6 15.7 25.9
SS-VSE-AE ResNet-152 6.6 23.0 36.1 3.6 19.7 29.8

COCO→ SemArt
SS-VSE VGG-19 3.7 11.7 19.0 2.3 10.0 19.3
SS-VSE ResNet-152 6.7 19.3 27.0 5.0 17.3 29.3
SS-VSE-AE VGG-19 5.0 14.3 22.7 1.7 9.0 15.3
SS-VSE-AE ResNet-152 4.7 12.7 21.0 3.7 11.0 18.0

of each artistic comment is more than 80, with a maxi-
mum number of words equal to 830. This highlights the
difference between SemArt and ordinary visual-semantic
datasets (i.e. COCO has an average caption length lower
than 11) and accentuates the challenges of this set of data.
To first validate our solution in a less complex scenario,
we limit the validation and test set to 300 randomly se-
lected image-text pairs. Then, we evaluate our model us-
ing a different number of retrievable items.

4.2. Implementation details

To encode input images, we use two different convolu-
tional networks: the VGG-19 (Simonyan and Zisserman,
2015) and ResNet-152 (He et al., 2016). We extract im-
age features from the fc7 layer of the VGG-19 and from
the average pooling layer of the ResNet-152 thus obtain-
ing an input image embedding dimensionality Dφ of 4096
and 2048, respectively.

Table 2: Semi-supervised cross-modal retrieval results using different
word embeddings. Results are reported on BibleVSA and SemArt test
set.

Method Word Emb.
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

COCO→ BibleVSA
SS-VSE FastText 8.2 19.7 34.4 2.6 16.7 26.6
SS-VSE GloVe 6.6 23.0 39.3 3.6 16.7 27.2
SS-VSE - 9.8 31.1 50.8 6.2 22.3 30.8
SS-VSE-AE FastText 6.6 27.9 34.4 3.3 14.4 25.2
SS-VSE-AE GloVe 4.9 19.7 41.0 3.9 13.8 27.5
SS-VSE-AE - 6.6 23.0 36.1 3.6 19.7 29.8

COCO→ SemArt
SS-VSE FastText 1.7 5.0 7.7 0.7 2.3 7.3
SS-VSE GloVe 3.3 11.3 16.0 2.0 11.0 17.7
SS-VSE - 6.7 19.3 27.0 5.0 17.3 29.3
SS-VSE-AE FastText 3.7 10.0 17.0 3.0 9.3 11.7
SS-VSE-AE GloVe 2.7 12.0 17.0 1.7 7.0 12.3
SS-VSE-AE - 4.7 12.7 21.0 3.7 11.0 18.0

For encoding image descriptions, we use a GRU net-
work (Cho et al., 2014). We set the dimensionality of the
GRU and of the joint embedding space D to 512, while
the input size of word embeddings Dψ is set to 300. We
use either a text encoder on one-hot vectors or different
pre-trained word embeddings (such as GloVe (Penning-
ton et al., 2014) and FastText (Bojanowski et al., 2017))
as input of the GRU.

The model with textual and visual auto-encoders is
trained using the same input and output sizes. For the
training with pre-trained word embeddings, instead of us-
ing the loss function defined in Eq. 7, we compute the
cosine distance between original and reconstructed em-
beddings of each word.

All experiments are performed by using Adam opti-
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mizer with a learning rate of 0.0002 for 15 epochs and
then decreased by a factor of 10. We set the margin α to
0.2, the σ parameter of the Gaussian kernel to 1 and the
size of the mini-batch to 128.

4.3. Analysis of artistic visual-semantic data

To get an insight of characteristics of the BibleVSA
and SemArt datasets, we analyze the distribution of im-
age and textual features respectively obtained from CNNs
and sentence embeddings and compare them with those
extracted from classical visual-semantic datasets.

For the visual part, we extract the activation from the
VGG-19 and ResNet-152 networks, while, for textual el-
ements, we embed each word of a caption with a word
embedding strategy (either GloVe or FastText). To get a
feature vector for a sentence, we sum the `2 normalized
embeddings of the words, and we apply the `2-norm also
to the results. This strategy is largely used in image and
video retrieval literature and is known for preserving the
information of the original vectors into a compact repre-
sentation with fixed dimensionality (Tolias et al., 2016)
.

Fig. 2 shows the distributions of visual and textual fea-
tures of both datasets. To get a suitable two-dimensional
representation, we run the t-SNE algorithm (Maaten and
Hinton, 2008), which iteratively finds a non-linear projec-
tion that preserves the statistical distribution of the pair-
wise distances from the original space. As it can be ob-
served, the features of ordinary visual-semantic datasets
share almost the same visual and textual distributions.
BibleVSA and SemArt, on the contrary, feature a com-
pletely different distribution, according to both modali-
ties and all feature extractors. This underlines, on the
one hand, that artistic datasets define a completely new
domain. On the other hand, instead, this motivates the
low performance of existing models when tested on these
datasets.

4.4. Cross-modal retrieval results

To evaluate the effectiveness of the visual-semantic
embeddings, we report rank-based performance metrics
R@K (K = 1, 5, 10) for image and caption retrieval. In
particular, R@K computes the percentage of test images
or test sentences for which at least one correct result is
found among the top-K retrieved sentences, in the case

Table 4: Semi-supervised retrieval results on BibleVSA test set.

Method
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

Flickr30k→ BibleVSA
VSE 3.3 8.2 16.4 1.6 12.1 19.7
SS-VSE 9.8 23.0 39.3 4.6 16.1 26.6
VSE-AE 1.6 4.9 13.1 3.0 9.8 17.0
SS-VSE-AE 3.3 23.0 29.5 3.3 13.1 23.0

COCO→ BibleVSA
VSE 1.6 9.8 16.4 2.6 10.5 20.0
SS-VSE 9.8 31.1 50.8 6.2 22.3 30.8
VSE-AE 3.3 6.6 14.8 1.6 9.8 19.7
SS-VSE-AE 6.6 23.0 36.1 3.6 19.7 29.8

of caption retrieval, or the top-K retrieved images, in the
case of image retrieval.

Firstly, we assess the performance of our full model
when using different CNN features or different word em-
beddings, to get an insight of the role of different global
feature vectors. In Table 1, we show the performance
of the proposed approach on the test sets of BibleVSA
and SemArt when using image features extracted, respec-
tively, from VGG-19 and ResNet-152. Table 2 com-
pares the use of FastText and GloVe embeddings versus
a learned word embedding matrix. In this case, the results
on SemArt test set are obtained by using 300 randomly
selected retrievable items.

For space reasons, we limit this analysis to a single
source dataset (namely, COCO), as we have observed
similar behaviours on Flickr30k. The two variants of
our approach are denoted as SS-VSE and SS-VSE-AE,
where the first refers to the model with global feature vec-
tors and linear projection, and the latter refers to the model
with the visual and textual auto-encoder. As it can be ob-
served, the global descriptor extracted from ResNet-152
outperforms the one extracted from VGG-19 in almost
all settings. Noticeably, learned word embeddings out-
perform pre-trained solutions. We speculate that this per-
formance drop is due to the the highly specialized nature
of the target datasets. In this regards, word embeddings
seem to offer a poor initialization point with respect to a
from-scratch learning of the word embedding matrix.

Another interesting consideration is that the use of hard
negatives in the triples loss function is typically beneficial
in a supervised setting (Faghri et al., 2018). Instead, in our

8

                  



Table 3: Semi-supervised cross-modal retrieval results on SemArt test set using a different number N of retrievable items.

Method
N = 100 N = 300 N = 500 N = 1000

Text Retrieval Image Retrieval Text Retrieval Image Retrieval Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Flickr30k→ SemArt
VSE 2.0 10.0 14.0 3.0 11.0 17.0 1.7 5.7 8.7 1.0 5.3 7.3 0.8 2.6 6.0 0.4 3.6 5.6 0.5 1.6 2.8 0.1 1.2 2.8
SS-VSE 7.0 23.0 40.0 10.0 23.0 37.0 5.0 15.3 22.0 3.7 13.3 17.7 3.6 9.6 14.6 1.8 7.6 12.0 1.5 6.2 10.0 1.2 3.5 7.4
VSE-AE 3.0 9.0 15.0 5.0 12.0 19.0 2.3 6.0 7.3 0.7 6.0 9.0 1.2 4.2 6.4 0.8 3.0 5.4 0.5 2.2 4.1 0.5 1.6 3.1
SS-VSE-AE 6.0 28.0 42.0 6.0 18.0 30.0 4.0 12.7 20.0 2.3 10.0 16.3 1.8 9.2 14.8 1.6 6.0 11.4 1.0 5.6 9.4 0.6 3.4 6.8

COCO→ SemArt
VSE 5.0 13.0 21.0 3.0 8.0 19.0 1.7 8.7 15.3 1.0 8.0 12.3 1.2 3.6 6.4 1.6 3.4 6.0 1.0 2.7 3.6 0.5 2.3 3.6
SS-VSE 16.0 34.0 52.0 12.0 32.0 48.0 6.7 19.3 27.0 5.0 17.3 29.3 3.8 12.2 19.8 3.4 11.6 19.4 2.7 8.9 14.0 2.3 6.9 12.9
VSE-AE 6.0 15.0 20.0 3.0 11.0 22.0 3.0 7.3 11.7 0.3 3.7 6.7 1.6 4.0 6.2 1.2 2.8 4.0 0.8 2.6 4.0 0.8 1.6 2.3
SS-VSE-AE 7.0 24.0 39.0 6.0 17.0 26.0 4.7 12.7 21.0 3.7 11.0 18.0 2.0 10.0 15.8 2.2 5.0 10.8 0.9 6.1 10.0 1.0 3.8 5.8

Figure 3: Comparison between t-SNE projections of the embedding
spaces learned with (b-d) and without (a-c) the MMD loss. Best seen
in color.

COCO Img
COCO Txt
SemArt Img
SemArt Txt

(a) VSE (COCO→ SemArt)

COCO Img
COCO Txt
SemArt Img
SemArt Txt

(b) SS-VSE (COCO→ SemArt)

COCO Img
COCO Txt
SemArt Img
SemArt Txt

(c) VSE-AE (COCO→ SemArt)

COCO Img
COCO Txt
SemArt Img
SemArt Txt

(d) SS-VSE-AE (COCO→ SemArt)

semi-supervised setting, we do not report the same advan-
tages in improving the alignment of the target domain.

4.5. Evaluation of semi-supervised embeddings

In Tables 3 and 4, we compare the performances of the
two proposed semi-supervised approaches (SS-VSE and
SS-VSE-AE) on SemArt and BibleVSA test set with re-
spect to the two models trained without the distribution
alignment (VSE and VSE-AE). For these experiments, we
use global feature vectors extracted from ResNet-152 and
learned word embeddings. Given the significant size of
SemArt dataset, we report retrieval results when using
different sets of database items (i.e. 100, 300, 500, 1000).

We notice that, when using a medium-scale source dataset
like Flickr30k, the use of the auto-encoder is competi-
tive with the use of a linear projection of the global fea-
ture vector. Instead, when transferring from a large-scale
dataset like COCO, the reconstruction term is not needed
and the reduced size of the representation degrades the
performance. In all settings, the MMD loss gives a signifi-
cant contribution to the final performance thus confirming
the effectiveness of our distribution alignment strategy.

To get a better understanding of the role of the MMD
loss, we also show the learned multi-modal embedding
space by using t-SNE visualizations. Figure 3 shows the
embedding spaces when transferring from COCO to Se-
mArt, with and without the MMD loss. As it can be no-
ticed, without the MMD loss the distribution of textual
and visual elements on the target domain remains almost
separate, as the learning signal from the source domain is
not general enough on the target domain. On the con-
trary, when applying the MMD loss the distribution of
the learned image embeddings matches that of the textual
counterpart on the target domain, thus confirming the ef-
fectiveness of the proposed semi-supervised strategy. No-
ticeably, the distributions of the source and target domain
still remain separate in the embedding space, thus under-
lying the diverse nature of the two sets.

Finally, Fig. 4.5 reports sample qualitative results on
BibleVSA and SemArt dataset. As it can be noticed, our
method can retrieve significant elements without employ-
ing any paired supervision from the artistic dataset.

5. Conclusion

We tackled the task of building visual-semantic re-
trieval approaches for the Cultural Heritage domain. To
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Figure 4: Qualitative image-to-text (upper) and text-to-image (lower) results on BibleVSA (first and third rows) and SemArt (second and fourth
rows) dataset, using the proposed semi-supervised strategy.

This three quarter length
portrait of Midshipman (later
Captain) John Windham Dalling
RN (1789-1853) memorialises
his presence on HMS Defence at
the Battle of Trafalgar (...).

A round depicting a dog hunting
a heron.

Query Image Top-1 Retrieved Caption Query Image Top-1 Retrieved Caption

A round, within a quadrangular
frame of a laurel wreath, with
Moses kneeling listening to the
word of God appearing in the
sky.

A fantastic figure with a leopard
body and human head holds a
spear and a shield.

Query Image Top-1 Retrieved Caption

This painting depicts a still-life
of flowers in a vase, with fruit
on a ledge behind.

This painting shows the
Madonna and Child in a
landscape with the Infant Saint
John the Baptist. It betrays the
influence of (…).

Top-1 Retrieved 
Image

A quadrangular vignette with
Moses and Aaron, kneeling in a
landscape, they listen to the
word of God appearing in the
form of a radiated cloud.

Query Caption

A landscape with the leopard
with tail and dragon wings.

Quadrangular vignette with
Moses preaching to the people
gathered around him.

Query Caption Query Caption
Top-1 Retrieved 

Image
Top-1 Retrieved 

Image

This study of a bearded man,
head and shoulders, was
probably made with the
intention to use it in some
multi-figural composition.

In this genre scene three men
are depicted relaxing in a
sparse interior as one plays his
violin and the others jovially
hold a pipe and vessels for
drinking (…).

This still-life depicts Bohemian
crystals, cups, and a watch.

this aim, we have proposed a semi-supervised approach
which does not rely on labelled data on the artistic domain
and translates the knowledge learned on ordinary visual-
semantic datasets to the more challenging case of artistic
data. Extensive experimental results validated the pro-
posed strategy. Regardless, future research should con-
sider the potential effects of semi-supervised approaches
using more fine-grained methods, for example aligning
detected regions and sentence words between source and
target distributions instead of their global representations.
As this has been proven useful in ordinary domains, its in-
teractions with domain adaptation should be investigated.
Moreover, a comprehensive comparison of domain adap-
tation techniques, including those employing adversarial
objectives, and of their applicability to the Cultural Her-
itage domain is needed to further advance the research in
the field.
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