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Abstract. Natural User Interfaces can be an effective way to reduce
driver’s inattention during the driving activity. To this end, in this paper
we propose a new dataset, called Briareo, specifically collected for the
hand gesture recognition task in the automotive context. The dataset is
acquired from an innovative point of view, exploiting different kinds of
cameras, i.e. RGB, infrared stereo, and depth, that provide various types
of images and 3D hand joints. Moreover, the dataset contains a significant
amount of hand gesture samples, performed by several subjects, allowing
the use of deep learning-based approaches. Finally, a framework for hand
gesture segmentation and classification is presented, exploiting a method
introduced to assess the quality of the proposed dataset.
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1 Introduction

Natural User Interfaces (NUIs), i.e. interfaces in which the interaction is not
carried through physical devices (like mouses and keyboards), are becoming more
and more important in many computer vision fields and a key component of new
technological tools, since they are extremely user-friendly and intuitive [9].
Recently, NUIs are gathering attention also in the automotive context, where
they can be used for a variety of applications in order to reduce driver inattention.
In fact, they can increase the amount of time in which driver attention is focused
on driving activity. Indeed, driver distraction, according to the National Highway
Traffic Safety Administration1 (NHTSA), is generally defined as “an activity
that could divert a person’s attention away from the primary task of driving”,
and is one of the most important causes in fatal road crashes [5].
Generally, three types of driver distraction are identified in the literature [1,2]:

– Manual Distraction: driver’s hands are not on the steering wheel for a
prolonged amount of time. As a consequence, the driver is not ready to
avoid road obstacles, such as cars and pedestrians;

1 https://www.nhtsa.gov

https://www.nhtsa.gov
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– Visual Distraction: driver’s eyes are not looking at the road, since they
are engaged in different tasks, such as reading a newspaper or looking at the
phone;

– Cognitive Distraction: driver’s attention is not focused on the driving
activity due to the fatigue, i.e. “the inability of disinclination to continue an
activity, generally because the activity has been going for too long” [10], or
due to bad physical conditions or the cognitive load due to external factors.

The availability of systems that can be controlled via the Natural Language,
like vocal commands or hand gestures [3], could significantly reduce the causes
of manual and visual distraction since they generally lead to a reduction of the
amount of time involved in interactive activities. Besides, as reported in [12],
today drivers are more engaged in secondary tasks than in the past due to the
presence, for instance, of smartphones.

For these reasons, in this paper we investigate the development of a hand
gesture-based interaction system, based on computer vision techniques, aim-
ing to obtain a safer interaction between the driver and the car system. A key
element in its development is the collection of a new dataset, called Briareo,
specifically designed for the driver hand gesture classification and segmentation
with deep learning-based approaches, which includes a significant amount of an-
notated samples.
In particular, we focus on dynamic hand gestures, i.e. each gesture is a com-
bination of motion and one or more hand poses: thus, we neglect static hand
gestures, that are out of the scope of this paper. Images have been collected from
an innovative point of view, different from other perspectives proposed in the
past literature: the acquisition devices are placed in the central tunnel between
the driver and the passenger seats, orientated towards the car ceiling. In this
way, visual occlusions produced by driver’s body can be mitigated.
To collect the dataset, three main requirements about the automotive context
have been taken into account [18]:

– Light Invariance: vision-based systems have to be reliable even in presence
of dramatic light changes (generated, for instance, by the alternation between
day and night, tunnels, or bad weather conditions);

– Non-invasinevess: driver’s movements and gaze must not be impeded dur-
ing the driving activity. Consequently, sensors have to be easily integrated
into the car dashboards;

– Real Time performance: interaction systems have to quickly detect ges-
tures and provide a fast feedback of the system;

To tackle the first requirement, we propose the use of infrared-based sensors.
Moreover, we select devices that are also able to acquire depth maps, i.e. par-
ticular types of images in which each pixel corresponds to the distance between
the acquisition device and that point in the scene. Recently, several infrared and
depth devices with high-quality sensors and with a small factor form have been
introduced, which fulfil the second requirement.
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The rest of the paper is organized as follow. In the next section, related
datasets and methods about hand gesture classification are analyzed. Then, in
Section 3, the Briareo dataset is presented, detailing all the features and data
collected. In Section 4, two baseline methods are proposed, in order to assess
the quality of the proposed dataset and to move towards the development of
a gesture-based interaction framework. Experimental results are presented in
Section 5. Finally, Section 6 draws the conclusions.

Fig. 1. Gesture classes included in the Briareo dataset. As shown, only dynamic ges-
tures are present in the dataset. For further details, see Section 3.2.

2 Related Datasets

Recently, several public datasets have been presented in the literature about
the driver gesture classification task [11,15,14]. These datasets propose various
gesture classes, performed by multiple subjects, with diverse gesture complexity
and sensors used for the acquisition part. A summary of these datasets is reported
in Table 1.

The Chalearn dataset [6] contains a high number of subjects and samples,
but it is based only on the Italian Sign Language and it is acquired in an indoor
environment. The automotive dataset called Turms [1] is acquired in a real
automotive context, but it is focused on driver’s hand detection and tracking,
then no hand gestures are present.

The dataset proposed in [11] contains both 3D hand joints information and
depth maps, acquired jointly with a Leap Motion device and the first version of
the Microsoft Kinect. There are 10 different gestures performed by 14 people,
and each gesture is repeated for 10 times. The acquisition has been conducted in
an indoor environment and the devices are frontally placed with respect to the



4 F. Manganaro et al.

subjects. Unfortunately, hand gestures are static and belong to the American
Sign Language.

The VIVA Hand Gesture Dataset [15] is a dataset released for the name-
sake challenge, organized by the Laboratory for Intelligent and Safe Automobiles
(LISA). This dataset has been designed to study natural human activities in
confused and difficult contexts, with a variable illumination and frequent occlu-
sions. 19 gesture classes are reported, taken from 8 different subjects, simulating
real driving situations. Authors provide both RGB and depth maps acquired
using the first version of the Microsoft Kinect. It is worth noting that users per-
form gestures around the infotainment area, placing the right hand on a green
and flat surface to facilitate vision-based algorithms. The best gesture recog-
nition method proposed in the challenge consists of a 3D convolutional neural
network-based algorithm which has been presented by Molchanov et al. in [13].

The Nvidia Dynamic Hand Gesture dataset [14] presents 25 types of gestures
recorded by multiple sensors (SoftKinetic DS235 and a DUO 3D stereo camera)
from different points of view: acquisition devices are frontal placed and top-
mounted with respect to the driver position. The acquisition has been carried
out in an indoor car simulator. Users perform gestures with the right hand while
the left one grasps the steering wheel. The dataset contains the recordings of
20 subjects, even if some of them contributed only partially, not performing the
entire recording session. In addition, optical flow is computed on intensity images
and it is publicly released.

The Leap Motion Dynamic Hand Gesture (LMDHG) dataset [4] contains
unsegmented dynamic gestures, performed with either one or two hands. The
Leap Motion sensor has been employed as acquisition device because its SDK is
able to extract the 3D coordinates of 23 hand joints. This dataset is composed
of several sequences executed by 21 participants and it contains 13 types of
gestures performed randomly alongside an additional no-gesture action. Overall,
50 sequences are released, leading to a total of 608 gesture instances.

Table 1. Datasets for the hand gesture classification task. We report the number of
subjects and gesture classes and the types of data included: RGB images, depth maps
(acquired with Structured Light (SL) or Time-of-Flight (ToF) devices), infrared images.
Moreover, we report the presence of 3D hand joints (3DJ) and dynamic gestures.

Dataset Year #subjs #gest RGB Depth IR 3DJ Dynamic

Unipd [11] 2014 14 10
√

SL
√

VIVA [15] 2014 8 19
√

SL
√ √

Nvidia [14] 2015 20 25
√

SL
√ √

LMDHG [4] 2017 21 13
√ √ √

Turms [1] 2018 7 -
√ √

Briareo 2019 40 12
√

ToF
√ √ √
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3 The Briareo dataset

In this Section, we introduce the Briareo dataset, highlighting the original con-
tributions of the proposed data collection with respect to the previous ones.
As mentioned above, this dataset contains dynamic hand gestures, shown in
Figure 1, acquired indoor in a real car dashboard. Furthermore, the dataset in-
troduces an innovative point of view, not used in previous datasets: we place the
acquisition devices in the central tunnel, between the driver and the passenger
seat. This choice has been driven by the hypothesis that from this point of view
it is possible to acquire gestures with minor visual occlusions compared to other
camera positions. Moreover, in this position the acquisition devices can be easily
integrated and are protected by direct sunlight, which is a critical element for
infrared-based sensors.
Finally, this dataset contains a great variability in the collected data: a high
number of subjects and gestures have been recorded. The great amount of anno-
tated data allows using deep learning-based techniques. The dataset is publicly
available2.

Fig. 2. Sample infrared, RGB, and depth images from the Briareo dataset. Samples
have been acquired with a standard RGB camera and the Pico Flexx device.

3.1 Acquisition Devices

Three different sensors are used in order to acquire the dataset.
Firstly, a traditional RGB camera is exploited, able to acquire data up to 30
frames per second. In order to maintain the realism of the automotive environ-
ment, no external light sources have been added: this results in dark intensity
frames with low contrast, as depicted in Figure 2. Secondly, we used a depth
sensors, namely the Pico Flexx 3, which has the following features:

– Time-of-Flight (ToF): thanks to this technology, the device is able to
acquire 16-bit depth maps with a spatial resolution of 224�171. As reported
in [16], ToF technology provides better quality and a faster frame rate than

2 http://imagelab.ing.unimore.it/briareo
3 https://pmdtec.com/picofamily/flexx

http://imagelab.ing.unimore.it/briareo
https://pmdtec.com/picofamily/flexx
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the Structured Light devices (e.g. the first version of the Microsoft Kinect),
reducing the number of visual artefacts, like holes and missing values;

– Factor Form: the sensor has very limited dimensions (68mm � 17mm �
7:35mm) and weight (8g), so it can be easily integrated in the car cockpit;

– High Framerate: different work modalities are available for the device:
selecting a limited acquisition range, it is able to acquire up to 45 frames per
second. This is a crucial element in order to achieve real time performance;

– Acquisition range: there are two possible depth resolutions, the first one
acquires objects in the range 0:5�4 m, while the second one in the range 0:1�
1 m. We set the second modality: in this way, the sensor is able to correctly
acquire gestures performed close to the device. Indeed, we hypothesize that
a distance grater than 1 meter is useless in our acquisition setting.

Finally, we employ an infrared stereo camera, the Leap Motion4, with the
following features:

– Infrared cameras: the device has two infrared cameras with a resolution
of 640 � 240 and 400 � 400 pixels for raw and rectified frames, respectively;

– High Framerate: up to 200 frames per second;
– Factor Form: this device is only 70 � 12 � 3 mm and 32g of weight;

Moreover, this sensor is equipped with a fish-eye lens that allows to capture a
150-degree scene from very short distances. The SDK of the Leap Motion device
is able to acquire, in addition to infrared images, several hand joints, together
with their orientations and bone lengths, as shown in Figure 3.

Fig. 3. Data acquired through the Leap Motion device: from the left, the raw and the
rectified frame, and the hand joints (blue), including the fingertips (red), the palm
center (green) and the wrist position (orange).

3.2 Statistics

The Briareo dataset contains 12 dynamic gesture classes, designed with a view
to the development of an interactive generic system, as follows: fist (g00), pinch
(g01), flip-over (g02), telephone (g03), right swipe (g04), left swipe (g05), top-
down swipe (g06), bottom-up swipe (g07), thumb (g08), index (g09), clockwise
rotation (g10) and counterclockwise rotation (g11).

4 https://www.leapmotion.com

https://www.leapmotion.com
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A total of 40 subjects (33 males and 7 females) have taken part to the data
collection. Every subject performs each gesture 3 times, leading to a total of
120 collected sequences. Each sequence lasts at least 40 frames. At the end of
this procedure, we record an additional sequence including all hand gestures in
a single recording. The three cameras have been synchronized so that the frames
at a certain instant depict the same scene.
The following data are released within the dataset: RGB images (traditional
camera), depth maps and infrared intensities (Pico Flexx), raw and rectified
infrared images (Leap Motion), 3D hand joints (Leap Motion SDK). Samples
are reported in Figure 2 and Figure 3.

4 Proposed Baselines

In this Section, we investigate the use of two methods to tackle the gesture
classification task, handling the temporal evolution of the dynamic hand gestures
in two different ways: 3D convolutions and recurrent neural architecture.

4.1 3D Convolutional Network

Architecture. Taking inspiration from [14], we propose a 3D convolutional
neural network to tackle the gesture classification task. Therefore, the tempo-
ral evolution of the hand gestures is handled through 3D convolutional layers.
We adopt the architecture of C3D [17] which consists of 8 convolutional layers,
5 max-pooling layers and a softmax layer. The last 487-dimensional fully con-
nected layer of the original architecture is replaced with a 12-dimensional layer
to deal with the number of classes of the Briareo dataset.

Training Procedure. Input frames are resized to 112 � 112 to deal with the
C3D architecture constraints and grouped in mini-batches of size 8. As optimizer,
we exploit the Stochastic Gradient Descent (SGD) with a learning rate of 10�2

and a momentum of 0:5. We use the binary categorical cross-entropy as loss
function. Input images are normalized so that the mean and the variance are 0
and 1, respectively. Since each gesture of the dataset has a different duration, we
create fixed-length input sequences in the following way: given a single sequence,
starting from the central frame (w.r.t. the whole length of the sequence) 20
contiguous frames towards the beginning and 20 towards the end are extracted
and stacked to form the input of the proposed architectures.

Table 2. Inference time of the C3D model w.r.t different architectures and input types.

RGB Depth Infrared

Nvidia 1080 Ti 1.96±0.49 ms 2.26± 1.17 ms 2.19± 0.93 ms
Nvidia Titan X 1.87±0.77 ms 2.07± 0.89 ms 1.86± 0.92 ms
CPU 4.01± 0.24 s 3.89± 0.24 s 3.88± 0.24 s
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4.2 Long-Short Term Memory

Architecture. Differently from the previous network, here we aim to handle
the temporal evolution of the hand gesture through a recurrent neural network,
in particular the Long-Short Term Memory (LSTM) [7]. The LSTM model em-
ployed is described by the following equations:

It = �(Wixt + UiHt�1 + bi) (1)

Ft = �(Wfxt + UfHt�1 + bf ) (2)

Ot = �(Woxt + UoHt�1 + bo) (3)

Gt = tanh(Wcxt + UcHt�1 + bc) (4)

Ct = Ft � Ct�1 + It �Gt (5)

Ht = Ot � tanh(Ct) (6)

in which Ft; It; Ot are the gates, Ct is the memory cell, Gt is the candidate mem-
ory, and Ht is the hidden state. W , U , and b are learned weights and biases,
while xt corresponds to the input at time t as defined in the previous section.
Finally, the � operator is the element-wise product.
We exploit a LSTM module with a hidden size of 256 units and 2 layers, adding
a final fully connected layer with 12 units, corresponding to the number of the
gesture classes.

Training Procedure. As reported in Section 3.1, for each frame the Leap
Motion SDK gives the 3D joints of the hand and the palm center, represented
with the (x; y; z) coordinates in the 3D space. A feature set is then created,
including the position of each finger joint and of the palm center, along with the
speed and the direction (expressed in terms of yaw, pitch and roll angles) of the
fingertips. Data are then normalized to obtain zero mean and unit variance.
The network is then trained using as input this pre-processed data, exploiting the
Adam optimizer [8] with learning rate 10�3, weight decay 10�4, and a batch size
of 2. As loss function, we use the binary categorical cross-entropy. We empirically
set the length of each training sequence equal to 40 frames.

5 Experimental Results

The following experimental results have been obtained in a cross-subject setting:
we randomly put the recordings of 32 subjects in the train and the validation
set and the recordings of the other 8 subjects in the test set. We maintain this
division for every test here reported.
Aiming to investigate the contribution of each input modality to the final hand
gesture classification accuracy, we train the C3D model separately on the three
modalities, i.e. RGB, infrared, and depth images. Moreover, we train the pro-
posed LSTM model on the 3D hand joints computed by the Leap Motion SDK.
The overall accuracy w.r.t. each gesture and input type is reported in Table 3.
The model that analyzes RGB images obtains the worst result, due to the low
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Table 3. Results expressed in terms of accuracy and improvement of the proposed
models with respect to the 12 hand gesture classes of the Briareo dataset.

Gesture Gesture C3D LSTM
Label RGB Depth Infrared 3D Joints

Fist g0 0.542 0.708 0.750 0.875
Pinch g1 0.833 0.875 0.958 1.000
Flip-over g2 0.792 0.750 0.875 0.958
Telephone call g3 0.625 0.792 1.000 1.000
Right swipe g4 0.833 0.833 0.917 0.917
Left swipe g5 0.833 0.917 0.792 1.000
Top-down swipe g6 0.917 0.750 0.958 1.000
Bottom-up swipe g7 0.750 0.833 0.875 0.917
Thumb up g8 0.917 0.625 1.000 0.875
Point g9 0.667 0.708 1.000 1.000
Rotation (CW) g10 0.542 0.375 0.750 0.917
Rotation (CCW) g11 0.417 0.958 0.635 0.875

all 0.722 0.760 0.875 0.944
Improvement - +0.038 +0.153 +0.222

brightness and contrast of the acquired images, even though some gestures (e.g.
g6 and g8 ) are easily recognized. As expected, a significant improvement is in-
troduced when analyzing depth maps and infrared images, thanks to the higher
image quality and reliability.
As shown in the right part of Table 3, the LSTM model, which analyzed 3D hand
joints, achieves the best overall accuracy. However, this performance is based on
a correct localization of the 3D hand joints provided by the Leap Motion SDK,
limiting the applicability of this method to real world applications.

Considering the high accuracy obtained by the proposed models, we devel-
oped a reference framework for the classification of gestures. The C3D model and
the infrared images have been selected to deal with both accuracy and speed,
without being dependent on external software (e.g. the Leap Motion SDK).
The proposed framework processes input data frame by frame and a temporary
buffer is maintained, through a sliding windows approach. As soon as 40 frames
are stacked, the buffer is classified by the C3D model. The gesture is classified
and considered valid only if the prediction confidence reaches a certain thresh-
old, empirically set to 0:85.
In Figure 4 we report the flow chart of the proposed framework, and some
screenshots of the graphical user interface, showing infrared and depth frames
on the left, and the predicted gesture label on the right.

Finally, we test the inference time of the C3D model in a desktop computer
equipped with an Intel i7-6850K (3:8 GHz) and 64 GB of memory. This test is
carried out on two different GPU, namely the Nvidia 1080 Ti and the Nvidia
Titan X, as well as without graphical accelerators. The model has been developed
using PyTorch. For investigation purposes, we test the network with each input




