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A B S T R A C T

When you see a person in a crowd, occluded by other persons, you miss visual information that can be used
to recognize, re-identify or simply classify him or her. You can imagine its appearance given your experience,
nothing more. Similarly, AI solutions can try to hallucinate missing information with specific deep learning
architectures, suitably trained with people with and without occlusions. The goal of this work is to generate
a complete image of a person, given an occluded version in input, that should be a) without occlusion b)
similar at pixel level to a completely visible people shape c) capable to conserve similar visual attributes (e.g.
male/female) of the original one. For the purpose, we propose a new approach by integrating the state-of-the-
art of neural network architectures, namely U-nets and GANs, as well as discriminative attribute classification
nets, with an architecture specifically designed to de-occlude people shapes. The network is trained to optimize
a Loss function which could take into account the aforementioned objectives. As well we propose two datasets
for testing our solution: the first one, occluded RAP, created automatically by occluding real shapes of the
RAP dataset created by Li et al. (2016) (which collects also attributes of the people aspect); the second is a
large synthetic dataset, AiC, generated in computer graphics with data extracted from the GTA video game,
that contains 3D data of occluded objects by construction. Results are impressive and outperform any other
previous proposal. This result could be an initial step to many further researches to recognize people and their
behavior in an open crowded world.

1. Introduction

While recent efforts in people detection, recognition, and track-
ing enabled a plethora of video-surveillance applications, e.g. people
identification by Ma et al. (2017), pose estimation by Guler et al.
(2018) and action analysis by Herath et al. (2017), occlusion is still
an open problem. The occlusion issue is well known in the people
detection and tracking literature and generally affects any intelligent
video surveillance system, but it is debatable whether a real solution
to the problem could exist effectively. In fact, whenever an occlusion
occurs we observe a removal of information from the observed scene.
The occluded portion of an object, indeed, becomes unknown and,
in a Parmenidean sense, it does not exist until it can be observed.
For this motivation, most of the literature focused on counteracting
the phenomenon conveying occlusion robustness to either detection,
tracking, or re-id systems as by Zhuo et al. (2018), Subramaniam
et al. (2016), Pan and Hu (2007), Wang et al. (2018a) and Coppi
et al. (2016). In the matter of fact, recovering the image content
from an occlusion is feasible only in the case where the target has
been previously observed e.g. in a video stream. This is the approach
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1 Leveraging on the highly photo-realistic graphics of GTA V video-game.

followed also by many tracking solutions which memorize several
detected appearance of the person, to discard occlusions as ‘‘less fre-
quent accidents’’ w.r.t. the normal visible appearance. Nevertheless,
leveraging on the generative capabilities of GANs by Goodfellow et al.
(2014), we aim at demonstrating that it is indeed possible to hallucinate
a plausible representation of the occluded content even when it has
never been previously observed, i.e. in single images. Following on
our previous work on the topic (Fabbri et al., 2017), in this paper,
we introduce a novel network that leverages the generative power of
GANs for hallucinating the occluded portion of the image without any
guidance of an attention mechanism that could provide instance level
information about the occluding person. The proposed solution aims
at generating or reconstructing the image of a person which could be
plausible in many senses: (a) similar to images of real people, observed
in the training dataset; (b) acceptable at pixel level as a person shape;
(c) capable to preserve similar visual attributes of the ground truth de-
occluded image. This is carried out by exploiting solutions for attribute
classifications (e.g. male/female, young/old, with/without trousers,
etc.) and integrating them in a U-net like generative and adversarial
architecture.
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Fig. 1. A schematic representation of the training procedure adopted in our work. The Generator (a) takes the occluded image 𝐼𝑂𝐶𝐶 as input and the attributes of the person 𝐴𝐺𝑇
(e) as a further conditioning element. The output of the Generator 𝐼𝐺𝐸𝑁 is the restored image, with no occlusion. To train the Generator, we fed 𝐼𝐺𝐸𝑁 to three different networks:
ResNet-101, VGG-16, and the Discriminator. (b) ResNet-101 gives a prediction of the 𝐼𝐺𝐸𝑁 attributes which are compared with the ground-truth ones for the 𝑎𝑡𝑟 computation,
in order to maximize high-level similarity. (c) The feature maps extracted from different layers of VGG-16 are used to calculate the content loss between 𝐼𝐺𝐸𝑁 and 𝐼𝐺𝑇 with the
aim of encouraging low-level similarity. (d) The Discriminator, which gives the judgment between ‘‘real’’ and ‘‘fake’’ distributions, has to be fooled by the Generator in order to
produce images belonging to the non-occluded domain of pedestrians. The Discriminator is trained alongside the Generator to distinguish between generated ‘‘fake’’ images and
‘‘real’’ ones. At evaluation time, only the Generator network and the Attributes Concatenation are used.

Another major problem that arises when dealing with occlusions,
through learning-based solutions, is the lack of large-scale datasets
providing realistically occluded and non-occluded pairs of images. Most
of the proposed solution in literature, like the ones introduced by Fabbri
et al. (2017), Ouyang et al. (2016) and op het Veld et al. (2015) paste
together different people detections, or manually add random objects
or textures to a non-occluded image. These processes ultimately fail to
generate realistic data and are thus a liability when employed for train-
ing a neural network that aims at resolving the occlusion while keeping
the rest of the image coherent (e.g. the background) and preserving
the person’s attributes. To address this issue, we propose a novel,
fully automatic, way to generate realistic occlusion pairs by exploiting
the recent achievements in object segmentation by He et al. (2017).
These results are high-fidelity occlusion pairs, where the background
of the original image is preserved and the generated occlusion is more
realistic. Additionally, thanks to the software provided by Fabbri et al.
(2018), we created a massive computer graphics generated dataset,1 in
which we artificially created a large collection of occluded pedestrians.
Additionally, we recovered from the game engine their attributes by
manually annotating just the models. To our knowledge, this is the
first CG dataset for the purpose of de-occluding people having a set
of annotated person attributes (e.g. sex, hair color, dress style, etc.).

To summarize, our contributions are threefold:

• We propose a novel generative adversarial network that is able to
solve occlusions in pedestrian images by hallucinating the missing
parts while keeping both the appearance and the background
coherent;

• We devise a new way for synthetically generating occlusion pairs
that result in more realistic images when compared to other
methods previously employed, also by creating a huge CG dataset;

• We propose a method for conditioning the occluded body part
restoration on pedestrian attributes and consequently improving
the generation process.

We show by experiments that the design of a conditional GAN that is
aware of the attributes can acceptably hallucinate pedestrian and we
experimentally demonstrate that this information is helpful in guid-
ing the generation process. Results are interesting in terms of very
high accuracy, outperforming other previous methods. We believe that
our method could be useful in many computer vision systems, from
surveillance, automotive to human behavior understanding tasks.

2. Related works

Generative image modeling with deep learning techniques has re-
ceived lots of attention in recent years. Works on this field can be split
into two categories. The first line of works follows the unsupervised
setup. Here, the variational autoencoders (VAE) proposed by Rezende
et al. (2014) and Kingma and Welling (2013) are the first popular
methods which apply a re-parameterization trick to maximize the lower
bound of the data likelihood. The most popular methods are indeed
generative adversarial networks (GAN) of Goodfellow et al. (2014)
and Radford et al. (2015), which simultaneously learn a generator
network to generate image samples, and a discriminator network to
discriminate generated samples from real ones. GANs are capable of
generating sharp images by exploiting the adversarial loss instead of
more canonical losses such as L1 or L2.

The second group of works produces images conditioned on either
categories, attributes, labels, images or texts. Yan et al. (2016) proposed
a Conditional Variational Autoencoder (CVAE) to achieve an image
generation conditioned on attributes. On the other hand, Mirza and
Osindero (2014) proposed conditional GANs (CGAN) where both the
generator and the discriminator are conditioned on extra information
to perform category specific image generation. Lassner et al. (2017)
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Fig. 2. Architecture of our Generator network with corresponding number of feature maps and kernel sizes. The figure also depicts max-pooling and upsampling operations, along
with skip connection gates.

generated people in clothing, by conditioning on the fine-grained body
part segments. Reed et al. (2016b) proposed a novel deep architecture
and GAN formulation to effectively translating visual concepts from
characters to pixels, by adding textual information to both generator
and discriminator. They also further investigated the use of additional
location, key-points, or segmentation information, to generate images
as did by Reed et al. (2016a,c). With only these visual hints as condition
and in contrast to our explicit condition on the occluded image, the
control exerted over the image generation procedure is still abstract.
Many works perform a conditioning over image generation not only
on labels or texts but also on images. Zhao et al. (2017) generated
multi-view cloth images from only a single view input by proposing
a new image generation model that combines the strengths of the
variational inference and the GAN framework. Chen and Grauman
(2014) tackled the unseen view inference by casting the problem in
terms of tensor completion and adopt a factorization approach to
accommodate single-view images. Isola et al. (2017) provides a general
purpose architecture that is effective at synthesizing photos from label
maps, reconstructing objects from edge maps, and colorizing images,
among other tasks. Yang et al. (2015), Huang et al. (2017), Yim et al.
(2015), Ghodrati et al. (2015) addressed the task of face image gener-
ation conditioned on a reference image and a specific face viewpoint.
Finally, Yang et al. (2017), Yeh et al. (2017), Pathak et al. (2016), Wang
et al. (2018b) tackled the task of image inpainting where large missing
regions have to be filled based on the available visual data. Our work
can be seen as a particular case of inpainting, where the portion of the
image to inpaint is not known a priori.

3. Method

The goal of our work is to reconstruct occluded body parts of
pedestrians in different surveillance scenarios. Given an image of an
occluded pedestrian as the network input, we aim at removing the
obstructions and replacing them with body parts that could likely
belong to the occluded person. Note that, differently from the task of
inpainting, we do not want to guide the network with the information
about what portion of the image we want to remove and complete. For
this purpose, we want to learn an image transformation between pairs
of occluded images 𝐼𝑂𝐶𝐶 and not occluded images 𝐼𝐺𝑇 .

In order to accomplish this, we propose the training procedure
depicted in Fig. 1: our pipeline takes as input the occluded image 𝐼𝑂𝐶𝐶 ,
along with the relative attributes 𝐴𝐺𝑇 and outputs the restored image
𝐼𝐺𝐸𝑁 . 𝐼𝐺𝐸𝑁 is then inputted to the three networks ResNet-101, VGG-
16, and the Discriminator in order to compute the three components
of our loss. Each loss component is then backpropagated through the
input, updating only the Generator’s weights.

More precisely, to achieve a full body restoration, we train the
Generator network 𝐺 as a feed-forward CNN 𝐺𝜃𝑔 with parameters 𝜃𝑔 .

For 𝑁 training pairs images (𝐼𝑂𝐶𝐶 , 𝐼𝐺𝑇 ) and their relative attributes
𝐴𝐺𝑇 , we solve:

�̂�𝑔 = argmin
𝜃𝑔

1
𝑁

𝑁
∑

𝑛=1
𝑡𝑜𝑡𝑎𝑙

(

𝐺𝜃𝑔
(

𝐼𝑛𝑂𝐶𝐶 , 𝐴
𝑛
𝐺𝑇

)

, 𝐼𝑛𝐺𝑇
)

(1)

Here �̂�𝑔 is obtained by minimizing the loss function 𝑡𝑜𝑡𝑎𝑙 described
in the next subsection. As a result, our generator network learns a
mapping from observed images 𝐼𝑂𝐶𝐶 to output image 𝐼𝐺𝐸𝑁 . This differs
from what did by Isola et al. (2017) and Mirza and Osindero (2014)
which use random noise along with the input image.

Following Goodfellow et al. (2014), we further define the Discrimi-
nator network 𝐷𝜃𝑑 with parameters 𝜃𝑑 , that we train alongside 𝐺𝜃𝑔 with
the aim of solving the adversarial min–max problem:

min
𝐺

max
𝐷

E𝐼𝐺𝑇 ∼𝑝𝑑𝑎𝑡𝑎(𝐼𝐺𝑇 )[log𝐷
(

𝐼𝐺𝑇
)

]

+E𝐼𝑂𝐶𝐶∼𝑝𝑔𝑒𝑛(𝐼𝑂𝐶𝐶 ,)[log 1 −𝐷
(

𝐺
(

𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇
))

] (2)

where 𝐷(𝐼𝐺𝑇 ) is the probability of 𝐼𝐺𝑇 being a ‘‘real’’ image while
(1 −𝐷(𝐺(𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇 ))) is the probability of 𝐺(𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇 ) = 𝐼𝐺𝐸𝑁 being
a ‘‘fake’’ image. The min–max formulation force 𝐺 to fool the 𝐷,
which is adversarially trained to distinguish between generated ‘‘fake’’
images and ‘‘real’’ ones. Thanks to this approach, we obtain a Generator
network capable of learning solutions that are similar to not occluded
images thus indistinguishable by the Discriminator. Note also that,
differently from what did by Isola et al. (2017), we do not concatenate
input images 𝐼𝑂𝐶𝐶 to the ‘‘fake’’ images 𝐼𝐺𝐸𝑁 or to the ‘‘real’’ images
𝐼𝐺𝑇 as Discriminator input.

3.1. Loss function

The definition of the loss function 𝑡𝑜𝑡𝑎𝑙 is crucial for the effective-
ness of our Generator network. We propose the following loss formula-
tion, composed by a weighted combination of three components:

𝑡𝑜𝑡𝑎𝑙 =

total loss
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑎𝑑𝑣
⏟⏟⏟

adver. loss

+ 𝜆1 ⋅ 𝑣𝑔𝑔
⏟⏞⏟⏞⏟
cont. loss

+ 𝜆2 ⋅ 𝑎𝑡𝑟
⏟⏞⏟⏞⏟
attr. loss

(3)

The intuition behind this loss formulation is that we want the
generated images to contain real people (thanks to 𝑎𝑑𝑣), to have
similar feature representations (thanks to 𝑣𝑔𝑔) and to preserve vi-
sual attributes (thanks to 𝑎𝑡𝑟) w.r.t. their non occluded ground truth
versions.

The first term of Eq. (3) is the adversarial loss 𝑎𝑑𝑣. This component
encourages the Generator network 𝐺 to generate images belonging
to the not occluded domain of pedestrians by fooling the Discrimina-
tor network 𝐷. The adversarial component relative to the Generator
network is calculated as follows:

𝑎𝑑𝑣 = −
𝑁
∑

𝑛=1
log𝐷

(

𝐺
(

𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇
))

(4)
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Table 1
Classification performances of our ResNet-101 on RAP dataset.
Method mA Accuracy Precision Recall F1

ACN Sudowe et al. (2015) 69.66 62.61 80.12 72.26 75.98
DeepMAR Li et al. (2015) 73.79 62.02 74.92 76.21 75.56
DeepMAR* Li et al. (2016) 74.44 63.67 76.53 77.47 77.00
HP-Net Liu et al. (2017) 76.12 65.39 77.33 78.79 78.05
ACN-Res50 Fabbri et al. (2017) 79.73 64.13 76.96 78.72 77.83

Ours 78,66 66,23 77.85 79.71 78.77

Table 2
Detailed comparison between various pedestrian attribute datasets.

Dataset # Scenes # Samples # Attributes Min. resolution Max. resolution

PETA Deng et al. (2014) – 19,000 61 (+4) 17 × 39 169 × 365
RAP Li et al. (2016) 26 41,585 69 (+3) 36 × 92 344 × 554
PA-100K Liu et al. (2017) 598 100,000 26 50 × 100 758 × 454

AiC 512 125,000 24 35 × 85 602 × 1080

Fig. 3. Examples from the AiC dataset exhibiting its variety in viewpoints, illuminations and scenarios.

Where 𝐷(𝐺(𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇 )) is the probability that 𝐺(𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇 ) is classi-
fied as ‘‘real’’ by the discriminator network. Minimizing
log𝐷

(

𝐺
(

𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇
))

instead of log𝐷
[

1 −
(

𝐺
(

𝐼𝑂𝐶𝐶 , 𝐴𝐺𝑇
))]

is pre-
ferred in order to reach a better gradient behavior as indicated by Good-
fellow et al. (2014). As a possible drawback, the images produced
by the Generator network 𝐺 are forced to be realistic thanks to the
Discriminator network 𝐷, but they can be unrelated to the original
input. For instance, the output could be a plausible image of a pedes-
trian displaying a very different aspect w.r.t. the input image. Thus,
is essential to mix the adversarial loss 𝑎𝑑𝑣 with an additional loss,
such as L1 or L2, that evaluate the per-pixel distance between the
generated and the ground truth image. Usually, training a network
using such losses leads to reasonable solutions. However, the outputs
appear blurred with lack of high-frequency details.

A possible solution for generating sharper results is to adopt a
different content loss, like the perceptual loss introduced by Johnson
et al. (2016) and used also by Ledig et al. (2017) and Kupyn et al.
(2017):

𝑣𝑔𝑔(𝑖,𝑗) =
1

𝑊𝑖,𝑗𝐻𝑖,𝑗

𝑊𝑖,𝑗
∑

𝑥=1

𝐻𝑖,𝑗
∑

𝑦=1

(

𝜙𝑖,𝑗 (𝐼𝐺𝑇 )𝑥,𝑦 − 𝜙𝑖,𝑗 (𝐼𝐺𝐸𝑁 )𝑥,𝑦
)2 (5)

where 𝑊𝑖,𝑗 and 𝐻𝑖,𝑗 are the dimensions of the feature maps 𝜙𝑖,𝑗 obtained
by the 𝑗th convolution after ReLU activation and before the 𝑖th max-
pooling layer within the VGG16 network, pre-trained on ImageNet
by Deng et al. (2009), as done by Johnson et al. (2016).

The 𝑣𝑔𝑔 that we employed in our work is based on the sum of
different intermediate layers of VGG16:

𝑣𝑔𝑔 =
∑

𝑖,𝑗∈𝐿
𝑣𝑔𝑔(𝑖,𝑗) (6)

where 𝑣𝑔𝑔(𝑖,𝑗) is taken from Eq. (5) and 𝐿 is the set of used activations.
Rather than encouraging the pixels of the output image 𝐼𝐺𝐸𝑁 to exactly
match the pixels of the target image 𝐼𝐺𝑇 , we instead encourage them
to have similar feature representations as computed by the VGG16
network. As demonstrated by Johnson et al. (2016) and Mahendran
and Vedaldi (2015), minimizing the content loss for higher layers do
not preserve color and textures. As we reconstruct from early layers,
instead, images tend to be perceptually similar to the target image 𝐼𝐺𝑇
in terms of color and texture.

Since our main purpose is not limited to naively restore the occluded
parts of pedestrians, but also to maintain and highlight their attributes,
we introduced an additional loss component 𝑎𝑡𝑟. Like for the percep-
tual loss 𝑣𝑔𝑔 , we used a classification network as loss function. In
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particular, we adapted ResNet-101 by He et al. (2016), pre-trained on
ImageNet, to the task of multi-attribute classification. More precisely,
we replaced the last two layers (the average pooling and the last fully
connected layer) in order to fit the desired input shapes. Differently,
from the VGG loss, we work on a higher level of abstraction, forcing
the Generator network to produce images that exhibit characteristics
coherent with the attributes of the person. In this case, we used a
weighted binary cross entropy:

𝑎𝑡𝑟 = −
𝑁𝐴
∑

𝑖=1
exp

(

1 − 𝑟𝑖
)

⋅
(

𝑦𝑖 ⋅ log
(

𝜓𝑖(𝐼𝐺𝐸𝑁 )
))

+exp
(

𝑟𝑖
)

⋅
(

1 − 𝑦𝑖
)

⋅ log
(

1 − 𝜓𝑖(𝐼𝐺𝐸𝑁 )
)

. (7)

Here, 𝑁𝐴 is the number of attributes classified by the ResNet-101, 𝑟𝑖
is the positive ratio of 𝑖th attribute. 𝜓 is the output of our attribute
classification network and 𝑦𝑖 is the 𝑖th ground truth label.

3.2. Networks architecture

Generator network. Our Generator structure differs from those pre-
sented by Radford et al. (2015) and Fabbri et al. (2017): following Ron-
neberger et al. (2015) and Isola et al. (2017) we propose the ‘‘U-Net’’
like architecture depicted in Fig. 2. In particular, the structure of
our network slightly differs from the one described by Ronneberger
et al. (2015) and Isola et al. (2017). The network is composed by 4
down-sampling blocks and a specular number of up-sampling compo-
nents. Each down-sampling block consists of 2 convolutional layers
with a 3 × 3 kernel. Each convolutional layer is followed by a batch
normalization and a ReLU activation. Finally, each block has a max-
pooling layer with stride 2. The up-sampling part has a very similar but
overturned structure, where each block is composed by an up-sampling
layer of stride 2. After that, each block is equipped with 2 convolutional
layers with a 3 × 3 kernel. The last block has an additional 1 × 1
kernel convolution which is employed to reach the desired number of
channels: 3 RGB channels in our case. A 𝑡𝑎𝑛ℎ has been used as final
activation. We additionally inserted skip connections between mirrored
layers, in the down-sampling and up-sampling streams, in order to
shuttle low-level information between input and output directly across
the network. Eventually, padding is added to avoid cropping the feature
maps coming from the skip connections and concatenate them directly
to the up-sampling blocks outputs. Roughly speaking, our task can
be seen as a particular case of image-to-image translation, where a
mapping is performed between the input image and the output image.
Additionally, for the specific problem we are considering, input and
output share the same underlying structure despite differing in super-
ficial appearance. Therefore, a rough alignment is present between the
two images. In fact, all the non-occluded parts that are visible in the
input images must be transferred to the output with no alterations.
The structure of the U-Net lends itself optimally to our task, and the
skip connections are fundamental for the conservation of the non-
occluded image content. In this way, useful low-level information is
not lost during the encoding passage: by leveraging this kind of infor-
mation, we are able to maintain the appearance of visible parts in the
image.

Discriminator network. The Discriminator, instead, aims to determine if
an image is true or if it has been generated. In particular, the structure
is similar to the one proposed by Radford et al. (2015), composed by
4 convolutional layers with kernel size 5 × 5. The resulting features
are followed by one sigmoid activation function in order to obtain a
probability for the classification problem. We use batch normalization
before every Leaky ReLU activation, except for the first layer.

3.3. Training details

We trained our GAN with 320 × 128 resized input images while
simultaneously providing the target image in order to compute the
supervised losses. We adopted the standard approach by Goodfellow
et al. (2014) to optimize the networks alternating gradient descent
updates between the Generator and the Discriminator with 𝐾 = 1.
Data augmentation is performed by randomly flipping the images
horizontally. We used mini-batch SGD applying the Adam solver with
momentum parameters 𝛽1 = 0.5 and 𝛽2 = 0.999, learning rate 2 ⋅ 10−4

and a batch size of 20. Each training is performed using a Titan Xp
GPU.

4. Datasets

We evaluated our method on the RAP dataset, proposed by Li et al.
(2016), comparing state-of-the-art methods and performing the abla-
tion study over each loss employed. In addition, we further propose a
new large-scale computer-graphics dataset AiC for pedestrian attribute
recognition in crowded scenes. Differently, from existing publicly avail-
able datasets, AiC is mainly focused on occlusion events.

4.1. RAP dataset

RAP by Li et al. (2016) is a very richly annotated dataset with
41,585 pedestrian samples, each of which is labeled with 72 attributes
as well as viewpoints, occlusions, and body parts information. In order
to evaluate our method, we corrupted the dataset with occlusions.
Differently, from what did by Fabbri et al. (2017), where obstructions
were created by cutting parts of images according to regular geometric
shapes, we have adopted a more sophisticated approach that has led us
to more realistic results. By exploiting the state-of-the-art performances
of Mask R-CNN proposed by He et al. (2017), pre-trained on the COCO
Dataset (Lin et al., 2014), we produced segmentation masks for each
person in the RAP dataset. The computed silhouettes were then used to
crop people’s shapes from the dataset. Those figures are then used to
reproduce the occlusions, simply by randomly overlapping the crops to
each image sample of RAP dataset. In addition, to reduce the visual gap
between the original image and the overlapped person, we performed
a Gaussian blurring. However, this is not applied to the whole image
but only to the area given by the difference between an expansion and
an erosion of the segmentation mask of the overlapping image. The
only constraint that we have introduced is that the occluding person
must not occupy the portion of the image that has the y coordinate
that exceeds the 6/7 of the image height. Each sample is computed as
follows:

𝐼𝑂𝐶𝐶 = 𝐼𝐺𝑇 1 ⊙ ¬𝛼
(

𝛽
(

𝐼𝐺𝑇 2
))

+ 𝛼
(

𝛽
(

𝐼𝐺𝑇 2
)

⊙ 𝐼𝐺𝑇 2
)

(8)

where 𝛽(𝐼𝐺𝑇 2 ) is the binary mask generated using Mask R-CNN and
morphology operations and 𝛼 is a function used to translate the over-
lap section randomly over the destination image 𝐼𝐺𝑇 1 . The dataset is
already organized in 5 random splits. Each of which contains 33,268
images for training and 8317 for testing. As did by Li et al. (2016), due
to the unbalanced distribution of attributes in RAP, we selected the 51
attributes that have the positive example ratio in the dataset higher
than 0.01.

4.2. Aic dataset

Most of the publicly available pedestrian attribute datasets, like
RAP by Li et al. (2016), PETA by Deng et al. (2014) and PA-100K
by Liu et al. (2017) does not contemplate occlusion events (see Table 2
for further details). They only provide samples of full visible people,
completely ignoring crowded situations of pedestrians occluding each
other (which is indeed common in urban scenarios). To overcome
this limitation, we propose the Attributes in Crowd dataset, a novel
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Fig. 4. Qualitative results based on the ablation study on RAP dataset (leftmost) and AiC dataset (rightmost). GT columns indicate ground truth images while in the OCC columns
are presented the input occluded images. Columns 3 and 9 indicate the outputs of our baseline, where adversarial loss and MSE are used. Columns 4 and 10 represents results of
the VGG loss. On 5 and 11 we have results of experiments using all the 3 losses combined: adversarial loss, VGG loss, and attribute loss. Finally, columns 6 and 12 show results
where attributes are injected as input to the network.

Table 3
Ablation study results on RAP dataset.

Method mean Accuracy Accuracy Precision Recall F1 SSIM PSNR

Occlusion 65.74 51.06 68.72 64.36 66.47 0.7153 14.57

Baseline 70.74 56.55 70.61 71.78 71.19 0.7982 20.31
VGG loss 72.48 58.89 72.58 73.56 73.06 0.8293 20.88
VGG and attr. loss 72.18 59.59 73.51 73.72 73.62 0.8239 20.65
VGG and attr. loss (+input attr.) 81.1 74.8 84.29 85.61 84.94 0.8274 20.7

GT data 78,66 66,23 77.85 79.71 78.77 – –

Table 4
Ablation study results on AiC dataset.

Method mean Accuracy Accuracy Precision Recall F1 SSIM PSNR

Occlusion 72.24 45.77 48.78 79.03 60.32 0.6148 18.38

Baseline 72.72 45.48 48.23 80.87 60.42 0.6236 20.49
VGG loss 78.12 53.11 55.52 85.65 67.37 0.7088 21.5
VGG and attr. loss 78.37 53.3 55.73 85.46 67.46 0.7101 21.81
VGG and attr. loss (+input attr.) 90.86 72.15 74.0 95.1 83.23 0.6986 21.47

GT data 91.89 74.87 76.80 95.43 85.11 – –

synthetic dataset for people attribute recognition in presence of strong
occlusions. AiC features 125,000 samples, all being a unique person,
each of which is automatically labeled with information concerning
sex, age etc. The dataset is split into 100,000 samples for training and
25,000 for testing purposes. Each of the 24 attributes is present at least
in a 10% of samples which highlight a good balance in terms of labels.
The collected samples feature a vast number of different body poses,
in several urban scenarios with varying illumination conditions and
viewpoints. Skeleton joints are also available for each identity. Joints
are additionally labeled with an occlusion flag which tells if the specific
body part is directly visible from the camera point of view. Moreover,
each image sample has his vanilla version where each obstacle is
removed from the image. Thus, for each occluded pedestrian, we know
exactly how it really is behind the occlusion (this is obviously not
achievable in real environments). Fig. 3 exhibits some examples of
the dataset. To foster future research on this topic, the dataset will

be publicly released upon publication. AiC was created by exploiting
the highly photo-realistic video game Grand Theft Auto V developed by
Rockstar North.

5. Experimental results

In this section, we provide details about the metrics adopted, fol-
lowed by a detailed ablation study that presents qualitative and quan-
titative results for three different combinations of losses (that we added
to the adversarial loss): MSE loss, VGG loss and a combination of VGG
loss and attribute loss. We also investigate how the information about
the attributes of a person can enhance the quality of the produced im-
ages. Additionally, we explain the choice of different hyperparameters,
exploring their impacts. Finally, we compare our method with the most
related works presented by Isola et al. (2017) and Fabbri et al. (2017).
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Fig. 5. Qualitative results on both RAP and AiC datasets. (first line) an example using
a configuration of 𝜆1 = 0 and 𝜆2 = 15 on RAP: the color of the jacket mutate from
pink to gray to facilitate the classification, as the majority of jackets in the dataset
are dark. (second line) an example using a configuration of 𝜆1 = 10 and 𝜆2 = 0.1 on
AiC: blurring the occlusion and not hallucinating new body parts results in a better
strategy to facilitate ResNet-101. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

5.1. Evaluation metrics

Evaluating the quality of synthesized images is an open and chal-
lenging problem as stated by Salimans et al. (2016). Traditional metrics

such as per-pixel MSE do not estimate joint statistics of the result,
and therefore do not extrapolate the full structure of the result. In
order to more holistically evaluate the visual quality of our results,
we employed two tactics. Firstly, we compared the performance of the
proposed model through metrics directly calculated over the recon-
structed images. Specifically, we adopted the structural similarity SSIM
and the peak signal-to-noise ratio PSNR. Secondly, we measured the
capability of the proposed network of being able to preserve original
attributes, like gender, hairstyle or wearing jacket, by exploiting the
ResNet-101 network of He et al. (2016) trained on the task of multi-
attribute classification. Thus, following Li et al. (2016), Fabbri et al.
(2017) and Liu et al. (2017), we provide five evaluation metrics for
the attribute classification task, namely mean Accuracy, Accuracy,
Precision, Recall and F1.

ResNet-101 classification network. We trained the network with
320 × 128 resized images with Adam as optimizer and learning rate
set to 2 ⋅ 10−4. In Table 1 a comparison on the classification task with
other state-of-the-art networks on RAP dataset is presented. The same
network is trained independently for each dataset, in order to provide
reliable metrics for both RAP and AiC.

5.2. Ablation study

As previously stated, we investigated three loss combinations in
order to clarify and highlight the solutions adopted in our work:

• Baseline: the Baseline architecture uses, in conjunction with the
adversarial loss, the MSE loss as content loss;

• VGG loss: differently from the Baseline, we replaced the MSE loss
with the VGG loss. The layers (1, 2), (2, 2), (3, 3) and (4, 3) are
chosen as the set 𝐿 of activations on Eq. (6). In Eq. (3), we set 𝜆1
to 10 and 𝜆2 to 0 (further details about 𝜆1 and 𝜆2 are presented
in the next subsection);

• VGG loss + Attr. loss: in this case, all the three losses are employed.
The VGG loss always refers to the same four activation layers. The
Attribute loss is computed between the output of the ResNet-101

Fig. 6. Qualitative comparison with state-of-the-art approaches: results are presented for both RAP (leftmost) and AiC (rightmost). GT columns indicate ground truth images while
in the OCC columns are presented the input occluded images. Columns 1 and 4 are the images recovered by Pix2Pix by Isola et al. (2017). On 2 and 5 are presented results
obtained from the method used by Fabbri et al. (2017). The last two columns, 3 and 5, show our best comparable approach output (Vgg loss + Attr. loss).
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classification network computed on the generated images and the
ground truth labels provided by the datasets. In Eq. (3), we set 𝜆1
to 10 and 𝜆2 to 5 for RAP and to 0.01 for AiC. Note that we did
not use all the available attributes of RAP dataset, but only the
first 51 for the reason explained at the end of Section 4.1. For
AiC dataset, instead, we used all the available attributes.

In order to further investigate how some additional information about
the attributes can improve the restoration process, we performed a
further experiment where attributes are fed as input to the network,
along with the occluded image:

• Entire: in this setup, we adopted both the VGG loss and the
Attribute loss, along with the adversarial loss. Differently, from
our main method, attributes are injected directly to the main flow
of the Generator network. Specifically, the attribute vector of the
occluded pedestrian is fed to a fully connected layer in order to
produce a feature vector that is reshaped to match the bottleneck
dimension of our Generator network.

Fig. 4 shows some qualitative results. The baseline performs consid-
erably worse than the other setups, not being able to completely
remove the occlusions on AiC (column 9 of Fig. 4). This is probably
due to the fact that AiC is a more challenging dataset compared to
our corrupted version of RAP. For the same reason, RAP results are
overall more appealing than the ones of AiC. Moreover, no substantial
difference appears between the other setups, highlighting the fact that
the VGG loss is the main component that guides the network to produce
high-quality results.

Tables 3 and 4 present quantitative results for RAP and AiC re-
spectively based on our ablation study. The tables also provide metrics
referred to the occluded images before the restoration process. By
observing the tables, we can state that, despite being visually indis-
tinguishable, the images obtained from the VGG loss and from our
Entire configuration produce very different results in terms of attribute
metrics. We can also observe that there is no substantial difference
between the VGG loss and the VGG loss with Attributes loss. In fact,
RAP shows a gap of one percentage point in almost all the classification
metrics, while AiC shows very little differences, probably due to the
more challenging nature of AiC. Moreover, Table 3 shows that the
Entire setup reach higher scores compared to the upper bound of
the ground truth images. Also Table 4 shows performances that are
close to the ground truth metrics when we input attribute information
directly to the Generator. In fact, with attributes as input, the Generator
network, by restoring the occluded images, is able to produce an output
that has enhanced attribute characteristics (although this is not visible
to the naked eye). As can be shown in the next subsection, further
forcing the generation output on classification metrics, we can reach
results that exceed the ground truth upper bound even on AiC, at a
price of a drop on reconstruction metrics.

5.3. Hyperparameter optimization

Hyperparameter tuning is a crucial aspect in designing machine
learning frameworks, as the performance of an algorithm can be highly
dependent on the choice of hyperparameters. In fact, 𝜆1 and 𝜆2 were
selected using a grid search technique. In particular, we searched for a
trade off between classification metrics (accuracy, precision, recall, f1)
and pixel-level reconstruction metrics (PSNR, SSIM). We performed a
different grid search for four different configurations combining each
dataset with the two main setups: VGG loss + Attr. loss and the Entire
pipeline.

For what concerns the VGG loss + Attr. loss setup, we observed that,
in general, a configuration with 𝜆1 ≫ 𝜆2 brings to better pixel-level re-
construction metrics but poor classification performances. On the other
hand, solutions with 𝜆1 ≪ 𝜆2 show good classification performances
but low pixel-level reconstruction metrics. Also, increasing 𝜆1 over the

value of 10 does not further improve PSNR and SSIM metrics (for both
RAP and AiC). The same behavior happens for 𝜆2: the classification
metrics do not improve for values greater than 5 (for RAP) and 0.01 (for
AiC). This difference of 𝜆2 between the two datasets may be caused by
the fact that AiC is more challenging than RAP. In fact, during training,
the Attributes Loss on AiC is orders of magnitude greater than the
same loss on RAP, thus, a smaller 𝜆2 is needed to maintain the balance
between the losses.

For what concern the Entire pipeline, we observed a different
behavior on 𝜆2: increasing 𝜆2 does steadily improve the classification
metrics (reaching up to 98.89 mean Accuracy with 𝜆2 = 5) while
drastically decreasing PSNR and SSIM. This behavior happens on both
RAP and AiC. By giving more importance to the Attributes Loss, the
Generator network is able to enhance attribute characteristics to the
point that they are highly recognizable by the classification network, at
the price of not maintaining low-level similarity. Fig. 5 shows a direct
consequence at qualitative level on both RAP and AiC. The first line
depicts an extreme configuration of 𝜆1 = 0 and 𝜆2 = 15 on RAP. With no
low-level constraints, the Generator network is able to mutate the color
of the jacket to facilitate the ResNet-101 ‘‘jacket attribute’’ recognition.
The second line of Fig. 5, instead, shows an example obtained using
𝜆1 = 10 and 𝜆2 = 0.1 on AiC. In this case, the behavior is completely
different: due to the high diversity of attributes in AiC, the Generator
learns to simply remove the obstacle, not adding (hallucinating) many
details to the removed portion of the image. Adding imprecise details
would, in fact, mislead the attribute classification network.

5.4. Comparison against state-of-the-art techniques

Since our task of de-occlusion is novel, there are no direct works to
compare with. So, to match the results of our network, in addition to
our previous work, we also retrained the Pix2Pix framework on both
RAP and AiC.

Our previous work. Like our current method, Fabbri et al. (2017)
exploits an adversarial based framework to achieve a translation from
an occluded-pedestrian domain to a completely visible body domain.
The main difference with our current method resides in the loss for-
mulation: Fabbri et al. (2017) minimizes a combination of adversarial
loss and sum of squared error loss (SSE), completely ignoring high-
level and low-level similarities. Another important difference lies in
the Generator architecture: our previous work uses a simple hourglass
architecture with no skip connections, while in our current method we
adopted a U-net based solution. The U-net architecture shows better
performances in tasks where some input information has to be shuttled
directly to the output with no variation. In fact, as can be seen in
Fig. 6, our previous work fails to preserve the portions of the image
that should remain unchanged (especially the faces).

Pix2Pix. Isola et al. (2017) investigates conditional adversarial net-
works as a general-purpose solution to image-to-image translation prob-
lems. As in our Generator network, Pix2Pix exploits a U-net based
architecture. The only substantial architectural difference is in the num-
ber of convolutional layers before each downsampling and after each
upsampling operation. Also, the Discriminators differs: Pix2Pix uses a
patch level discriminator that only penalizes structure at the scale of
patches, while in our work we adopt an image level discriminator that
takes the whole image as input. A patch level discriminator models
the image as a Markov random field, assuming independence between
pixels separated by more than a patch diameter. This is indeed not
the case when dealing with images of people. In fact, for example, the
skin color of the face should match the skin color of the hands. Also,
the trousers are usually made of the same color. Another significant
difference lies in the content loss: Pix2Pix, like our previous work, uses
a pixel-level loss (L1 instead of SSE), assuming pixel independence,
and forcing pixels of the output image to exactly match the pixels of
the target image. In our work, instead, we exploit a combination of
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Table 5
Comparison with the state-of-the-art method on RAP dataset.

Method mA Accuracy Precision Recall F1 SSIM PSNR

Occlusion 65.74 51.06 68.72 64.36 66.47 0.7153 14.57

Pix2Pix Isola et al. (2017) 69.49 52.05 65.07 70.06 67.47 0.7348 17.91
Fabbri et al. (2017) 65.92 51.44 65.77 67.94 66.84 0.6798 18.4
Ours 72.18 59.59 73.51 73.72 73.62 0.8239 20.65

Table 6
Comparison with the state-of-the-art method on AiC dataset.

Method mA Accuracy Precision Recall F1 SSIM PSNR

Occlusion 72.24 45.77 48.78 79.03 60.32 0.6148 18.38

Pix2Pix Isola et al. (2017) 71.93 44.27 46.75 81.61 59.45 0.6351 21.22
Fabbri et al. (2017) 67.14 38.21 40.61 79.9 53.85 0.573 20.11
Ours 78.37 53.3 55.73 85.46 67.46 0.7101 21.81

high-level and low-level consistency by encouraging the overall images
the have similar feature representations as computed by the VGG16
network, and similar visual attributes as computed by the ResNet-101.

From Tables 5 and 6 it can be shown that our network perform
favorably for each metric, both for RAP and AiC datasets. From Fig. 6 it
also emerges that our method, despite not using attention mechanisms,
is able to detect and to remove the occlusion, with no external addi-
tional information. Furthermore, differently from the works by Fabbri
et al. (2017) and Isola et al. (2017), our method learns to transfer with
no alterations the portion of images that are not occluded.

6. Conclusions

In this work, we presented the use of GANs for image enhancing
in people attributes classification. Our generator network has been
designed to overcome a common problem in surveillance scenarios,
namely people occlusion. Experiments have shown that jointly enhanc-
ing images before feeding them to an attribute classification network
can improve the results even when input images are affected by this
issue. We think that this line of work can foster research about the prob-
lem of attribute classification in surveillance contexts, where camera
resolution and positioning cannot be neglected.
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