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Abstract

Novelty detection is commonly referred to as the discrim-
ination of observations that do not conform to a learned
model of regularity. Despite its importance in different ap-
plication settings, designing a novelty detector is utterly
complex due to the unpredictable nature of novelties and its
inaccessibility during the training procedure, factors which
expose the unsupervised nature of the problem. In our pro-
posal, we design a general framework where we equip a
deep autoencoder with a parametric density estimator that
learns the probability distribution underlying its latent rep-
resentations through an autoregressive procedure. We show
that a maximum likelihood objective, optimized in conjunc-
tion with the reconstruction of normal samples, effectively
acts as a regularizer for the task at hand, by minimizing
the differential entropy of the distribution spanned by latent
vectors. In addition to providing a very general formula-
tion, extensive experiments of our model on publicly avail-
able datasets deliver on-par or superior performances if
compared to state-of-the-art methods in one-class and video
anomaly detection settings. Differently from prior works,
our proposal does not make any assumption about the na-
ture of the novelties, making our work readily applicable to
diverse contexts.

1. Introduction
Novelty detection is defined as the identification of samples
which exhibit significantly different traits with respect to an
underlying model of regularity, built from a collection of
normal samples. The awareness of an autonomous system
to recognize unknown events enables applications in sev-
eral domains, ranging from video surveillance [7, 11], to
defect detection [19] to medical imaging [35]. Moreover,
the surprise inducted by unseen events is emerging as a cru-
cial aspect in reinforcement learning settings, as an enabling
factor in curiosity-driven exploration [31].
However, in this setting, the definition and labeling of
novel examples are not possible. Accordingly, the literature

agrees on approximating the ideal shape of the boundary
separating normal and novel samples by modeling the in-
trinsic characteristics of the former. Therefore, prior works
tackle such problem by following principles derived from
the unsupervised learning paradigm [9, 34, 11, 23, 27]. Due
to the lack of a supervision signal, the process of feature ex-
traction and the rule for their normality assessment can only
be guided by a proxy objective, assuming the latter will de-
fine an appropriate boundary for the application at hand.
According to cognitive psychology [4], novelty can be ex-
pressed either in terms of capabilities to remember an event
or as a degree of surprisal [39] aroused by its observation.
The latter is mathematically modeled in terms of low prob-
ability to occur under an expected model, or by lowering
a variational free energy [15]. In this framework, prior
models take advantage of either parametric [46] or non-
parametric [13] density estimators. Differently, remember-
ing an event implies the adoption of a memory represented
either by a dictionary of normal prototypes - as in sparse
coding approaches [9] - or by a low dimensional represen-
tation of the input space, as in the self-organizing maps [18]
or, more recently, in deep autoencoders. Thus, in novelty
detection, the remembering capability for a given sample is
evaluated either by measuring reconstruction errors [11, 23]
or by performing discriminative in-distribution tests [34].
Our proposal contributes to the field by merging remember-
ing and surprisal aspects into a unique framework: we de-
sign a generative unsupervised model (i.e., an autoencoder,
represented in Fig. 1i) that exploits end-to-end training in
order to maximize remembering effectiveness for normal
samples whilst minimizing the surprisal of their latent rep-
resentation. This latter point is enabled by the maximization
of the likelihood of latent representations through an autore-
gressive density estimator, which is performed in conjunc-
tion with the reconstruction error minimization. We show
that, by optimizing both terms jointly, the model implic-
itly seeks for minimum entropy representations maintain-
ing its remembering/reconstructive power. While entropy
minimization approaches have been adopted in deep neural
compression [3], to our knowledge this is the first proposal
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tailored for novelty detection. In memory terms, our pro-
cedure resembles the concept of prototyping the normality
using as few templates as possible. Moreover, evaluating
the output of the estimator enables the assessment of the
surprisal aroused by a given sample.

2. Related work
Reconstruction-based methods. On the one hand, many
works lean toward learning a parametric projection and
reconstruction of normal data, assuming outliers will
yield higher residuals. Traditional sparse-coding algo-
rithms [45, 9, 24] adhere to such framework, and represent
normal patterns as a linear combination of a few basis
components, under the hypotheses that novel examples
would exhibit a non-sparse representation in the learned
subspace. In recent works, the projection step is typically
drawn from deep autoencoders [11]. In [27] the authors
recover sparse coding principles by imposing a sparsity
regularization over the learned representations, while a
recurrent neural network enforces their smoothness along
the time dimension. In [34], instead, the authors take
advantage of an adversarial framework in which a discrim-
inator network is employed as the actual novelty detector,
spotting anomalies by performing a discrete in-distribution
test. Oppositely, future frame prediction [23] maximizes
the expectation of the next frame exploiting its knowledge
of the past ones; at test time, observed deviations against
the predicted content advise for abnormality. Differently
from the above-mentioned works, our proposal relies on
modeling the prior distribution of latent representations.
This choice is coherent with recent works from the density
estimation community [38, 6]. However, to the best of
our knowledge, our work is the first advocating for the
importance of such a design choice for novelty detection.

Probabilistic methods. A complementary line of re-
search investigates different strategies to approximate the
density function of normal appearance and motion features.
The primary issue raising in this field concerns how to
estimate such densities in a high-dimensional and complex
feature space. In this respect, prior works involve hand-
crafted features such as optical flow or trajectory analysis
and, on top of that, employ both non-parametric [1] and
parametric [5, 28, 22] estimators, as well as graphical
modeling [16, 20]. Modern approaches rely on deep
representations (e.g., captured by autoencoders), as in
Gaussian classifiers [33] and Gaussian Mixtures [46].
In [13] the authors involve a Kernel Density Estimator
(KDE) modeling activations from an auxiliary object
detection network. A recent research trend considers train-
ing Generative Adversarial Networks (GANs) on normal
samples. However, as such models approximate an implicit
density function, they can be queried for new samples

but not for likelihood values. Therefore, GAN-based
models employ different heuristics for the evaluation of
novelty. For instance, in [35] a guided latent space search
is exploited to infer it, whereas [32] directly queries the
discriminator for a normality score.

3. Proposed model
Maximizing the probability of latent representations is anal-
ogous to lowering the surprisal of the model for a normal
configuration, defined as the negative log-density of a latent
variable instance [39]. Conversely, remembering capabil-
ities can be evaluated by the reconstruction accuracy of a
given sample under its latent representation.
We model the aforementioned aspects in a latent variable
model setting, where the density function of training sam-
ples p(x) is modeled through an auxiliary random variable
z, describing the set of causal factors underlying all obser-
vations. By factorizing

p(x) =

Z
p(xjz)p(z)dz; (1)

where p(xjz) is the conditional likelihood of the observa-
tion given a latent representation z with prior distribution
p(z), we can explicit both the memory and surprisal con-
tribution to novelty. We approximate the marginalization
by means of an inference model responsible for the iden-
tification of latent space vector for which the contribution
of p(xjz) is maximal. Formally, we employ a deep autoen-
coder, in which the reconstruction error plays the role of
the negative logarithm of p(xjz), under the hypothesis that
p(xjz) = N (xj~x; I) where ~x denotes the output reconstruc-
tion. Additionally, surprisal is injected in the process by
equipping the autoencoder with an auxiliary deep paramet-
ric estimator learning the prior distribution p(z) of latent
vectors, and training it by means of Maximum Likelihood
Estimation (MLE). Our architecture is therefore composed
of three building blocks (Fig. 1i): an encoder f(x; �f ), a
decoder g(z; �g) and a probabilistic model h(z; �h):

f(x; �f ) : Rm ! Rd; g(z; �g) : Rd ! Rm;
h(z; �h) : Rd ! [0; 1]:

(2)

The encoder processes input x and maps it into a com-
pressed representation z = f(x; �f ), whereas the decoder
provides a reconstructed version of the input ~x = g(z; �g).
The probabilistic model h(z; �h) estimates the density
in z via an autoregressive process, allowing to avoid
the adoption of a specific family of distributions (i.e.,
Gaussian), potentially unrewarding for the task at hand. On
this latter point, please refer to supplementary materials for
comparison w.r.t. variational autoencoders [17].
With such modules, at test time, we can assess the two
sources of novelty: elements whose observation is poorly



(i) (ii)

Figure 1: (i) The proposed novelty detection framework. The overall architecture, depicted in (a), consists of a deep au-
toencoder and an autoregressive estimation network operating on its latent space. The joint minimization of their respective
objective leads to a measure of novelty - (b) - obtained by assessing the remembrance of the model when looking to a new
sample, combined with its surprise aroused by causal factors. (ii) Building blocks employed in the autoencoder's architecture.

explained by the causal factors inducted by normal samples
(i.e., high reconstruction error); elements exhibiting good
reconstructions whilst showing surprising underlying
representations under the learned prior.

Autoregressive density estimation. Autoregressive
models provide a general formulation for tasks involving
sequential predictions, in which each output depends on
previous observations [25, 29]. We adopt such a technique
to factorize a joint distribution, thus avoiding to de�ne its
landscape a priori [21, 40]. Formally,p(z) is factorized as

p(z) =
dY

i =1

p(zi jz<i ); (3)

so that estimatingp(z) reduces to the estimation of each
single Conditional Probability Density (CPD) expressed
as p(zi jz<i ), where the symbol< implies an order over
random variables. Some prior models obey handcrafted
orderings [43, 42], whereas others rely on order agnostic
training [41, 10]. Nevertheless, it is still not clear how to
estimate the proper order for a given set of variables. In our
model, this issue is directly tackled by the optimization.
Indeed, since we perform autoregression on learned latent
representations, the MLE objective encourages the autoen-
coder to impose over them a pre-de�ned causal structure.
Empirical evidence of this phenomenon is given in the
supplementary material.
From a technical perspective, the estimatorh(z; � h ) outputs
parameters ford distributionsp(zi jz<i ). In our implemen-
tation, each CPD is modeled as a multinomial over B=100
quantization bins. To ensure a conditional estimate of each

underlying density, we design proper layers guaranteeing
that the CPD of each symbolzi is computed from inputs
f z1; : : : ; zi � 1g only.

Objective and connection with differential entropy.
The three componentsf , g and h are jointly trained to
minimizeL � L (� f ; � g; � h ) as follows:

L = L REC(� f ; � g) + � L LLK (� f ; � h )

= Ex

�
jj x � ~xjj2

| {z }
reconstruction term

� � log(h(z; � h ))
| {z }
log-likelihood term

�
; (4)

where� is a hyper-parameter controlling the weight of the
L LLK term. It is worth noting that it is possible to express
the log-likelihood term as

Ez� p� (z;� f )
�

� logh(z; � h )
�

= Ez� p� (z;� f )
�

� logh(z; � h ) + log p� (z; � f ) � logp� (z; � f )
�

= DKL (p� (z; � f ) k h(z; � h )) + H[p� (z; � f )];
(5)

wherep� (z; � f ) denotes the true distribution of the codes
produced by the encoder, and is therefore parametrized by
� f . This reformulation of the MLE objective yields mean-
ingful insights about the entities involved in the optimiza-
tion. On the one hand, the Kullback-Leibler divergence
ensures that the information gap between our parametric
modelh and the true distributionp� is small. On the other
hand, this framework leads to the minimization of the differ-
ential entropy of the distribution underlying the codes pro-
duced by the encoderf . Such constraint constitutes a cru-
cial point when learning normality. Intuitively, if we think



Figure 2: Estimated differential entropies delivered on each
MNIST class in the presence of different regularization
strategies: our, divergence w.r.t a Gaussian prior (VAE) and
input perturbation (DAE). For each class, the estimate is
computed on the training samples' hidden representations,
whose distribution are �t utilizing a Gaussian KDE in a 3D-
space. All models being equal, ours exhibits lower entropies
on all classes.

about the encoder as a source emitting symbols (namely,
the latent representations), its desired behavior, when mod-
eling normal aspects in the data, should converge to a `bor-
ing' process characterized by an intrinsic low entropy, since
surprising and novel events are unlikely to arise during the
training phase. Accordingly, among all the possible set-
tings of the hidden representations, the objective begs the
encoder to exhibit a low differential entropy, leading to the
extraction of features that are easily predictable, therefore
common and recurrent within the training set. This kind of
features is indeed the most useful to distinguish novel sam-
ples from the normal ones, making our proposal a suitable
regularizer in the anomaly detection setting.
We report empirical evidence of the decreasing differential
entropy in Fig. 2, that compares the behavior of the same
model under different regularization strategies.

3.1. Architectural Components

Autoencoder blocks. Encoder and decoder are respec-
tively composed by downsampling and upsampling residual
blocks depicted in Fig. 1ii. The encoder ends with fully
connected (FC) layers. When dealing with video inputs,
we employcausal3D convolutions [2] within the encoder
(i.e., only accessing information from previous time-
steps). Moreover, at the end of the encoder, we employ a
temporally-shared full connection (TFC, namely a linear
projection sharing parameters across the time axis on the
input feature maps) resulting in a temporal series of feature
vectors. This way, the encoding procedure does not shuf�e
information across time-steps, ensuring temporal ordering.

Autoregressive layers. To guarantee the autoregres-
sive nature of each output CPD, we need to ensure proper

connectivity patterns in each layer of the estimatorh.
Moreover, since latent representations exhibit different
shapes depending on the input nature (image or video), we
propose two different solutions.
When dealing with images, the encoder provides feature
vectors with dimensionalityd. The autoregressive esti-
mator is composed by stacking multiple Masked Fully
Connections (MFC, Fig. 3-(a)). Formally, it computes
output feature mapo 2 Rd� co (whereco is the number
of output channels) given the inputh 2 Rd� ci (assuming
ci = 1 at the input layer). The connection between the
input elementhk

i in position i , channelk and the output
elementol

j is parametrized by

8
>>>><

>>>>:

wk;l
i;j if i < j

(
wk;l

i;j if type = B
0 if type = A

if i = j

0 if i > j .

(6)

Type A forces a strict dependence on previous elements
(and is employed only as the �rst estimator layer), whereas
type B masks only succeeding elements. Assuming each
CPD modeled as a multinomial, the output of the last au-
toregressive layer (inRd� B ) provides probability estimates
for theB bins that compose the space quantization.
On the other hand, the compressed representation of video
clips has dimensionalityt � d, beingt the number of tem-
poral time-steps andd the length of the code. Accord-
ingly, the estimation network is designed to capture two-
dimensional patterns within observed elements of the code.
However, naively plugging 2D convolutional layers would
assume translation invariance on both axes of the input map,
whereas, due to the way the compressed representation is
built, this assumption is only correct along the temporal
axis. To cope with this, we applyd different convolutional
kernels along the code axis, allowing the observation of the
whole feature vector in the previous time-step as well as
a portion of the current one. Every convolution is free to
stride along the time axis and captures temporal patterns. In
such operation, named Masked Stacked Convolution (MSC,
Fig. 3-(b)), thei -th convolution is equipped with a kernel
w ( i ) 2 R3� d kernel, that gets multiplied by the binary mask
M ( i ) , de�ned as

m( i )
j;k 2 M ( i ) =

8
>>><

>>>:

1 if j = 0
1 if j = 1 andk < i and type=A
1 if j = 1 andk � i and type=B
0 otherwise,

(7)
wherej indexes the temporal axis andk the code axis.
Every single convolution yields a column vector, as a result
of its stride along time. The set of column vectors resulting



(a) (b)

Figure 3: Proposed autoregressive layers, namely the Masked Fully Connection (a, Eq. 6) and the Masked Stacked Convolu-
tion (b, Eq. 7). For both layers, we represent type A structure. Different kernel colors represent different parametrizations.

from the application of thed convolutions to the input tensor
h 2 Rt � d� ci are horizontally stacked to build the output
tensoro 2 Rt � d� co, as follows:

o =

d

jj
i =1

[(M ( i ) � w ( i ) ) � h]; (8)

wherejj represents the horizontal concatenation operation.

4. Experiments1

We test our solution in three different settings: images,
videos, and cognitive data. In all experiments the novelty
assessment on thei -th example is carried out by summing
the reconstruction term (RECi ) and the log-likelihood term
(LLK i ) in Eq. 4 in a single novelty scoreNSi :

NSi = norm S (REC i ) + norm S (LLK i ): (9)

Individual scores are normalized using a reference set of
examplesS (different for every experiment),

norm S (L i ) =
L i � maxj 2 S L j

maxj 2 S L j � min j 2 S L j
: (10)

Further implementation details and architectural hyperpa-
rameters are in the supplementary material.

4.1. One­class novelty detection on images

To assess the model's performances in one class settings,
we train it on each class of either MNIST or CIFAR-10 sep-
arately. In the test phase, we present the corresponding test
set, which is composed of 10000 examples of all classes,
and expect our model to assign a lower novelty score to im-
ages sharing the label with training samples. We use stan-
dard train/test splits, and isolate 10% of training samples for

1Code to reproduce results in this section is released athttps://
github.com/aimagelab/novelty-detection .

validation purposes, and employ it as the normalization set
(S in Eq. 9) for the computation of the novelty score.
As for the baselines, we consider the following:

- standard methods such as OC-SVM [36] and Kernel
Density Estimator (KDE), employed out of features
extracted by PCA-whitening;

- a denoising autoencoder (DAE) sharing the same ar-
chitecture as our proposal, but defective of the density
estimation module. The reconstruction error is em-
ployed as a measure of normality vs. novelty;

- a variational autoencoder (VAE) [17], also sharing the
same architecture as our model, in which the Evidence
Lower Bound (ELBO) is employed as the score;

- Pix-CNN [42], modeling the density by applying au-
toregression directly in the image space;

- the GAN-based approach illustrated in [35].

We report the comparison in Tab. 1 in which performances
are measured by the Area Under Receiver Operating
Characteristic (AUROC), which is the standard metric for
the task. As the table shows, our proposal outperforms all
baselines in both settings.

Considering MNIST, most methods perform favor-
ably. Notably, Pix-CNN fails in modeling distributions
for all digits but one, possibly due to the complexity of
modeling densities directly on pixel space and following a
�xed autoregression order. Such poor test performances are
registered despite good quality samples that we observed
during training: indeed, the weak correlation between sam-
ple quality and test log-likelihood of the model has been
motivated in [37]. Surprisingly, OC-SVM outperforms
most deep learning based models in this setting.
On the contrary, CIFAR10 represents a much more sig-
ni�cant challenge, as testi�ed by the low performances of
most models, possibly due to the poor image resolution
and visual clutter between classes. Speci�cally, we observe



MNIST CIFAR10

OC
SVM

KDE DAE VAE
Pix

CNN
GAN ours

OC
SVM

KDE DAE VAE
Pix

CNN
GAN ours

0 0.988 0.885 0.991 0.998 0.531 0.926 0.993 0.630 0.658 0.718 0.688 0.788 0.708 0.735
1 0.999 0.996 0.999 0.999 0.995 0.995 0.999 0.440 0.520 0.401 0.403 0.428 0.458 0.580
2 0.902 0.710 0.891 0.962 0.476 0.805 0.959 0.649 0.657 0.685 0.679 0.617 0.664 0.690
3 0.950 0.693 0.935 0.947 0.517 0.818 0.966 0.487 0.497 0.556 0.528 0.574 0.510 0.542
4 0.955 0.844 0.921 0.965 0.739 0.823 0.956 0.735 0.727 0.740 0.748 0.511 0.722 0.761
5 0.968 0.776 0.937 0.963 0.542 0.803 0.964 0.500 0.496 0.547 0.519 0.571 0.505 0.546
6 0.978 0.861 0.981 0.995 0.592 0.890 0.994 0.725 0.758 0.642 0.695 0.422 0.707 0.751
7 0.965 0.884 0.964 0.974 0.789 0.898 0.980 0.533 0.564 0.497 0.500 0.454 0.471 0.535
8 0.853 0.669 0.841 0.905 0.340 0.817 0.953 0.649 0.680 0.724 0.700 0.715 0.713 0.717
9 0.955 0.825 0.960 0.978 0.662 0.887 0.981 0.508 0.540 0.389 0.398 0.426 0.458 0.548

avg 0.951 0.814 0.942 0.969 0.618 0.866 0.975 0.586 0.610 0.590 0.586 0.551 0.592 0.641

Table 1: AUROC results for novelty detection on MNIST and CIFAR10. Each row represents a different class on which
baselines and our model are trained.

that our proposal is the only model outperforming a simple
KDE baseline; however, this �nding should be put into
perspective by considering the nature of non-parametric
estimators. Indeed, non-parametric models are allowed
to access the whole training set for the evaluation of
each sample. Consequently, despite they bene�t large
sample sets in terms of density modeling, they lead into an
unfeasible inference as the dataset grows in size.
The possible reasons behind the difference in performance
w.r.t. DAE are twofold. Firstly, DAE can recognize novel
samples solely based on the reconstruction error, hence
relying on its memorization capabilities, whereas our pro-
posal also considers the likelihood of their representations
under the learned prior, thus exploiting surprisal as well.
Secondly, by minimizing the differential entropy of the
latent distribution, our proposal increases the discrimina-
tive capability of the reconstruction. Intuitively, this last
statement can be motivated observing that novelty samples
are forced to reside in a high probability region of the latent
space, the latter bounded to solely capture unsurprising
factors of variation arising from the training set. On the
other hand, the gap w.r.t. VAE suggests that, for the task at
hand, a more �exible autoregressive prior should be pre-

Figure 4: ROC curves delivered by different scoring strate-
gies on MNIST and CIFAR-10 test sets. Each curve is an
interpolation over the ten classes.

ferred over the isotropic multivariate Gaussian. On this last
point, VAE seeks representations whose average surprisal
converges to a �xed and expected value (i.e., the differential
entropy of its prior), whereas our solution minimizes such
quantity within its MLE objective. This �exibility allows
modulating the richness of the latent representation vs. the
reconstructing capability of the model. On the contrary, in
VAEs, the �xed prior acts as a blind regularizer, potentially
leading to over-smooth representations; this aspect is also
appreciable when sampling from the model as shown in the
supplementary material.

Fig. 4 reports an ablation study questioning the loss
functions aggregation presented in Eq. 9. The �gure illus-
trates ROC curves under three different novelty scores: i)
the log-likelihood term, ii) the reconstruction term, and iii)
the proposed scheme that accounts for both. As highlighted
in the picture, accounting for both memorization and
surprisal aspects is advantageous in each dataset. Please
refer to the supplementary material for additional evidence.

4.2. Video anomaly detection

In video surveillance contexts, novelty is often considered
in terms of abnormal human behavior. Thus, we eval-
uate our proposal against state-of-the-art anomaly detec-
tion models. For this purpose, we considered two stan-
dard benchmarks in literature, namely UCSD Ped2 [8] and
ShanghaiTech [27]. Despite the differences in the number
of videos and their resolution, they both contain anoma-
lies that typically arise in surveillance scenarios (e.g., ve-
hicles in pedestrian walkways, pick-pocketing, brawling).
For UCSD Ped, we preprocessed input clips of 16 frames to
extract smaller patches (we refer to supplementary materi-
als for details) and perturbed such inputs with random Gaus-
sian noise with� = 0 :025. We compute the novelty score of
each input clip as the mean novelty score among all patches.
Concerning ShanghaiTech, we removed the dependency on



UCSD Ped2 ShanghaiTech

MPPCA [16] 0.693 -
MPPC+SFA [28] 0.613 -

MDT [28] 0.829 -
ConvAE [11] 0.850 0.609

ConvLSTM-AE [26] 0.881 -
Unmasking [14] 0.822 -

Hinamiet al. [13] 0.922 -
TSC [27] 0.910 0.679

Stacked RNN [27] 0.922 0.680
FFP [23] 0.935 -

FFP+MC [23] 0.954 0.728

Ours 0.954 0.725

Figure 5: On the left, AUROC performances of our model w.r.t. state-of-the-art competitors. On the right, novelty scores
and localizations maps for samples drawn from UCSD Ped2 and ShanghaiTech. For each example, we report the trend of the
assessed score, highlighting with a different color the time range in which an anomalous subject comes into the scene.

the scenario by estimating the foreground for each frame of
a clip with a standard MOG-based approach and removing
the background. We fed the model with 16-frames clips,
but ground-truth anomalies are labeled at frame level. In
order to recover the novelty score of each frame, we com-
pute the mean score of all clips in which it appears. We
then merge the two terms of the loss function following the
same strategy illustrated in Eq. 9, computing however nor-
malization coef�cients in a per-sequence basis, following
the standard approach in the anomaly detection literature.
The scores for each sequence are then concatenated to com-
pute the overall AUROC of the model. Additionally, we en-
vision localization strategies for both datasets. To this aim,
for UCSD, we denote a patch exhibiting the highest nov-
elty score in a frame as anomalous. Differently, in Shang-
haiTech, we adopt a sliding-window approach [44]: as ex-
pected, when occluding the source of the anomaly with a
rectangular patch, the novelty score drops signi�cantly.
Fig. 5 reports results in comparison with prior works, along
with qualitative assessments regarding the novelty score and
localization capabilities. Despite a more general formula-
tion, our proposal scores on-par with the current state-of-
the-art solutions speci�cally designed for video applications
and taking advantage of optical �ow estimation and motion
constraints. Indeed, in the absence of such hypotheses (FFP
entry in Fig. 5), our method outperforms future frame pre-
diction on UCSD Ped2.

4.3. Model Analysis

CIFAR-10 with semantic features. We investigate the
behavior of our model in the presence of different as-
sumptions regarding the expected nature of novel samples.
We expect that, as the correctness of such assumptions
increases, novelty detection performances will scale
accordingly. Such a trait is particularly desirable for
applications in which prior beliefs about novel examples

can be envisioned. To this end, we leverage the CIFAR-10
benchmark described in Sec. 4.1 and change the type of
information provided as input. Speci�cally, instead of raw
images, we feed our model with semantic representations
extracted by ResNet-50 [12], either pre-trained on Imagenet
(i.e., assume semantic novelty) or CIFAR-10 itself (i.e.,
assume data-speci�c novelty). The two models achieved
respectively 79.26 and 95.4 top-1 classi�cation accuracies
on the respective test sets. Even though this procedure is
to be considered unfair in novelty detection, it serves as a
sanity check delivering the upper-bound performances our
model can achieve when applied to even better features. To
deal with dense inputs, we employ a fully connected au-
toencoder and MFC layers within the estimation network.
Fig. 6-(a) illustrates the resulting ROC curves, where
semantic descriptors improve AUROC w.r.t. raw image
inputs (entry “Unsupervised”). Such results suggest that
our model pro�tably takes advantage of the separation
between normal and abnormal input representations and
scales accordingly, even up to optimal performances
for the task under consideration. Nevertheless, it is
interesting to note how different degrees of supervision
deliver signi�cantly different performances. As expected,
dataset-speci�c supervision increases the AUROC from
0.64 up to 0.99 (a perfect score). Surprisingly, semantic
feature vectors trained on Imagenet (which contains all
CIFAR classes) provide a much lower boost, yielding an
AUROC of 0.72. Such result suggests that, even in the
rare cases where the semantic of novelty can be known in
advance, its contribution has a limited impact in modeling
the normality, mostly because novelty can depend on other
cues (e.g., low-level statistics).

Autoregression via recurrent layers. To measure
the contribution of the proposed MFC and MSC layers
described in Sec. 3, we test on CIFAR-10 and UCSD


