P100
EFFECTS OF DIFFERENT MOUTHWASHES ON CANDIDA ALBICANS ADHESION, SUSCEPTIBILITY TO PHAGOCYTIC CELLS AND CAPACITY TO ELICIT PRO-INFLAMMATORY CYTOKINE RESPONSE
Andrea Ardizzone1, Eva Pericolini1, Simona Paulone1, Ilaria Oliva1, Carlotta Francesca Orsi1, Elisabetta Blasi1
1Dip. Medicina Diagnostica, Clinica e di Sanità Pubblica - Università di Modena e Reggio Emilia, Modena - Italy

Introduction: Oral candidiasis is a frequent opportunistic fungal infection, occurring especially in susceptible individuals. This pathology, mainly associated with Candida albicans species, may be prevented by a good oral hygiene, including the daily use of toothbrush and mouthwashes (MoWs). Among several virulence factors, C. albicans has the ability to adhere to epithelial surfaces, to avoid phagocytosis and/or intracellular killing and to elicit proinflammatory cytokines production. We have previously demonstrated that both C. albicans hyphal development and biofilm formation/persistence are affected by MoWs, provided that they contain chlorhexidine digluconate (1). Therefore, in this study we aim to expand our knowledge on MoWs effects by investigating the behaviour of MoWs-treated C. albicans, in terms of adhesion to both abiotic and biotic surfaces, susceptibility to phagocytosis and capacity to elicit pro-inflammatory immune responses.

Materials and Methods: C. albicans SC5314 and 6 commercial MoWs have been employed: 4 with and 2 without chlorhexidine digluconate (CHX), a component known to have antibacterial and antifungal activity. Adhesion was assessed by a bioluminescent strain of C. albicans SC5314; MoWs-treated and PBS-treated fungal cells were incubated in 96-well plates containing or not a monolayer of TR-146 oral epithelial cell line; after 60 min, plates were washed and the residual bioluminescent signal recorded. Susceptibility to phagocytosis was assessed by exposing MoWs-treated and PBS-treated C. albicans to phagocytic cell line BV2 (effector:target = 1:2). Following 24 hours incubation of TR-146 cells with MoWs-treated and PBS-treated C. albicans, cytokine levels in supernatants were measured.

Results: Adhesion of MoWs-treated C. albicans to abiotic surfaces was significantly lower than PBS-treated Candida. Adhesion of MoWs-treated C. albicans to TR-146 cells was significantly lower than PBS-treated Candida, in all but MoW 4. No differences could be highlighted in terms of susceptibility to phagocytosis (percent phagocytic cells and phagocytosis index) between MoWs-treated and PBS-treated Candida. On the contrary, significantly higher acidic phagolysosomies percentages were recorded from Candida treated with 4 out of 6 MoWs, with respect to PBS-treated fungi. Finally, Candida pretreatment with 4 out of 6 MoWs and 5 out of 6 MoWs impaired the production of IL-1a and IL-1b, respectively.

Discussion and Conclusions: C. albicans adhesion, susceptibility to phagocytosis and capacity to elicit pro-inflammatory cytokine response are affected by MoWs, especially those containing CHX. Thus, special attention should be used when choosing MoWs whether prevention and/or treatment of Candida-associated oral pathologies was intended.

Reference