Abstract Marking Panel

T Battelino Slovenia
K Chatterjee UK
M Dentez Italy
D Fuhrer Germany
R Gartner Germany
J Joaco de Castro Portugal
C Jandrekowski Poland
C Kanaka-Gantenbein Greece
S Pearce UK
G Roman Romania
E Stener-Victorin Sweden
E Visser The Netherlands
M-C Zennaro Italy
A ACinskii UK
M Alevuaki Greece
W Arlt UK
G Assie France
S Aybwin UK
S Babajko France
K Badenshoop Germany
P Beck-Peccio Italy
R Bergman USA
J Berberat Portugal
F Beuschem Germany
C Bevan UK
H Biehmann Germany
M Bligher Germany
K Boelart UK
A Boelen The Netherlands
R Bouillon Belgium
J-P Bourguignon Belgium
G Brabant Belgium
M L Brandi Italy
K Briot France
G Brunetti Italy
C Buchanan UK
P Burman Sweden
S Cannaio Italy
J Cap Czech Republic
G Carmeliet Belgium
J Castano Spain
P Channon France
F Chiarelli Italy
B Chiusi Italy
J Chowen Spain
C Daoisi UK
M Dattani UK
C Dayan UK
W de Herder Netherlands
W Dhillio UK
G De Dalmatie Germany
E Diamanti-Kandarakis Greece
F Dotta Italy
J Drouin Canada
L Duntas Greece
G Eisenhoffer Germany
F Fallo Italy
F Farahani Canada
S Furoqui UK
M Fassnacht Germany
R Fedders The Netherlands
U Feldt-Rasmussen Denmark
E Fliers The Netherlands
C Flueck Switzerland
C Follin Sweden
S Franks UK
W Fraser UK
J Frystyk Denmark
L Fugassola Italy
F Gubarev Czech Republic
A Gimenez-Roquepozo France
F Giorgino Italy
A Giustina Italy
J Gomez-Ambrosi Spain
R Granata Italy
A Grossman UK
R Hampl Czech Republic
M Heinnhemto Finland
C Hoel Sweden
A Hoeflich Germany
W Hooger UK
L Holland Netherlands
J Huhtaniemi UK
E Husebye Norway
P Iga Hungary
I Ilovayskaya Russia
S Inachchi USA
T Isailovic Serbia
E R Isenovic Serbia
M Jaffrin-Rose Italy
B Jarab Poland
D Jezova Slovakia
A Kalkeck Netherlands
G Kaltsas Greece
A Karlsson Sweden
M Kell USA
F Kelestimur Turkey
R Kineman USA
M Korbonits UK
B Kos-Kudla Poland
N Krone UK
H Krude Germany
M Laun Germany
E Laub France
J Laven The Netherlands
G Lawery UK
J Leger France
T Links The Netherlands
P Lips Netherlands
S Llauban USA
A Luger Austria
C Luca Bogusiewski Brazil
R M Luque Spain
M Luster Germany
D Macit Serbia
M Maggi Italy
J Magre France
M Manelli Italy
P Mantero Italy
D Marks USA
G Mastorakos Greece
C McCabe UK
R Mitchell UK
J Mitrag Greece
L Morin-Puppin Finland
N Morton UK
A Mikhareev UK
E Nagy Hungary
J Newell-Acker UK
B Obermayr-Petsch Austria
P Oliveira Portugal
U Pagotto Italy
J Palvino Finland
R Peeters The Netherlands
L Persani Italy
T Peiroer Austria
V Pirag Latvia
N Piltelidz Switzerland
M Pouenat Finland
D Power Portugal
V Piroit France
S Raduan UK
N Rahman Finland
B Rainey USA
E Rajpert-De Meyts Denmark
G Raverot France
M Reinko Germany
S Rice UK
M Robledo Spain
P Rodien France
H Romijn The Netherlands
C Ronchi Italy
R Ross UK
G P Rossi Italy
M Ruchala Poland
E Runten Belgium
D Salvatore Italy
S Sanlouhi Turkey
P Saunders UK
S Schmid Germany
J Schupholi Germany
D Schulte Germany
M Sherlock Ireland
M Simoni Italy
J Smith The Netherlands
A Spada Italy
G Stalla Germany
C Stratakis USA
T Tunkova Bulgaria
M Tsatsopoulos Greece
M Tsoi Italy
G Theodoropoulos Germany
J Toppi Finland
M Toth Hungary
S Tsagarakis Greece
M Tsakela Greece
E Valassi Spain
E van den Akker Netherlands
A van der Lijl Netherlands
J van Eck The Netherlands
W van Hul Belgium
J Visser The Netherlands
V Volkee Estonia
R Voluinen Finland
J Wilkinson UK
Z Wu Germany
P Yeoh UK
B Yildiz Turkey
J Young France
M Zatelli Italy

EDITORS

The abstracts were marked by the Abstract marking Panel selected by the Programme Organising Committee.

Programme Organising Committee

Bulent Yildiz (Turkey) Chair
Guillaume Assie (France) Co-chair
Riccarda Granata (Italy) Co-chair
Joao Joaco de Castro (Portugal) Chair
Carlo Acerini (UK) Chair
Richard Bergman (USA) Chair
Charlotte Bevan (UK) Chair
Heike Biehmann (Germany) Chair
Eri Diamanti-Kandarakis (Greece) Chair
Andrzej Giustina (Italy) Chair
Ildo Huhtaniemi (Finland) Chair
Irena Ilovayskaya (Russia) Chair
Tatiana Isaiovic (Serbia) Chair
Gregory Kaltou (Greece) Chair
Beata Kos-Kudla (Poland) Chair
Cesar Luiz Bogusiewski (Brazil) Chair

Local Organising Committee (LOC)

Joao de Castro (Lisbon, Portugal) Chair
Duarte Pignatelli (Porto, Portugal) Chair
Jorge Dones (Porto, Portugal) Chair

José Silva Nunes (Lisbon, Portugal) Chair
Leonor Gomes (Coimbra, Portugal) Chair
Malalda Marcelino (Lisbon, Portugal) Chair

Maria Joao Oliveira (Porto, Portugal) Chair
Mário Mascarenhas (Lisbon, Portugal) Chair
Miguel Meo (Coimbra, Portugal) Chair

19th European Congress of Endocrinology 2017
20–23 May 2017
SPONSORS
The ESE would like to thank its Corporate Members and the ECE 2017 sponsors

ECE Corporate Members
Aegerion
Chiasma
Ipsen
Laboratoire HRA Pharma
Novartis Pharmaceuticals
Novo Nordisk
Pfizer
Sandoz International Gmbh
Shire Services BVBA
Strongbridge Biopharma

Gold Sponsors
Ipsen
Novartis Pharmaceuticals
Pfizer

ESE Office
Euro House
22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK

Contact: Andrea Davis
Tel: +44 (0)1454 642247
Fax: +44 (0)1454 642222
E-mail: info@euro-endo.org
Web site: www.ese-hormones.org

ECE 2016 Secretariat
Bioscientifica Ltd
Euro House, 22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK

Contact: Niki Cripps
Tel: +44 (0)1454 640467
Fax: +44 (0)1454 642222
E-mail: ece2016@bioscientifica.com
Website: http://www.bioscientifica.com
CONTENTS

19th European Congress of Endocrinology 2017

PRIZE LECTURES AND BIOGRAPHICAL NOTES
The European Journal of Endocrinology Prize Lecture .. EJE1
The Geoffrey Harris Prize Lecture .. GH1
European Hormone Medal Lecture .. EHM1
Clinical Endocrinology Trust Lecture .. CET1
IPSEN1

PLENARY LECTURES
The fantastical world of hormones ... P1
The secret life of FGF21 .. P2
Update on regulation of steroidogenesis by aberrant hormone receptors P3
The role of brain insulin resistance for the development of prediabetic phenotypes........... P4
Browning of adipose tissue and metabolic regulation .. P5
Thyroid oncology in the crossroads of precision and narrative medicine P6

SYMPOSIA
Clinical Updates in Hypoparathyroidism ... S1.1–S1.3
Evolving diagnostics in adrenal and neuroendocrine tumours .. S2.1–S2.3
From the pituitary to the periphery .. S3.1–S3.3
2nd Joint Global Symposium on Obesity – The Many Dimensions of the Childhood Obesity Problem S4.1–S4.3
Turn your face to the sunshine ... S5.1–S5.3
Treatment of hypothyroidism: what have we learned? .. S6.1–S6.3
Crosstalk between bone & other organ(is)ms .. S7.1–S7.3
Predictors of therapeutic response in functioning pituitary tumours S8.1–S8.3
New Roles for Nuclear Receptors ... S9.1–S9.3
New development in Graves' Orbitopathy ... S10.1–S10.3
Challenging pituitary diseases .. S11.1–S11.3
Searching for the cause and approach in ectopic hormone syndromes S12.1–S12.3
Metabolic surgery mechanisms to clinical results (Endorsed by the European Journal of Endocrinology) S13.1–S13.3
Late-breaking: the PCSK9 revolution .. S14.1–S14.3
What endocrinologists should know about the genomics of endocrine tumors S15.1–S15.3
Hyperandrogenism: challenges in clinical management .. S16.1–S16.3
How to incorporate the new guidelines for thyroid cancer in my clinical practice S17.1–S17.3
Beta cell replacement and plasticity (Endorsed by Endocrine Connections) S18.1–S18.3
Environmental influences on endocrine systems .. S19.1–S19.3
Rare bone diseases (Endorsed by the European Journal of Endocrinology) S20.1–S20.3
Endo Oncology: prolactin, GH and metabolic hormones in oncology pathogenesis (Endorsed by Endocrine Connections) S21.1–S21.3
Obesity: Pharmacological solutions ... S22.1–S22.3
HPA axis regulation during a woman’s life: impact on metabolic outcomes S23.1–S23.3
Tissue specific defects in thyroid hormone action ... S24.1–S24.3
Vitamin D beyond bone (Endorsed by Endocrine Connections) S25.1–S25.3
Sleep, love and reproduction (Endorsed by Endocrine Connections) S26.1–S26.3
Novel predictors of diabetes ... S27.1–S27.3
Moving away from old-fashioned steroidogenesis: what are the clinical implications? S28.1–S28.3

Endocrine Abstracts (2017) Vol 49
Paediatric endocrinology .. EP1188

EPOSTER PRESENTATIONS: THYROID
Clinical case reports - Thyroid/Others EP1192–EP1221
Nuclear receptors and Signal transduction EP1222
Paediatric endocrinology .. EP1223–EP1227
Thyroid (non-cancer) ... EP1228–EP1487

INDEX OF AUTHORS
Eposter Presentations: Thyroid
values have been found to be low. Low vitamin D may be a risk factor for thyroid cancer. Decreased MPV values may be used as a predictor of thyroid cancer.

DOI: 10.1530/endoabs.49.EP1380

EP1381

BRAFV600E status and Stimulated Thyroglobulin at ablation time increase prognostic value of American Thyroid Association (ATA) classification systems for persistent disease in Differentiated Thyroid Carcinoma (DTC)

Andrea Repaci1,2, Valentina Vicennati1,2, Alessandro Paccapelo1,2, Nicola Salti4, Ottavio Cavicchi5, Fabio Monari2, Giovanni Tallini3, Elisa Gruppioni4, Annalisa Altimari7, Michelangelo Fiorentino8 & Uberto Pagotto1

1Endocrinology Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy;
2Otolaryngology Unit, S. Orsola-Malpighi Hospital, Bologna, Italy;
3Radiation Oncology Center, Department of Experimental, Diagnostic and Speciality Medicine-DIMES, S. Orsola-Malpighi Hospital, Alma Mater University of Bologna, S. Orsola-Malpighi, Bologna, Italy;
4Laboratory of Oncologic Molecular Pathology, S. Orsola-Malpighi Hospital, Bologna, Italy;
5Anatomic Pathology-Molecular Diagnostic Unit AUSL of Bologna, Department of Medicine (DIMES), Bologna, Italy.

Background

Stimulated Thyroglobulin levels measured at the time of remnant ablation (Htg-A) and BRAFV600E mutation were shown to have prognostic value in predicting persistent disease in DTC. The aim of this study was to evaluate the prognostic role of Htg-A combined with BRAFV600E status in association with revised American Thyroid Association (ATA) risk stratification.

Patients and methods

620 patients treated for a DTC were included in this study with median follow-up duration of 6.1 year. All patients were submitted to a total thyroidectomy, followed by radioiodine ablation. Patients with positive antibodies anti-Tg were excluded. The predictive value of Htg-A was calculated by receiver operating characteristic curve analysis. Cox proportional hazard regression modeling, including BRAF status, Htg-A and ATA classification system, was assessed to evaluate existing persistent disease risk.

Results

BRAF status and Htg-A levels together improve ATA risk classification in all categories. In particular in Low risk ATA only BRAFV600E+Htg-A>8.9 ng/ml was associated with persistent disease (P=0.001 HR 60.2 CI 95% 5.28–687). In Intermediate ATA risk BRAFwt+Htg-A>8.9 ng/ml was associated with persistent disease (P=0.029 HR 2.71 CI 95% 1.106–6.670) and BRAFV600E+Htg-A>8.9 ng/ml was associated with persistent disease (P=0.000 HR 5.001 CI 95% 2.318–10.790).

In High risk ATA BRAFV600E+Htg-A<8.9 ng/ml was associated with persistent disease (P=0.042 HR 5.963 CI 95% 1.069–33.255) and BRAFV600E+Htg-A>8.9 ng/ml was associated with persistent disease (P=0.002 HR 11.564 CI 95% 2.543–52.576).

Conclusion

BRAF status and Stimulated Thyroglobulin levels at ablation time improve the ATA risk stratification, so also Htg-A could be included in ATA risk classification.

DOI: 10.1530/endoabs.49.EP1382

EP1382

High sensitivity of BRAF detection method does not alter response to therapy of papillary thyroid cancer of known BRAF status

Agnieszka Walczyk1, Aldona Kowalska1, Artur Kowalik1, Janusz Kopczynski1, Iwona Fulyga1, Danuta Gasior-Perczak1, Estera Mikina1, Katarzyna Lizis-Kolus1, Dorota Szyska-Skrobot1, Monika Szymonek1, Stefan Hurej1, Maciej Kajor1, Magdalena Chrapak2 & Stanislaw Gozd2,1

1Holy Cross Cancer Centre, Kielce, Poland; 2Jan Kochanowski University, Kielce, Poland; 3Medical University of Silesia, Katowice, Poland.

Background

A dynamic risk stratification with modified initial estimated risk based on response to therapy and disease course is one of the crucial changes adopted recently by the American Thyroid Association (ATA). The analysis of BRAF status is not routinely recommended by ATA, although this finding may be advantageous to individualized risk-adapted approach in papillary thyroid cancer (PTC). The methods used to detect the BRAF V600E are known of variation in the sensitivities, variable susceptibilities for DNA degradation, and possible equivocal results with direct DNA Sanger sequencing (Seq), particularly. The aim of this study was to examine the relation between the BRAF status of PTC detected applying three methods and ATA response-to-therapy categories (excellent, indeterminate, biochemically/structural incomplete), and recurrence identified after no evidence of disease (NED) or persistence disease.

Methods

Unselected 723 PTC cases with known BRAF status diagnosed 2000–2013, actively monitored at single institution, and reviewed retrospectively up to December 31, 2015. Genotyping of BRAF was implemented using the algorithm: Seq, followed by more sensitive allele-specific polymerase chain reaction (PCR), and real-time PCR (quantitative PCR; qPCR). Considering various limitations of particular methods 639 specimens were available for the analysis by Seq, 638 by ASA-PCR, and 705 by qPCR.

Results

BRAF V600E was found in 51.6%, 67.7%, and 67% PTCs detected by Seq, PCR, and qPCR, respectively. The indeterminate response was significantly more frequent in BRAF-positive PTCs identified by Sdefault (P=0.03), but not by ASA-PCR (P=0.07), and qPCR (P=0.06). There was no significant relation between BRAF-positive cases and other not-excellent-response-to-therapy categories, recurrences and persistent disease regardless of the method used.

Conclusions

The BRAF V600E mutation identified by high sensitive methods (ASA-PCR, qPCR) did not significantly alter a response-to-therapy category and outcome of PTC. However, an indeterminate response was more frequent in BRAF-mutated PTC detected by direct sequencing.

DOI: 10.1530/endoabs.49.EP1383

EP1383

Thyroid nodules ultrasound classification and the importance of the endocrinologist clinical feeling

Bruno Madeo1,2, Giulia Brigante1,2, Anna Ansaloni1,2,aira2,1,2, Erica Taliani1,2, Manuela Simon1,2 & Vincenzo Rochira1,2

1Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy;
2Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.

Background and aim of the study

Several ultrasound (US) classifications for estimating thyroid nodules risk have been proposed. Since most of them are hardly applicable in clinical practice, we created a local tool, named Modena classification (MC), considering US characteristics and clinician subjective impression. The aim is to verify the diagnostic accuracy of MC and to compare it to US classifications of American Thyroid Association (ATA) (1) and British Thyroid Association (BTA) (2).

Methods

We prospectively enrolled 111 patients (33M, 78F; age 19–75; total 457 nodules) with an indeterminate, suspicious for malignancy or malignant cytology. All the patients underwent neck US before surgery and a score risk was assigned, with an indeterminate, biochemical/structural incomplete, and recurrence.

Results

All the classifications had low sensitivity and positive predictive value (PPV), and high specificity and negative predictive value (NPV) for low risk categories. For the intermediate risk category, BTA had the highest accuracy (68%). For higher risk categories, MC had good sensitivity (62%), high specificity (89%) and accuracy (81%); ATA had high sensitivity (83%), low specificity (48%), accuracy 58%; BTA had high sensitivity (88%), low specificity (44%), accuracy 57%.

DOI: 10.1530/endoabs.49.EP1381
Conclusions
A classification that considers the subjective impression of the clinician, in addition to the known US characteristics, has highest accuracy and specificity compared to guidelines classifications, particularly if the nodule has suspect US features.

References
(1) Haugen et al. Thyroid. 2016, 26: 1–133.
DOI: 10.1530/endoabs.49.EP1386

EP1384
Five-year follow-up of thyroid cold nodules with somatic oncogene mutations in Hungarian patients
Bálint Tobusi1,2, Bernadett Ballai1,4, Petra Soltész1, János P Kósa1,4, János Horányi2, Balázs Járay1, Eszter Székely4, Roland Istók3, Tamás Székely3 & Péter Lakatos1
1 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary; 2 1st Department of Surgery, Semmelweis University, Budapest, Hungary; 3 2nd Department of Pathology, Semmelweis University, Budapest, Hungary; 4 PentaCore Lab Ltd, Budapest, Hungary.

Cold nodules are one of the most common findings on scintiscans and ultrasound examinations of the thyroid gland. About 5–10% of these nodules turn out to be histologically malignant. Our aim was to examine the predictive value of somatogenetic alterations associated with thyroid cancer in FNA samples of thyroid cold nodules being cytologically benign at the beginning of the study. These alterations included single nucleotide mutations (BRAF, HRAS, NRAS, KRAS) and genetic translocations (RET/PTC1, RET/PTC3, PAX8ex7/PPARgamma, PAX8ex9/PPAR-gamma). The SNPs were tested by real-time PCR with fluorescence melting curve analysis and the rearrangements were detected by Taqman probe-based quantitative real-time PCR. We have analyzed 779 consecutive FNA samples and followed the patients up for 5 years. We identified 39 BRAF, 23 NRAS, 9 HRAS, 1 KRAS mutations and 1 RET/PTC3 rearrangement. No PAX8/PPARgamma rearrangements were demonstrated in the nodules. During the five-year follow-up, 57 cases (7.3%) were classified as malignant by histology, from which we indentified genetic alterations in 27 (47.4%). The statistical performance of our genetic panel showed a specificity of 93.6%, sensitivity of 47.4%, a negative predictive value of 95.8% and a positive predictive value of 37.0%. In summary, our test approach may be used for the prediction of malignant transformation of thyroid cold nodules, however, its sensitivity requires improvement.

DOI: 10.1530/endoabs.49.EP1384

EP1385
Usefulness of preoperative ultrasonography and computed tomography for evaluation of recurrent laryngeal nerve invasion by Papillary Thyroid microcarcinoma
Keiko Ohkawa, Tadatoshi Osaku, Tetsuyo Maeda, Yuna Ogimi, Chie Masaki, Junko Akashi, Kiyomi Y Hames, Chisato Tomoda, Akifumi Suzuki, Kenichi Matsuzu, Takashi Uruno, Wataru Kitagawa, Mitsuji Nagahama, Kiminori Sugino & Koichi Ito
Ito Hospital, Tokyo, Japan.

Background
Papillary thyroid microcarcinoma (PTMC) has low malignant potential and an extremely good prognosis. However, surgical findings of asymptomatic PTC, can occasionally reveal tumor invasion into the recurrent laryngeal nerve (RLN).

The present study assessed the feasibility of evaluating tumor invasion into the RLN using ultrasonography (US) and computed tomography (CT).

Materials and methods
Of 7,916 patients with a PTC who underwent surgery at our hospital, 35 with preoperative tumors that were ≤10 mm, without distal metastasis or lymph node metastasis, and with surgical findings of RLN invasion were included. The location of the tumor and the degree of contact with the thyroid capsule (DCTC) were examined by US and CT.

Results
Ten of the 35 patients were treated by combined resection of the RLN, and 25 patients were treated by shaving the RLN. US revealed that the tumor was located at the dorsal side of the thyroid in 31 patients (88.5%). In all patients who were treated by combined resection of the RLN, the tumor was located at the dorsal side of the thyroid. Among these patients, the DCTC determined by US was ≥25% in nine patients and <25% in one. Among those who were treated by RLN shaving, the DCTC was ≥25 and <25% in nine and 16 patients, respectively (p=0.003). The DCTC was ≥25% in all patients who were treated combined resection and in 15 of the 25 patients who treated by RLN shaving (≥>0.018) according to CT imaging. The tumor was located 1–1.5 cm from the cricoid cartilage in most patients who were treated by combined resection.

Conclusions
When a PTC is located at the dorsal side of the thyroid with ≥25% DCTC, surgery should be selected for RLN invasion. Our results showed that the accuracy of predicting recurrent laryngeal nerve invasion can be improved by combining US and neck CT.

DOI: 10.1530/endoabs.49.EP1385

EP1386
Solitary metastasis of papillary thyroid cancer in the sellar region and cavernous sinus
Lila Brakni, Lounes Haffaf, Yamina Aribi, F Hameg & Samia Ouldkablia
Army Hospital, Algiers, Algeria.

The commonest site of metastasis from papillary carcinoma is regional lymph nodes. Distant metastases are rare, most presenting synchronously. Brain metastases in papillary carcinoma are rare, reported with a frequency of 0.1–5% and cavernous sinus metastasis is extremely rare.

Case report
A 62-year-old woman presented with a history of non-secretory pituitary macroadenoma present with symptoms of hypopituitarism. MRI of the brain revealed a 4.5×3.1×3 cm, extension into the cavernous sinus. The tumor was not rescalable, she Underwent a simple biopsy in view of the haemorrhagic nature of the tumor. Histopathology revealed a tumor with diffuse papillary architecture. On immunohistochemistry: positive for TTF1, PAX8, thyroglobulin, TPO;Ki67 (10–15%) and negative for GH, LH, FSH, ACTH, TSH. A diagnosis of metastatic papillary carcinoma was made. Thyroid ultrasound revealed two hypoechoic nodules. After thyroidectomy the histopathology was papillary micro- carcinoma thyroid-follicular variant of 05 mm. She received radioiodine therapy.

Discussion
The incidence of distant metastases from papillary carcinomas is reported to be 6–23%, the majority occurring within 5 years of the initial diagnosis. There have been case reports of papillary carcinoma with metastasis at unusual sites like the breast and cavernous sinuses. All these cases were associated with a missed diagnosis of thyroid carcinoma, like our case, should be considered exceptional. There have been five reports of papillary carcinoma with metastasis to the skull base.

Conclusions
There is no consensus for the treatment of papillary thyroid carcinoma with cavernous sinus metastasis. Thus, that solitary distant metastasis from thyroid carcinoma though rare, is a possibility, a difficult diagnosis to be made on radiology.

DOI: 10.1530/endoabs.49.EP1386
Author Index

Aancutei, A EP809
Abacar, KY EP266 & EP440
Abbas, A EP280 & EP334
Abboud, D EP928
Abd elbaky, RS EP425
Abdalaziz, A EP395
Abdalaziz, A EP395
Abdallah, RB EP167 & GP113
Abdelkrim, S EP633
Abdelsalam, MM EP1363 & EP497
Abdulkhaliq, A EP652
Abe, S EP1029
Abell, S EP1115
Aberer, F EP609
Abernethie, A EP802
Abeygunasekara, S EP575
Abid, D GP28 & EP497
Abizanda, EP EP862 & GP240
Abolaji, A EP1095
Aboshady, MM EP497
Abouleka, Y EP1310
Abrahim, A KP990
Abreu, S GP98
Abrosimov, A EP1394
Abs, R EP884
Abuin, J EP755 & EP808
Abushady, MM EP497
Abusoglu, S EP1167 & EP419
Ach, K EP441 & EP1389
Acierno, J GP153
Acik, ME EP296
Acikgoz, SB EP1066
Acikgoz, A EP378
Ackermann, D EP820 & OC13.5
Aci, B EP427
Adas, M EP113
Adam, M EP692
Adamczewski, Z EP1325 & EP1435
Adamska, A EP1104 & EP466
Adaramoye, O EP1095
Adaway, J EP1169
Ademayo, O EP1095
Adesanoye, O EP1095
Adhikari, P EP692
Adomnicai, V EP1209 & EP792
Adorini, L EP377
Adrian, M EP148
Afsar, ZT EP538
Aghajanova, Y EP893
Aghajanova, YM EP422
Aglony, M OC5.1
Agate, J EP1414
Agero, H GP152
Aggarwal, R EP661
Aghajanova, Y EP893
Aghajanova, YM EP422
Aglny, M OC5.1
Agoulnik, A EP754
Agoulnik, I EP754 & OC7.5
Agrawal, S EP701
Agreda, J EP1030
Aguiar, A GP133
Aguilar-Oliveira, MH EP949 & GP178
Aguilar, C EP3
Aguirre, N EP180
Ahbab, S EP886
Ahern, T EP1169
Ahlem, B EP762
Ahmadpour, F GP164
Ahmed, A EP552
Ahmed, AG EP1363
Ahmed, S GP180
Ahmeti, A EP585
Ahmetow, I GP170
Ahn, C EP738 & EP1100
Ahn, CW EP452, EP531, GP54 & GP87
Ahn, HJ GP162
Ahn, SV EP236
Ai Thu, B GP142
Aichler, M OC1.1
Aida, BS EP762
Aires, I EP599
Aitahal, O GP180
Ajabnoor, G EP652 & EP657
Ajdzanovic, B EP787
Ajdzanovic, V GP62, GP202 & EP779
Ajmi, S EP355
Akin, O EP673
Akdeniz, CS EP296
Akdeniz, YS EP1099
Akdere, G EP418
Akgul, G EP344
Akin, S EP1097 & EP1368
Akkaya, L EP675
Akladious, C EP583
Akman, S EP673
Aksyonova, E EP670
Akturk, M EP1144
Akyuldiz, AB EP266
Akyurek, F EP1167
Al Kadi, H EP292
Al-Attas, O GP77 & EP263
Al-Saleh, Y GP46 & EP263
Al-Sharefi, A EP89 & EP1230
Al-Trawneh, O EP489
Alaguney, ES EP427
Alaguney, S GP69, EP90 & EP264
Alam, M EP534
Alaminos, MEL EP920
Alapi, T EP742
Alarcón, E EP302
Alba, A EP99
Albani, A EP1056
Albert, C EP641
Albert, L EP165 & GP238
Albiger, N EP1042
Albu, AI EP307 & EP947
Albu, D EP1138 & EP1147
Alcaine-Torres, J GP71
Alcantara-Aragon, V EP681
Aldea, R EP1364
AlDwairi, A GP88
Alefishat, E EP360
Alejand, R OC6.2
Aleksic, M EP693
Alemany, PA GP179
Aleziak, M EP1411 & GP230
Alevaros, TM EP76
Alexander, B EP1248
Alexandra Ambarus Popovic, I EP813
Alexandra Gheorghiu, C EP1395
Alexandra Smarandoiu, G EP137
Alegria, S EP996
Aleknaite, A EP990
Aleksic, M EP693
Al-Kadi, H EP292
Al-Attas, O GP77 & EP263
Al Daghri, N GP46, GP77 & EP263
Al-Saleh, Y GP46 & EP263
Al-Sharefi, A EP89 & EP1230
Al-Trawneh, O EP489
Alaguney, ES EP427
Alaguney, S GP69, EP90 & EP264
Alam, M EP534
Alaminos, MEL EP920
Alapi, T EP742
Alarcon, E EP302
Alba, A EP99
Albani, A EP1056
Albert, C EP641
Albert, L EP165 & GP238
Albiger, N EP1042
Albu, AI EP307 & EP947
Albu, D EP1138 & EP1147
Alcaine-Torres, J GP71
Alcantara-Aragon, V EP681
Aldea, R EP1364
AlDwairi, A GP88
Alefishat, E EP360
Alejand, R OC6.2
Aleksic, M EP693
Alemany, PA GP179
Aleziak, M EP1411 & GP230
Alevaros, TM EP76
Alexander, B EP1248
Alexandra Ambarus Popovic, I EP813
Alexandra Gheorghiu, C EP1395
Alexandra Smarandoiu, G EP137