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Characterizing sets of lower bounds: a hidden convexity result

Emil Ernst · Alberto Zaffaroni

Dedicated to Michel Théra in honor of his 70th birthday.

Abstract This study addresses sets of lower bounds in a vector space ordered by a convex
cone. It is easy to see that every set of lower bounds must be simultaneously downward and
bounded from above, and must possesses the further property that it contains the supremum
of any of its subsets which admits one. Our main result proves that these conditions are also
sufficient, provided that the ordering cone is polyhedral. Simple counter-examples prove
that the sufficiency fails when the polyhedrality assumption is dropped.
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1 Introduction

Given (X,≤) a real vector space which is partially ordered by means of a pointed convex
cone K ⊂ X, we shall call a non empty and proper subset A of X a set of lower bounds, if

A = {x ∈ X : x ≤ y ∀y ∈ S}

for some set S ⊂ X.

When (X,≤) is a Dedekind complete vector lattice, that is when any subset of X which
is bounded from above possesses a supremum, it is easy to see that the only sets of lower
bounds are the copies of the cone −K, that is the sets of the form a −K, with a ∈ X. To
this respect, it is relevant to invoque the celebrated Choquet-Meyer theorem ([4]), saying
that (X,≤) is a Dedekind complete vector lattice if and only if the ordering cone K has
a base which is a Choquet simplex, that is (see [3]) a convex set C ⊂ X such that the
intersection of any two homothetic copies of C, if nonempty, is again a homothetic copy of C,
possibly degenerated into a point. When the dimension of X is finite, additional information
is provided by the Rogers-Shephard theorem (see [8]), which proves that a set is a Choquet

E. Ernst
Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France E-mail: emil.ernst@univ-amu.fr

A. Zaffaroni
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simplex if and only if it is the convex hull of finitely many affinely independent points, as
for instance when the vector space X = Rn is ordered by the cone K = Rn

+.

In the general case of a partially ordered space (X,≤) which is not necessarily a Dedekind
complete lattice, the class of sets of lower bounds lacks a clear description. Indeed, again as
a consequence of the Choquet-Meyer theorem, it results that, every time when the ordering
cone K is non-simplicial, there are sets of lower bounds which are not mere copies of −K.

Let us notice that, regardless of specific assumption on the ordered vector space (X,≤),
any set A of lower bounds must satisfies each and every one of the following properties:
P1: a1 ∈ A and a2 ≤ a1 imply a2 ∈ A (A is downward);
P2: there exists z ∈ X such that a ≤ z, for all a ∈ A (A is bounded from above);
P3: if B ⊆ A admits a supremum y = supB, then y ∈ A (A is sup-containing).

Indeed, any set of the form a−K, with a ∈ X, obviously satisfies all the above proper-
ties, and it is an easy task to prove that the intersection of a family of sets fulfills properties
P1-3, provided that the same holds true for every set in the family. We will say that A is
regularly sup-containing if the three properties above are satisfied. It is then tempting to
conclude that properties P1-3 completely characterize the sets of lower bounds, and thus
state the following conjecture:

C: A non empty proper set A ⊂ X is a set of lower bounds if and only if it is regularly
sup-containing.

Surprisingly enough, the validity of our conjecture strongly depends on the ordering
cone. Thus, the main result of the present study (Theorem 1, Section 3), proves the conjec-
ture for the particular case of a finite dimensional space X ordered by a polyhedral cone K,
while Proposition 7 (Section 4.3) describes the example of a pointed convex cone K ⊂ R2

for which the conjecture is false. Hence, the set of properties P1-3 either provides us with
an accurate description of sets of lower bounds, or completely fails in doing so, depending
on finely tuned properties of the ordering cone.

Let us also remark that a set of lower bounds is given by the intersection of all the copies
of −K containing it, being hence a convex set. To this respect, we may see Theorem 1 as
being a hidden convexity result, as none of the properties P1-3 explicitly requires convexity,
and since, as proved by Proposition 7, for a different choice of the ordering cone, some
non-convex sets also satisfy properties P1-3.

Exploiting this convexity feature, we prove two different characterizations in dual terms.
One is based on separation by means of the linear functionals which define the ordering
cone. The other is based on the properties of the support function. These conditions are also
specific for polyhedral orderings, as shown by a counterexample in R3.

Our main results, Theorem 1 and Proposition 7, lead us to state the open question of
characterizing all the pointed convex cones K such that the conjecture C holds true. The
concluding section of our study gives us the opportunity to discuss this question in some
detail.

2 Elementary properties of polyhedral cones in finite dimensional spaces

We consider a finite dimensional partially ordered vector space (X,≤), in which the relation
≤ is induced by a convex coneK which is pointed (K∩(−K) = {0}) and solid (the interior



Sets of lower bounds 3

of K is nonempty). Given 〈·, ·〉, some dot product on X, we denote by K+ its dual cone,

K+ := {x ∈ X : 〈x, y〉 ≥ 0 ∀y ∈ K},

and by extK+ the subset of K+ gathering all the extreme rays of K+.

Given a subset S ⊆ X, we say that z ∈ X is a lower (resp. upper) bound of S if z ≤ s

(resp. s ≤ z) for all s ∈ S. Thus the set L(S) of lower bounds of S is given by

L(S) = {z ∈ X : z ≤ s, ∀s ∈ S} =
⋂
s∈S

s−K,

while
U(S) = {z ∈ X : s ≤ z, ∀s ∈ S} =

⋂
s∈S

s+K

stands for the set of upper bounds of S. The set L(S) is thus defined as the intersection
of all lower sections ls = L({s}) = {z ∈ X : z ≤ s} with s ∈ S. If L(S) admits a
greatest element y, then y is called the infimum of S (y = inf S); in this case L(S) = ly .
Analogously, if U(S) admits a least element v, then v is called supremum of S, indicated
v = supS.

Despite its importance for the theory of ordered spaces, a good knowledge of the struc-
ture of sets of lower bound is not achieved (to our knowledge), and these notes are aimed to
a deeper understanding of the properties of this kind of sets.

In this section, we gather several, more or less elementary, facts about pointed and solid
polyhedral cones in a finite dimensional space X, that is pointed and solid cones which may
be expressed as the intersection a finite number of closed half-spaces of X.

For each such cone K, there is a non empty and finite set I of vectors from X such that

K = {x ∈ X : 〈x, y〉 ≥ 0 ∀y ∈ I}. (1)

Of course, for a given polyhedral cone K, the set J (K) of all the finite sets I such that
relation (1) holds true is infinite; let us denote by F = {fi : i = 1,m} an element of J (K)
which is minimal with respect to set inclusion. Thus

K = {x ∈ X : 〈x, fi〉 ≥ 0 ∀i = 1,m}. (2)

The following obvious consequence of relation (2) needs no proof.

Lemma 1 Given two vectors x, y ∈ X, the two following facts are equivalent:
i) x ≤ y
ii) 〈x, fi〉 ≤ 〈y, fi〉 ∀i = 1,m.

As a consequence of the previous lemma, we are in a position to provide a first charac-
terization of the set L(S).

Proposition 1 Let S be a nonempty and lower bounded set inX, and set αk = infs∈S 〈s, fk〉,
for k = 1,m. Then

L(S) =
{
z ∈ X : 〈z, fk〉 ≤ αk, k = 1,m

}
.
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Proof of Proposition 1: Let x ∈ L(S) =
⋂

s∈S s −K. Then x ∈ s −K for all s ∈ S,
which yields 〈s, fk〉 ≥ 〈x, fk〉 for all s ∈ S and all k = 1,m. Hence

〈x, fk〉 ≤ inf
s∈S
〈s, fk〉 = αk.

If conversely 〈x, fk〉 ≤ αk, k = 1,m, and we take any s ∈ S, then we have 〈s, fk〉 ≥ αk,
and

〈s− x, fk〉 ≥ 0 ∀k = 1,m

which, as a consequence of Lemma 1, yields s − x ∈ K for all s ∈ S, and therefore
x ∈

⋂
s∈S s−K.

ut

Since the set F is minimal, it is possible to pick an element from K such that all but one
among the m inequalities in (2) are strict, as indicated by the next result.

Lemma 2 For every k = 1,m, there exists wk in the boundary of K such that

〈wk, fk〉 = 0, 〈wk, fi〉 > 0 ∀i = 1,m, i 6= k. (3)

Proof of Lemma 2: Let us pick k = 1,m; as F is minimal in J (K) and F \ {fk} ⊂ F ,
it follows that the closed convex cone

Kk = {x ∈ X : 〈x, fi〉 ≥ 0 ∀i = 1,m, i 6= k}

is strictly larger than K. But K is solid, so the larger cone Kk must, at its turn, be solid.
Moreover, like any convex set with non empty interior, Kk is the closure of its interior.
Hence the interior of Kk cannot be completely contained in K, as this would imply that Kk

itself lies within K, a contradiction. One can thus find a vector, say vk, laying in the interior
of Kk but outside K, that is

〈vk, fk〉 < 0, 〈vk, fi〉 > 0 ∀i = 1,m, i 6= k. (4)

Finally, let us pick v, a (non null) vector from the interior of K; hence

〈v, fi〉 > 0 ∀i = 1,m. (5)

From relations (4) and (5) it results that there is some λk ∈ (0, 1) such that

〈wk, fk〉 = 0, 〈wk, fi〉 > 0 ∀i = 1,m, i 6= k, (6)

where wk = λk vk + (1 − λk) v. Obviously, such a vector wk must lie in the boundary of
the cone K. ut
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3 The main results

3.1 Separating L(S) and S by means of linear functionals

Let S be a nonempty set possessing at least a lower bound, and f ∈ K+. It is obvious that

sup
v∈L(S)

〈v, f〉 ≤ inf
w∈S

〈w, f〉 ; (7)

this subsection addresses the study of the gap which may exists between the two sides of the
above inequality.

Let us first consider the case of a set S composed by two points x, y ∈ X (the more
general case of a finite set S may be studied in a very similar way). It is a well known
property (see [6] and also [1]) that, if f ∈ extK+, then for every ε > 0, there exists an
element zε ∈ X such that zε ≤ x and zε ≤ y, and that

〈zε, f〉 ≥ min (〈x, f〉 , 〈y, f〉)− ε; (8)

in other words, the inequality (7) becomes an equality.
The following technical lemma exploits polyhedrality in order to extend to ε = 0 rela-

tion (8).

Lemma 3 Given x, y, two vectors of X, and k = 1,m a fixed index, there is an element
zk ∈ X such that zk ≤ x, zk ≤ y, and

〈zk, fk〉 = min (〈x, fk〉 , 〈y, fk〉) . (9)

Proof of Lemma 3: Without restricting the generality, we may assume that 〈x, fk〉 ≤
〈y, fk〉, so

〈x, fk〉 = min (〈x, fk〉 , 〈y, fk〉) .

Set
s :=

〈y − x, fk〉
〈v, fk〉

,

where v is a vector from the interior of K, and define

ys := y − s v.

Obviously, s ≥ 0, so ys ≤ y, and

〈ys, fk〉 = 〈y, fk〉 − s 〈v, fk〉 = 〈y, fk〉 −
〈y − x, fk〉
〈v, fk〉

〈v, fk〉 = 〈x, fk〉 . (10)

Let us now define

ti := max

(
0,
〈ys − x, fi〉
〈wk, fi〉

)
, ∀i = 1,m, i 6= k,

where the vector wk is given by relation (3), and set

t := max{ti : i = 1,m, i 6= k}.

Clearly, t ≥ 0, so ys − t wk ≤ ys ≤ y. Moreover,

〈ys − t wk, fk〉 = 〈ys, fk〉 − t 〈wk, fk〉 = 〈ys, fk〉 ,



6 Emil Ernst, Alberto Zaffaroni

so from relation (10) it results that

〈ys − t wk, fk〉 = 〈x, fk〉 , (11)

while

〈ys − t wk, fi〉 = 〈ys, fi〉 − t 〈wk, fi〉

≤ 〈ys, fi〉 −
〈ys − x, fi〉
〈wk, fi〉

〈wk, fi〉 = 〈x, fi〉 ∀i = 1,m, i 6= k. (12)

Relations (11), (12) and Lemma 1 prove that ys − t wk ≤ x. Accordingly, the vector
ys − t wk is less then both x and y, and (in virtue of relation (11)) it also satisfies relation
(9); Lemma 3 is thus fulfilled for zk := ys − t wk. ut

The case of a non necessarily finite set S is much more complicated. Indeed, standard
examples (see for instance the one depicted in subsection 4.2) prove that the gap between
supv∈L(S) 〈v, f〉 and infw∈S 〈w, f〉may be non null even for vectors f lying in extK+.

When K is polyhedral, we can prove that the inequality in (7) becomes an equality.
Thus, for any given fk ∈ F , we can deduce the largest value of fk on L(S) only by looking
at the values of fk on S.

Proposition 2 Given a nonempty and bounded from below set S ⊆ X, and f ∈ F , then it
holds that

sup
v∈L(S)

〈v, f〉 = inf
w∈S
〈w, f〉 . (13)

Proof of Proposition 2: Reasoning by contradiction, assume that, for some k = 1,m, it
holds that

αk := inf
w∈ S

〈w, fk〉 > sup
v∈L(S)

〈v, fk〉 =: βk,

and choose y ∈ X such that 〈y, fk〉 = γ ∈ (βk, αk).
Now take wk as in Lemma 2 and define

ti =
〈y, fi〉 − αi

〈wk, fi〉
, ∀i = 1,m, i 6= k,

t = maxi 6=k ti, and yk = y − twk. Then we have, for all i 6= k,

〈yk, fi〉 = 〈y, fi〉 − t 〈wk, fi〉 ≤ 〈y, fi〉 − ti 〈wk, fi〉 = αi.

Moreover we have

〈yk, fk〉 = 〈y, fk〉 − t 〈wk, fk〉 = 〈y, fk〉 = γ < αk.

Thus it holds
〈yk, fi〉 ≤ αi, ∀i = 1,m,

while the inequality
〈yk, fk〉 = γ > βk = sup

z∈L(S)

〈z, fk〉

shows that yk /∈ L(S), contradicting in this way Proposition 1. ut

By a geometric point of view, we can visualize the previous result by saying that S and
A = L(S) are separated with no gap by every functional in F , provided that the ordering
cone K is polyhedral.
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3.2 Direct and dual characterizations of a set of lower bounds

The results presented above become relevant in the description of sets of lower bounds in
the general setting in which the vectors f1, ..., fm are not linearly independent, and thus
Choquet-Meyer’s Theorem does not apply.

Let us start by making more precise the description of a set of lower bounds as intersec-
tion of lower sections. A lower section lx is a translation of the ordering cone, lx = x−K,
and a set of lower bounds is the intersection of copies of −K, so that A is a set of lower
bounds if and only if it satisfies the following separation property:

∀y /∈ A, ∃z ∈ X : A ⊆ z −K and y /∈ z −K. (14)

Using relation (14), we obtain a description of sets A of lower bounds by means of
copies of −K : a description ”from outside”. This description is somehow analogous to the
well-known characterization ”from outside” of closed convex sets as intersection of closed
half-spaces. Of course, the family of closed, convex sets can also be described ”from inside”;
conjecture C attempts to provide an analogous ”from inside” description for the case of sets
of lower bounds.

Despite being a simple rewording of the definition, this separation property is worth
being emphasized. While there are many instances in which separation is used to character-
ize classes of sets more general than convex ones, here the elementary separating sets are
convex sets of a special type, and thus we obtain a kind of separation which is less general
than the one in which half-spaces are used, and we can use relation (14) to characterize a
particular subclass of convex sets in X.

A very similar situation is encountered for instance when closed balls of some normed
space X are used as separating sets in the ”from outside” description: in this framework, it
can be seen (see [5]) that every Banch space whose norm is Frechet differentiable enjoys
the so-called Mazur Intersection Property, that is every closed, bounded, convex set is the
intersection of closed balls containing it.

The following result offers the first characterization of sets of lower bounds. It can be
seen as a dual description, in terms of extreme functionals in F , of the separation property
(14) by means of copies of −K, which holds for sets of lower bounds.

Proposition 3 The set A ⊂ X is a set of lower bounds if and only if it is upper bounded
and for every y /∈ A there exists f ∈ F such that

〈y, f〉 > sup
a∈A
〈a, f〉 .

Proof of Proposition 3: If A = L(S) for some set S ⊂ X and y /∈ A, then there exists
s ∈ S such that y /∈ s−K and A ⊆ s−K. The latter implies supa∈A 〈a, fi〉 ≤ 〈s, fi〉 for all
i = 1,m. Moreover there exists k = 1,m such that 〈y, fk〉 > supx∈s−K 〈x, fk〉. Observe
that supx∈s−K 〈x, fi〉 = 〈s, fi〉, for all i = 1,m, so that 〈y, fk〉 > supa∈A 〈a, fk〉.

To prove the converse we will show that (14) holds. To this aim, consider y /∈ A and
apply the assumptions to find f ∈ F such that 〈y, f〉 > supa∈A 〈a, f〉. Now use Proposition
2 with S = U(A), so that 〈y, f〉 > infs∈S 〈s, f〉 and there exists z ∈ U(A) such that
〈y, f〉 > 〈z, f〉 = supx∈z−K 〈x, f〉, and y /∈ z − K. Moreover z ∈ U(A) means that
A ⊆ z −K, and the result is proved. ut
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Remark 1 The type of linear separation indicated in Proposition 3 was named H-convexity
by Boltyanski [2]. Given a normed space X and a family H ⊆ S∗, the dual unit sphere,
it refers to the possibility of representing a set A as the intersection of closed halfspaces
defined by means of functionals in H . The original definition also asks that H is not one-
sided, that is H is not included in a closed halfsphere of S∗. This does not hold true for F .
But for instance [7] drops the latter requirement.

As a consequence of Proposition 2, it is possible to provide a description of the sets
B ⊂ X possessing a supremum y = supB.

Proposition 4 Given B ⊂ X, then it holds that y = supB if and only if

sup
b∈B
〈b, fi〉 = 〈y, fi〉 , ∀i = 1,m. (15)

Proof of Proposition 4: If relation (15) holds, then we have

〈b− y, fi〉 ≤ 0, ∀b ∈ B, ∀i = 1,m,

which yields B ⊂ y − K. In order to show that B = y − K, suppose by contradiction
that there exists w ∈ U(B) such that w − y /∈ K. Then there exists k = 1,m such that
〈w − y, fk〉 < 0.

Since B ⊂ w −K, then

sup
b∈B
〈b, fk〉 ≤ sup

z∈w−K
〈z, fk〉 = 〈w, fk〉 < 〈y, fk〉 . (16)

But the strict inequality in (16) contradicts (15).
Conversely, let us consider B a set admitting a supremum, and set y = supB. Clearly,

U(B) = y +K and relation

sup
b∈B
〈b, fi〉 = inf

z∈y+K
〈z, fi〉 = 〈y, fi〉 , ∀i = 1,m.

stems from Proposition 2. ut

We are now in a position to prove the conjecture C for the particular case of a finite
dimensional vector space ordered by a cone which is pointed, solid and polyhedral.

Our results says that a A ⊂ X is a set of lower bounds if and only if it is regularly sup-
containing. Thus, we obtain the desired ”from inside” description of sets of lower bounds.
Moreover, we prove that regularly sup-containing sets are automatically closed and convex,
provided that the ordering cone is polyhedral.

Theorem 1 Given a nonempty proper subset A ⊂ X satisfying relations P1-3, let us set
αi := supA 〈·, fi〉, and define S := U(A) = {x ∈ X : 〈x, fi〉 ≥ αi, ∀i = 1,m}. Then

A = {x ∈ X : 〈x, fi〉 ≤ αi, ∀i = 1,m} = L(S). (17)
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Proof of Theorem 1: We deduce from Proposition 1 that L := {x ∈ X : 〈x, fi〉 ≤
αi, ∀i = 1,m} is the set of lower bounds of S. Then we need to show that A = L. As the
relation A ⊆ L is obvious, we have to prove that

A ⊃ {x ∈ X : 〈x, fi〉 ≤ αi, ∀i = 1,m}. (18)

To this aim, let us consider an element x ∈ X such that

〈x, fi〉 ≤ αi, ∀i = 1,m,

and let us pick k = 1,m. Since αk is the supremum of the function 〈·, fk〉 over A, it results
that there is a sequence (yk,n)n∈N ∈ A such that

lim
n→+∞

〈
yk,n, fk

〉
= αk.

By applying the conclusion of Lemma 3 to x and yk,n, we deduce that there exists a vector
zk,n such that zk,n ≤ yk,n, zk,n ≤ x, and〈

zk,n, fk
〉

= min
(
〈x, fk〉 ,

〈
yk,n, fk

〉)
. (19)

We have thus defined a sequence (zk,n)n of elements from A (zk,n belongs to A since A
is a downward set, yk,n ∈ A and zk,n ≤ yk,n), which is also bounded above by x (indeed,
zk,n ≤ x). If moreover we let n go to +∞ in (19), we deduce that

lim
n→+∞

〈
zk,n, fk

〉
= min

(
lim

n→+∞

〈
yk,n, fk

〉
, 〈x, fk〉

)
= min (αk, 〈x, fk〉) = 〈x, fk〉 .

(20)
Accordingly, the set

B := {zi,n : i = 1,m, n ∈ N}
is a subset of A, it is bounded from above by x, and, by virtue of relation (20), it holds that

sup
B
〈·, fi〉 = 〈x, fi〉 ∀i = 1,m. (21)

Obviously, x is an upper bound for B, and, if w ∈ X is another upper bound for B, it
follows from Lemma 1 that

〈w, fi〉 ≥ sup
B
〈·, fi〉 ∀i = 1,m; (22)

combine relations (21), (22) and Lemma 1 to conclude that x is lower than any upper bound
of B, that is that x is the supremum of the subset B of A.

Since A satisfies property P3, it yields that x is an element of A, so relation (18) is true
and the proof of Theorem 1 is completed. ut

Once we are able to identify the sets of lower bounds as the ones which are regularly
sup-containing, then we can exploit properties P1-3 to obtain a dual characterization of a set
A of lower bounds in terms of its support function σA : X∗ → R∞ = R ∪+∞, given by

σA(f) = sup
a∈A
〈a, f〉 .

Indeed it is easy to see that, by P1-2, the effective domain of σA (also called the barrier cone
of A) is given by K+. Moreover, property P3 implies that σA is as flat as possible. To be
more clear, in the particular case where A = z −K for some z ∈ X, then σA(f) = 〈z, f〉
for all f ∈ K+, hence σA is linear onK+. In greater generality, we can prove that, provided
σA majorizes a linear function on F , then it majorizes the same function on K+.
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Proposition 5 The set A ⊆ X is a set of lower bounds if and only if its support function σA
satisfies:

i) the effective domain of σA is K+;
ii) if 〈y, f〉 ≤ σA(f), ∀f ∈ F, then 〈y, `〉 ≤ σA(`), ∀` ∈ K+.

Proof of Proposition 5: Property P1 yields σA(`) ≤ σz−K(`) = 〈z, `〉, for all ` ∈ K+,
while P2 says that σA(`) = +∞ if ` /∈ K+, so that the validity of P1 and P2 is equivalent
to (i). Moreover the inclusion B ⊆ A is equivalent to σB ≤ σA on X∗, while the relation
y = supB amounts to σB(f) = 〈y, f〉 for all f ∈ F . Hence P3 becomes (ii). ut

4 Three examples

In this section we show by means of three examples that our assumptions cannot be com-
pletely dispensed with.

4.1 Partially ordered sets

The notions of lower and upper bounds, infimum and supremum, and (regularly) sup-con-
taining set, can be easily extended to partially ordered sets which are not linear spaces. The
following example shows that conjecture C does not hold in this setting, that is a regular
sup-containing set A is not necessarily a set of lower bounds, even if the ordering relation is
given component-wise, hence deduced by a simplicial cone.

Let indeed X = {a, b, c, d, e} ⊆ R2 with a = (2, 2), b = (1, 1), c = (0, 3), d = (5, 4)
and e = (4, 5) with the component-wise order relation ≤ , and let A = {b, c}. It is easy to
see that A is regularly sup-containing but it is not a set of lower bounds.

4.2 An example in R3

The assumption that the ordering cone is polyhedral in Proposition 2 cannot be extended
to include any closed, convex, pointed, solid cone K. Indeed consider X = R3 with K =
{(x, y, z) ∈ R3 : z ≥

√
x2 + y2} the so-called Lorentz cone. Let A = −K ∩H , with H =

{(x, y, z) : x+ z ≤ −1}. The set A is not a set of lower bounds, as it holds K = U(A), so
thatA admits the origin as its supremum, and the intersection of all copies of−K containing
A is−K, which is different fromA. For all linear functionals f which are extreme directions
of K+ = K, it holds supa∈A 〈a, f〉 = 0, except for (the ones proportional to) f̄ = (1, 0, 1),
for which supa∈A

〈
a, f̄
〉

= −1 holds.
This example contradicts Proposition 2 as the valutation of f̄ on A and U(A) shows a

gap; and one of the implications in both Propositions 3 and 4.

4.3 An example in R2

As for the validity of Theorem 1, we address the case when X = R2 and K = {(0, 0)} ∪
R2

++. In this particular setting, the following very strong result is in order.

Proposition 6 If the supremum of a set exists, then it belongs to the set itself.
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Proof of Proposition 6: Let x = (x1, x2) ∈ R2 be the supremum of the set A ⊂ R2.
Since x is the smallest upper bound for A, and since x and y := (x1 + 1, x2) are incompa-
rable (indeed, the vector y − x = (1, 0) belongs neither to K, nor to −K), we can conclude
that y is not an upper bound of A.

Consequently, A does not entirely lie in y −K; as on the other hand, A is contained in
x−K, it follows that A has at least an element in (x−K) \ (y −K):

A ∩ ((x−K) \ (y −K)) 6= ∅.

Or, (x−K) \ (y −K) = {x}, so A ∩ {x} 6= ∅, which means that x belongs to A. ut

In this case, any set satisfies property P3, and the following result is not a surprise.

Proposition 7 The set

A = ((−1, 0)−K) ∪ ((0,−1)−K)

fulfills properties P1-3, yet it is not a set of lower bounds.

Proof of Proposition 7: It is obvious that any union of copies of −K satisfies property
P1; in particular, the set A, as being the union of two copies of−K, fulfills this requirement.

It is again easy to see that (1, 1) is an upper bound for A, so property P2 is equally
fulfilled.

Since any subset of R2 satisfies property P3, it means that we have proved that all con-
ditions P1-3 are fulfilled by the set A.

On the other hand, although the vectors (−1, 0) and (0,−1) are members of A, their
mid-point,

(
−1

2 ,−
1
2

)
does not belongs to A (indeed, A can alternatively be described as the

union of all the vectors lower than at least one between the two vectors (−1, 0) and (0,−1);
and

(
−1

2 ,−
1
2

)
is incomparable to both the vectors (−1, 0) and (0,−1)).

Accordingly, the set A is not convex, so it cannot be a set of lower bounds. ut

5 Conclusions

In the case of a finite dimensional vector space ordered by a cone which, in addition to being
pointed and solid, is also polyhedral, Theorem 1 provides us with a simple manner to verify
if a given set is a set of lower bounds. Indeed, in order to decide if a set A is the intersection
of a family of copies of the cone −K, it suffices to verify that A is a bounded from above
downward set, which also contains the supremum of each of its subsets possessing one.

When the polyhedrality of the ordering cone is dropped, Proposition 7 educates us about
the possibility that a non-convex set verifies conditions P1-3. It is hence natural to ask under
what assumptions on the ordering cone K, fulfilling conditions P1-3 is sufficient for a set
to be a set of lower bounds. At our best knowledge, this question is open, and no simple
solution seems in reach.

An important step in answering this question is to completely understand the role of
the polyhedrality of the ordering cone in the validity of the conjecture C : an exemple of a
non-polyhedral cone granting that the conjecture C holds true will be pivotal for a detailed
analysis of this problem.
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