
16/07/2024 13:52

Tracking social groups within and across cameras / Solera, Francesco; Calderara, Simone; Ristani, Ergys;
Tomasi, Carlo; Cucchiara, Rita. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY. - ISSN 1051-8215. - 27:3(2017), pp. 441-453. [10.1109/TCSVT.2016.2607378]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



1

Tracking Social Groups Within and Across Cameras
Francesco Solera, Simone Calderara, Ergys Ristani, Carlo Tomasi, Rita Cucchiara

Abstract—We propose a method for tracking groups from
single and multiple cameras with disjoint fields of view. Our
formulation follows the tracking-by-detection paradigm where
groups are the atomic entities and are linked over time to form
long and consistent trajectories. To this end, we formulate the
problem as a supervised clustering problem where a Structural
SVM classifier learns a similarity measure appropriate for group
entities. Multi-camera group tracking is handled inside the
framework by adopting an orthogonal feature encoding that
allows the classifier to learn inter- and intra-camera feature
weights differently. Experiments were carried out on a novel
annotated group tracking data set, the DukeMTMC-Groups data
set. Since this is the first data set on the problem it comes
with the proposal of a suitable evaluation measure. Results of
adopting learning for the task are encouraging, scoring a +15%
improvement in F1 measure over a non-learning based clustering
baseline. To our knowledge this is the first proposal of this kind
dealing with multi-camera group tracking.

Index Terms—groups, crowd, detection, tracking, learning

I. INTRODUCTION

THE fast-growing interest in automated analysis of crowds
and social gatherings for surveillance and security ap-

plications opens new challenges for the computer vision
community as well. Modern sociological and psychological
theories converge towards the notion of the crowd as a set
of individuals sharing an emergent collective behavior [1],
[2]. Well documented examples of crowds include the Los
Angeles 1992 riots and the stock market crash of 1929 while
many others, occurring every day, sideshow the flow of history.
Group dynamics drives collective behavior by encouraging
people to engage in acts they might otherwise consider un-
thinkable under typical social circumstances [3]. In contrast,
people assemble in so-called temporary gatherings [1] without
expressing unusual social structures—but many usual ones [4],
[5]. Temporary gatherings capture the more common scenario
of people walking in shopping malls, city squares, stations, or
airports. Crowds and gatherings are constant features of the
social world, and groups have proven to be the constitutional
and structural building blocks of events related to them.
This observation has led to an increased emphasis on group
detection and tracking in the automatic analysis of surveillance
video.

Group detection is the task of inferring the social relation-
ships underlying an observed crowd of individuals. Groups
are often detected independently in each frame [6], [7],
[8], [9], [10], and individuals and groups are then tracked
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Fig. 1: An example of groups detected in the four different
cameras of the proposed data set DukeMTMC-Groups.

jointly online, leveraging the idea that individual tracking can
help group tracking and vice versa [9]. Alternatively, groups
are detected globally in a tracking-by-detection optimization
framework [10]. Even so, methods that detect groups at the
level of one or a few frames may miss important sociological
clues that need a few seconds to unfold. To overcome this
shortcoming, and similarly to previous work [11], [12], we
recently proposed a group detection algorithm that works over
temporal windows [13] to account for sociological as well as
physical evidence. Working with temporal windows, on the
other hand, introduces a consistency problem from window to
window that can be neatly formulated as a tracking problem
once we agree on Turner’s definition of group [14]: “A social
group is defined as two or more people interacting to reach a
common goal and perceiving a shared membership, based on
both physical and social identity.”
For the purpose of tracking, we need to define what it means
for a group to have a unique identity and to what extent the
group itself can change before its identity changes as well.
According to Turner’s definition, a group is defined by the
interactions among its members. Thus, in the remainder of this
paper, we assume that when the set of members changes a new
group instance is created. However, if a group re-constitute
with its original members, its identity must be kept consistent.
In our proposal we started from the group definition of Turner
and broadened its meaning considering singletons as groups
of cardinality equal to 1.
Starting from groups detected over non-overlapping sliding
windows, we refer to the group tracking problem as the
problem of recovering extended and consistent trajectories of
groups within the same camera or across different cameras
with disjoint fields of view. Observations, i.e., groups detected
in any time window and in any camera, are associated to
identities through Correlation Clustering [15], [16] so that
all observations regarding the same individuals share the
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same group identity linked to the same set of individuals.
The clustering procedure is cast within a structured learning
framework (Structural SVM [17]), with the advantage that
the intra- and inter-camera affinity measures employed in
clustering are jointly and seamlessly defined by training
examples and do not require manual tuning. We validated
our solution on both tracking singletons and groups on
two popular public single camera sequences BIWI-eth
and CBE-student. Additionally, to assess our algorithm
multi-camera capabilities, we manually annotated and make
public group and singleton information on a subset of
the DukeMTMC tracking data set1. In this subset, more
than 120 groups appear in 4 different cameras across 20
minutes of 1080p video recorded at 30 frames per second.
To our knowledge, this is the first multi-camera data set
ever with group detection and tracking annotations. A new
way to measure tracking performance is also introduced
to consistently count association errors within and across
cameras.
Experiments proved that performing tracking at group level
(where singletons are groups with one member) can boost the
tracking performance when dealing with moderately crowded
scenarios.

The paper is organized as follow: Sec. II reviews literature
on group detection and tracking. In Sec. III the group tracking
problem is cast as a supervised Correlation Clustering prob-
lem while a feature encoding dealing with multiple camera
assignments is presented in Sec. IV. The learning algorithm
is described in Sec. V and Sec. VI provides details on the
datasets, the adopted features, and quantitative results.

II. RELATED WORK

Group detection and tracking has become a feasible task in
computer vision only nowadays, and it presents several open
challenges from people detection [18] and people tracking in
crowds [19] to trajectory analysis [20].

Sociological concepts such as F-formations by Kendon [21]
have been exploited as a foundation for a few group detection
methods [22]. F-formations can be interpreted as specific
positional and orientational patterns that people assume when
engaged in a social relationship. However, the theory holds
only for stationary groups and is not defined for moving
groups, a case which cannot be ignored in real world crowds.

In contrast, motion paths are considered by most current
approaches. These can be broadly partitioned into three cat-
egories according to the type of available tracklets: group-
based, joint individual-group, and individual-based. In group-
based approaches, groups are considered as atomic entities in
the scene and no higher level information can be extracted
neatly, typically due to high noise or the high complexity of
crowded scenes [23], [24], [25]. Joint individual-group ap-
proaches combine individuals tracking while tracking groups
at a coarser level [8], [26]. Still, in this latter category,
groups are identified through the identities of their individually

1The DukeMTMC, comprising 90 minutes of footage from 8 cameras, is a
fully annotated people tracking data set that will be released separately.

tracked members, with the notion of a group serving only as a
prior on tracking. Finally, individual-based tracking algorithms
build on individual pedestrian trajectories and no information
about groups is used until the whole trajectory is recovered.

Some notable group detection and tracking works follow.
Pellegrini et al. [27] employ a Conditional Random Field to
jointly predict trajectories and estimate group memberships,
modeled as latent variables, over a short time window. Ya-
maguchi et al. [28] predict groups by minimizing an energy
function that encodes physical condition, personal motivation,
and social interactions features. In these formulations, group
identities are a covering rather than a partition of the set of
pedestrians. Recently, Chang et al. [12] proposed a soft seg-
mentation process to partition the crowd by using a weighted
graphical model where the pairwise potentials on the edges
encode the probability of two instances being in the same
group. This model applies only to detection and cannot be
extended to tracking.
Surprisingly, most of the individual-based solutions solve the
multiple target/people tracking (MTT) problem and then build
groups on top of the solution. The main drawback of this
approach is that current MTT methods degrade in perfor-
mance when the tracking switches from short term to long
term [29]. Consequently, group tracking through individual
tracking becomes harder in most cases relative to group
tracking per se. Zanotto et al. [26] proposed one of the few
approaches that consider the group tracking problem directly.
They exploited a set of infinite-mixture distributions to model
proxemic-inspired features in a particle filtering framework.
The approach is capable of jointly tracking pedestrians and
grouping them, exploiting only frame-wise information. A
second work along this line is by Qin and Shelton [30], where
tracklets are joint into trajectories only when visually coherent
in predicted groups. Mazzon et al. [10] extended the delayed
Social Force Model for group detection by defining plausible
human behaviors for the localization of group formations.
Results are measured as the improvement over group detection
when temporal consistency is enforced trough tracking. In this
vast landscape, the specific problem of tracking groups across
multiple cameras is mostly neglected. All the aforementioned
methods exploit peculiarities of the grouping phenomena to
improve tracking of individuals over a short temporal window.
Perhaps, the work most similar to ours is by Zheng et al. [31],
where groups association across different cameras was used as
contextual information to improve re-identification. The focus
of the paper is re-identification and not tracking. The method
works with query/gallery images and not video sequences.
In our proposal, as in group based approaches, groups are the
focus of the analysis and we are committed to consistently
track groups across cameras and possibly for a long amount
of time. Thus, we propose to trust individual tracking
information, i.e. people trajectories, only for the time needed
to detect groups, and thereby assume that tracker reliability
is high enough for short temporal windows [29]. Eventually,
once groups are provided, we propose to track them neatly
on data from single and multiple cameras by exploiting a
clustering approach over long temporal windows.
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In the remainder of this section we review previous group
detection/tracking datasets and highlight how our dataset could
be of benefit to the community. Friends Meet [9] is a set
of 20 sequences lasting 20 seconds on average, with never
more than 2/3 groups in the same sequence. Moreover, in each
video the motion of all groups is stable and limited. CAVIAR2

is extremely short with at most 2 groups appearing at the
same time. Both previous datasets focus on merging/splitting
interactions but not at a crowd level. Besides showcasing
very simple scenarios, the ViCoMo [32] dataset has also
very simple blob like annotations, meaning the information is
neither about individuals nor their bounding boxes. All of the
aforementioned datasets are single camera. The VANAHEIM3

and i-Lids4 (multi-camera) datasets are either not pub-
licly released or dismissed. Eventually, stu003 [33] and
eth [34] sequences are good examples of single camera,
mildly crowded sequences with both individual tracking and
groups annotation – but are of no help in the multi-camera
setting. To this end we create, annotate and release the first
multi-camera group dataset, which is bigger than others for
number of frames, number of scenarios, number of individuals,
number of groups and quality of annotation.

III. METHOD OVERVIEW

Our proposal is grounded in the idea that group tracking has
peculiar elements that are distinct from individual tracking.
This intuition, combined with the fact that studies on people
attending events have underlined that most of the people tend
to move in groups [4], testifies that handling groups is a
mandatory task when dealing with mildly crowded scenarios.

The looseness of Turner’s definition of the concept of
“group,” which comes from social psychology, extends to
the visual context, in which distinct groups and members
must be identified from camera-observed features. On one
hand, people-tracking methods rely on a two-sided constancy
assumption about targets [35]:
• The target appearance representation implies a constancy

of some property to transfer from one frame to the next.
Without any such constancy assumption tracking cannot
work.

• The target motion implies the existence of a constant
motion model that can adapt to the target by adjusting
a set of parameters.

More precisely, if appearance is constant then an appearance
model can be built to associate targets [36], while when
motion model is constant then motion prediction and trajectory
smoothness gain importance in the target association process
[37], [38]. On the other hand, these assumptions may be
violated when individual tracking is used to associate group
members at individual level. In group tracking, appearance
constancy cannot be based on a clear and unique group
membership model, as members of the group can change
their spatial location inside the group, occlude each other, or
split apart (see Fig. 3). Similar considerations hold for motion

2www.homepages.inf.ed.ac.uk/rbf/CAVIAR
3www.vanaheim-project.eu
4www.gov.uk/guidance/imagery-library-for-intelligent-detection-systems

Fig. 3: One member is taking a picture of the rest of the group.
Here, neither the appearance model of individual members nor
their motion holds constant. The first fails because of mutual
occlusion of members, the second because of a member’s
independent motion.

prediction, which is affected by the social dynamics inside
the group, as members may wait for each other or adjust their
paths depending on the behavior of other members and on
group purpose (see Fig. 3). These considerations influence the
tracking process leading to a high degree of uncertainty in
establishing identities of individual group members. Therefore
our approach forces consistency in individual identity only
when singletons are present, assigning instead a joint ID to
group members.

To address these difficulties, we propose a model and
features that are appropriate for group tracking while still
considering singletons as a special group case where these
discontinuities become less evident. Specifically, we develop a
structured learning framework based on a simple set of spatial
and visual features. Our framework can learn the reliability
of features and handle uncertainties in group association even
as we expand the scenario from single camera to multiple
cameras with disjoint fields of view. Fig. 2a summarizes
our proposed tracking approach, which starts from a set of
group observations D1, D2, . . . detected over short temporal
windows and independently from each camera, as we proposed
in [13]. A set of pairwise features, based on both appearance
and scene location and detailed in Sec. VI-A, is computed
for every pair of group detections Di and Dj to form the
correlation scores W (i, j) (dashed lines in Fig. 2a). We then
obtain the tracking solution through Correlation Clustering
(solid lines) based on these scores. To reduce the complexity
of the problem, we use a sliding temporal window and solve
for associations only for groups Di from all cameras over a
single time window Tk span:

Xk = {Di|γ(Di) ∩ γ(Tk) 6= ∅} (1)

where γ(Di) and γ(Tk) are the sets of frames for the i-th
observed group and the k-th window respectively.

The core of our proposal is the definition of the corre-
lation scores W (i, j), which is learnt through a Structural
SVM (SSVM) classifier, to optimally solve the problem of
group association over a set of overlapping temporal windows
T1, T2, . . . . The classifier solves the problem globally for all
the cameras by treating inter- and intra-camera group associ-
ations differently. Specifically, depending on the source and
destination cameras for each group observation, the SSVM:

www.homepages.inf.ed.ac.uk/rbf/CAVIAR
www.vanaheim-project.eu
www.gov.uk/guidance/imagery-library-for-intelligent-detection-systems
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(a) Group clustering at Tk (b) Group clustering at Tk+1

Fig. 2: The problem of tracking groups is cast as correlation clustering. In (a) all the detected groups Di observed in the time
window Tk are taken into account, all the pairwise correlation W (i, j) are computed (dashed lines) and a solution to tracking
is found (solid lines). In (b), since time windows overlap in time, Tk+1 will include group associations that were already
solved in Tk. The new clustering is thus constrained by the previous solution forcing some observations to join (green lines)
and others to remain separated (red lines), inducing consistent results across different time windows.

• uses an orthogonal feature encoding that allows learning
camera-dependent feature weights (Sec. IV-B);

• learns scene-dependent weights and biases to avoid arbi-
trary thresholds on features similarities (Sec. IV-A); and

• casts the problem in terms of correlation clustering [16],
thereby providing an optimal solution for the given group
similarity measures (Sec. IV).

IV. FEATURE ENCODING FOR CORRELATION CLUSTERING

We propose to formulate group tracking as a clus-
tering problem and solve it through Correlation Cluster-
ing (CC) [15], similarly to what was done for individual
tracking in single camera views [16], [39]. With this formu-
lation, all observations that refer to the same group—whether
from the same or from different cameras—are meant to fall
inside the same cluster. The CC algorithm takes as input a
correlation matrix W where, if W (i, j) > 0 (W (i, j) < 0),
observations i and j refer to the same (different) group with
certainty |W (i, j)|. The algorithm returns a partition Y of a
set X = {D1, D2, . . . } of group observations that maximizes
the sum of the affinities between item pairs that are in the
same cluster:

max
Y ∈Y(X)

∑
y∈Y

∑
i,j∈y
i 6=j

W (i, j), (2)

where Y(X) is the set of all possible partitions of the set X of
group observations. Remarkably, correlation clustering doesn’t
need to know the number of groups in advance. Moreover,
by solving single- and multi-camera tracking jointly, a group
could be positively tracked even if two consecutive detections
from the same camera would not qualify to be clustered
together, as it could happen due to visual clutter or occlusion.

Nevertheless, differences in camera position, people density,
colors and light across views make it hard to define a unique
best correlation score between groups. Withal, hand-crafting

correlations from multiple features, balancing the contribution
of different features, and jointly setting distance-to-correlation
thresholds is no easy task, as many parameters need to be
tuned. In this section we present a linear parametrization of the
correlation matrix W that can be easily learnt from examples.

A. From Distances to Correlations

To this end, let d(i, j) = [d1(i, j), d2(i, j), . . . , dm(i, j)]T

be a feature vector containing a set of distances computed on
different features extracted from group observation i and j,
e.g. HSV histograms, SIFT matching, or motion prediction
errors (detailed in Sec. VI-A). While distances are non-
negative and increase as groups i and j are more distinct,
correlations in W need to be more negative (positive) when
the two groups are considered more distinct (similar). As we
previously proposed [13], we can rewrite the correlation matrix
W of Eq. (2) in terms of distances d ∈ [0, 1] with the following
[α,β]−parametrization:

W (i, j) = wT f(i, j)

= αT [1− d(i, j)] + βTd(i, j)

= αT1︸ ︷︷ ︸
distance-to-correlation

+ (β −α)Td(i, j)︸ ︷︷ ︸
feature combination

.
(3)

The term (β −α)Td(i, j) modifies distances into positive or
negative correlation by modulating individual features weights.
Concurrently, the bias αT1 adjusts the threshold on distance
that is needed to define whether observations i and j are to be
considered similar or dissimilar. Both parameters are learned
from training examples with no need of manual distance
thresholds or other tuning.

B. Feature Encoding for Multiple Cameras

By changing the set of parameters w = [α,β] we can
explore different correlation functions and clustering solutions,
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both in terms of which features contribute most and of where
the similar/dissimilar thresholds are set. In particular, we want
to tailor parameters to each camera pair separately. To learn
all these correlations simultaneously we need to replicate the
weight vector w for

(
c+1
2

)
times for c cameras. Accordingly,

we apply an orthogonal encoding of the feature vector f where
the set of features f(i, j) is shifted to a specific position
depending on the cameras where groups i and j were observed,
and leaving all other feature values to zero. Formally, if
1[s] denotes the Iverson bracket function being either 1 or
0 according to the truth of statement s, and ci and cj the
camera where Di and Dj where observed, then the orthogonal
encoding can be written as:

f(i, j) =


f(i, j)1[{ci, cj} = {1, 1}]
f(i, j)1[{ci, cj} = {1, 2}]

. . .
f(i, j)1[{ci, cj} = {a, b}]

. . .

 , (4)

for all a, b = 1, 2, . . . , c. With only slight abuse of notation,
we still refer to the extended weight vector and the encoded
feature vector as w and f respectively. Every element in the
extended vector f(i, j) is now a 0 vector, except for a vector of
features correctly positioned according to the cameras ci and
cj involved. In section V we describe the learning algorithm
employed to automatically set w from examples.

C. Consistent Solutions from Overlapping Windows

Once weights are learnt, the inference problem can be
solved for each time window Tk. Since these windows overlap,
it is important to guarantee consistency from one window to
the next one. To this end, we force (or deny) associations
for groups that where already observed - and thus tracked -
in the previous time window by inserting highly positive (or
negative) values in the correlation matrix W . Fig. 2 depicts
and summarizes the inference step and the procedure followed
to ensure a consistent clustering.

V. STRUCTURAL SVM FOR GROUP TRACKING

The input of the algorithm that learns the weights w
described above includes a tracking time window Tk, the set
Xk = {D1, D2, . . . } of groups detected in it, the pairwise
features fk orthogonally encoded as in Sec. IV-B and computed
on all possible pairs of group observations i and j, and the
respective tracking solution Yk, i.e., a clustering of those
observations into unique group identities. Since a partition
Yk of Xk is a structured output, we adopt the Structural
SVM (SSVM) [17] framework to model and learn the solution.
SSVM has been previously employed in the single camera
multi-target tracking field [40]; however groups were not con-
sidered leading to a different objective function to optimize.

The goal of SSVM is to learn a classification mapping
h : X → Y between input space X and structured
output space Y given a training set of input-output pairs
{(X1, Y1), . . . , (Xn, Yn)}. A discriminant score function F :
X × Y → R is defined over the joint input-output space and

F (X,Y ) can be interpreted as measuring the compatibility of
X and Y . The prediction function h is then

h(X;w) = arg max
Y ∈Y(X)

F (X,Y ;w) (5)

where the maximizer over the label space Y(X) is the
predicted label, i.e., the solution of the inference problem of
Eq. (2). Following the definition of CC in Eq. (2) and its
parametrization introduced in Sec. IV, the compatibility of an
input-output pair is described as

F (X,Y ;w) = wT
∑
y∈Y

∑
i,j∈y
i 6=j

f(i, j) = wT Ψ(X,Y ), (6)

where Ψ(X,Y ) is a combined feature representation, a feature
map. The problem of learning in structured output spaces is
formulated as the SSVM n-slack, margin-rescaling, maximum-
margin problem:

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
k=1

ξk

s.t. ∀k : ξk ≥ 0,

∀k,∀Y ∈ Y(Xk)\Yk : wT δΨk(Y ) ≥ ∆(Y, Yk)− ξk,
(7)

where δΨk(Y )
def
= Ψ(Xk, Yk) − Ψ(Xk, Y ), ξk are the slack

variables that allow possible margin violation, ∆(Yk, Y ) is
the loss function further defined in Sec. V-A, and C is the
regularization trade-off parameter. At a glance, the objective is
to maximize the margin and jointly guarantee that, for a given
input, every possible output differs from the correct one by a
margin at least ∆(Yk, Y ), a quantity that increase according
to the difference of its arguments.

A. Loss Function and Maximization Oracle

The quadratic program in Eq. (7) introduces a constraint for
every possible wrong clustering of the n examples, for a total
of
∑n

k=1(|Y(Xk)|−1) constraints. Unfortunately, the number
of ways to partition a set X scales more than exponentially
with the number of items according to the Bell sequence [41],
making the optimization intractable. Subgradient methods are
an efficient way to approach the training of SSVMs [42]. In
particular, all the constraints in Eq. (7) can be replaced by n
piecewise-linear ones by defining the structured hinge-loss:

H̃(Xk)
def
= max

Y ∈Y
∆(Yk, Y )−wT δΨk(Y ). (8)

The computation of the structured hinge-loss for each element
k of the training set amounts to finding the most “violating”
output Y ∗k for a given input Xk and its correct associated
output Yk. The solution Y ∗k has simultaneously a high score
wT Ψ(Xk, Y

∗
k ) and a high loss ∆(Yk, Y

∗
k ), underlining a con-

tradiction in the description ability of the current w. Having
defined H̃(Xk), the SSVM problem can be written as:

min
w

1

2
‖w‖2 +

C

n

n∑
i=1

max{0, H̃(Xi)}, (9)

and solved with subgradients, where ∂wH̃(Xk) = −δΨk(Y ∗k ).
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From Eq. (8), we see that the objective is to reduce the
gap between the loss-function term and the weighted feature
map difference. Ideally, the optimum is found when the inner
product between the weight vector w and the feature map
behaves exactly as the loss function. Thus, the choice of the
loss function in SSVM is a crucial step for an efficient and
effective learning algorithm.

Since the inference task of Eq. 2 is already NP-hard, the
loss function should be carefully selected in order to be
effective and eventually linear with respect to the solution.
Then, we can solve the max oracle of Eq. 8 through the same
algorithm employed by the inference step and, consequently,
with the same complexity. If an efficient maximization oracle,
i.e. a solver for Eq. (8), is available, the overall training
becomes efficient as well.

In detail, in our scenario, the solution Y is a partition repre-
sented by a binary matrix of connected cluster components.
The Hamming loss is then a natural choice for evaluating
solutions discrepancies. Specifically we adopt a matrix repre-
sentation for the output Y such that Y (i, j) = 1 if observations
i and j refer to the same cluster and Y (i, j) = 0 otherwise.
Through the following theorem, the max oracle becomes a CC
problem:

Theorem V.1. The maximization oracle of Eq. (8) can be
solved through CC if ∆(Yk, Y ) =

∑
i,j 1[Yk(i, j) 6= Y (i, j)]

and

Y ∗k = arg max
Y ∈Y(Xk)

∑
y∈Y

∑
i,j∈y
i 6=j

(
wT fk(i, j) + 1− 2Yk(i, j)

)
(10)

where 1 is the Iverson bracket function.

Proof. Let us add to Eq. (8) the arg to get the solution Y ,

arg max
Y ∈Y

∆(Yk, Y )−wT Ψ(Xk, Yk) + wT Ψ(Xk, Y ). (11)

Note that the second term does not depend on the specific
choice of Y and the last term can already be cast as a CC
problem by the definition of Ψ(X,Y ). By considering the
matrix form of Y , the Hamming loss can be written as:

∆(Yk, Y ) =
∑

Yk(i,j)=1

(1− Y (i, j))

︸ ︷︷ ︸
false negatives

+
∑

Y (i,j)=1

(1− Yk(i, j))

︸ ︷︷ ︸
false positives

=
∑

Yk(i,j)=1

1 +
∑

Y (i,j)=1

(1− 2Yk(i, j)),

(12)
since

∑
Y (i,j)=1 Yk(i, j) =

∑
Yk(i,j)=1 Y (i, j) always counts

true positives. Now, if we plug the loss decomposition of
Eq. (12) into Eq. (11), since

∑
Yk(i,j)=1 1 does not depend

on Y , we obtain the max oracle formulation of Eq. (10),
which is a CC with correlations defined by wT fk(i, j) + 1−
2Yk(i, j).

As a consequence, in the loss-augmented problem of
Eq. (12) the term 1−2Yk(i, j) acts as a discount factor in terms
of correlation for all the correct elements in Yk. The affinity

matrix used for solving the max-oracle through CC penalizes
all the correct solutions while encouraging the wrong ones.
At convergence, every most violated constraint contributed to
change the weight vector to counterbalance this effect.

B. Subgradient Optimization

With the feature map, the loss, and the max oracle in
place, we now describe the optimization procedure through
the Block-Coordinate Frank-Wolfe algorithm [43], delineated
in Alg. 1, which exploits the domain separability of the
constraints and limits the number of oracle calls needed to
converge to the optimal solution. The algorithm works by
minimizing the objective function of Eq. (9) but restricted to
a single random example at each iteration. By calling the max
oracle upon the selected training sample (line 4) we obtain a
new sub-optimal parameter set ws by simple derivation (line
5). The best update is then found through a closed-form line
search (line 6), greatly reducing convergence time compared
to other subgradient or cutting plane methods.

Algorithm 1 Block-Coordinate Frank-Wolfe Algorithm

1: Let w(0),w
(0)
i := 0 and l(0), l(0)i := 0

2: for it := 0 to maxIterations do
3: Pick k at random in {1, . . . , n}
4: Solve Y ∗k := arg maxY ∈Y ∆(Yk, Y )−wT δΨk(Y )
5: Let ws := C

n δΨk(Y ∗k ) and ls := C
n ∆(Yk, Y

∗
k )

6: Let γ :=
(w

(it)
k −ws)

Tw(it)+C
n (ls−l(it)

k )

‖w(it)
k −ws‖2

and clip to [0, 1]

7: Update w
(it+1)
k := (1− γ)w

(it)
k + γws

and l(it+1)
k := (1− γ)l

(it)
k + γls

8: Update w(it+1) := w(it) + w
(it+1)
k −w

(it)
k

and l(it+1) := l(it) + l
(it+1)
k − l(it)

k

9: end for

C. Notes on Complexity

Each training iteration and each prediction step requires to
solve an instance of Correlation Clustering. As a result, an
exact solution to the Binary Integer Problem would not let
the training scale smoothly with the number of observations.
Nevertheless, despite being also hard to approximate, the
research community has put a lot of efforts on this problem
and very good algorithms exist to deal with the complexity of
CC. In particular, we adopt the Adaptive-label ICM [44] imple-
mentation5, that reduced the number of variables required to
solve the CC problem from approximately n2 to n allowing to
apply the algorithm even when the affinity matrix dimension
reaches the order of hundreds of variables. When using an
approximate oracle and inference solution, in exchange for
a few more (but quicker) iterations, the learning algorithm is
still guaranteed to converge, without any loss of accuracy with
respect to optimal solutions [43].

5http://www.wisdom.weizmann.ac.il/∼bagon/matlab.html

http://www.wisdom.weizmann.ac.il/~bagon/matlab.html
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VI. EXPERIMENTS

The purpose of the presented experiments is twofold: First,
we study how tracking performance on standard single-camera
sequences benefits from group information; second, we assess
the ability of our method to extend identities across multiple
cameras. To evaluate group tracking in multi-camera scenes we
provide the new DukeMTMC-Groups dataset and a suitable
performance measure. Eventually, we discuss the importance
of different features according to their contribution in the learnt
distance metric and with respect to different camera views.

A. Features

We employ four different features to describe groups. While
HSV histograms and SIFT account for visual similarity, we
also use clues based loosely on location and time. These are
particularly useful when appearance is poorly conserved across
different camera views. However, the proposed framework
can easily incorporate different or additional features, as
explained in Sec. IV-A. For all the experiments presented in
the remainder of this section, the distance vector d(i, j) of
Sec. IV-A is composed as follows:

d(i, j) = [dHSV(i, j), dSIFT(i, j), dPOS(i, j), dTIME(i, j)]T ,
(13)

for any two group observation Di and Dj .
HSV Histograms are computed on a subset of 5 evenly spaced
frames from the group observations Di and Dj . For each
frame, a bounding box around the group is intersected with the
foreground-mask (computed as in [45]) and quantized with 16,
4 and 4 bins for hue, saturation, and value respectively. The
histograms extracted from the same group observation Di are
then averaged and normalized to obtain HSVi and HSVj . A
simple histogram intersection measure is employed to define
a distance between any pair of group detections Di and Dj :

dHSV(i, j) = 1−
#bins∑
b=1

min{HSVi(b),HSVj(b)}. (14)

SIFT Matching computes the Euclidean distance between any
two SIFT descriptors from group observation Di and Dj .
A ratio test is employed between the two best matches to
detect ambiguity6. SIFT features are extracted from a subset
of 5 evenly spaced frames from the observation period and
filtered through the foreground mask by checking whether the
descriptor center is part of the foreground. The distance feature
is then computed by taking the average of all the distances of
the matched SIFT features and normalized to [0, 1]:

dSIFT(i, j) =
1

MZSIFT

M∑
m=1

√√√√ 128∑
b=1

(
SIFTm

i (b)− SIFTm
j (b)

)2
,

(15)
where SIFTm

i and SIFTm
j are the histogram descriptors ex-

tracted from the m-th matched SIFT pair and ZSIFT =
255
√

128 is a normalization coefficient that accounts for the
maximum possible distance between descriptors.

6VLFeat lib [46] was used to extract SIFT and a standard threshold of 0.7
was used for the ratio test.

Position/Velocity Coherence is obtained by considering the
minimum discrepancy value between a) the entering position
and the forward predicted position and b) the exiting position
and the backward predicted position, defined as follows. Sup-
pose, without loss of generality, that Di is observed before Dj .
Then the forward predicted position is computed by adding to
the exiting position piex of Di its average exiting velocity v̄iex
(computed on the last 10 frames) multiplied by the number of
frames nf between the exiting position of Di and the entering
position of Dj . Similarly, the backward predicted position is
computed by subtracting from the entering position pjen of
Dj its average entering velocity v̄jen, again multiplied by nf .
So if the forward discrepancy is dfor

POS = pjen − piex − v̄iexnf
and the backward discrepancy dbac

POS = piex − p
j
en + v̄jennf , the

position/velocity coherence is

dPOS(i, j) =
min{|dfor

POS|; |dbac
POS|}

ZPOS
, (16)

where ZPOS is a normalization coefficient set to 200m, equal
to the maximal error we want to measure. Finally, if dPOS(i, j)
is still greater than 1 we clip it to 1.
Time/Speed Coherence compensates for complex changes in
direction occurring between camera views, for which posi-
tion/velocity coherence does not capture errors appropriately.
In particular, (if Di is observed before Dj) the average
entering and exiting speeds s̄jen and s̄iex are averaged and used
to predict the time needed to cover the distance between the
entry and exit points pjen and piex. The time/speed coherence is
measured by the discrepancy between this prediction and the
actual time elapsed:

dTIME(i, j) =
1

nf

∣∣∣∣∣nf − 2|pjen − piex|
s̄jen + s̄iex

∣∣∣∣∣ . (17)

Since the normalization is done on the number of true frames
and not the predicted ones (which could be more), we clip
dTIME(i, j) to 1 if needed.

In addition, both dPOS and dTIME (as well as their similarity
counterparts in the feature vector f ) are discounted with an
exponential function e−nf when evaluating group observations
Di and Dj that are increasingly farther in time. This allows the
method to consider coherence for group detections which are
close in time, while giving more importance to visual features
when spatial and temporal predictions become too unreliable.

B. Data Sets

We selected three different datasets to conduct experiments
with the proposed solution. The first two datasets are the public
sequences CBE-stu003 and BIWI-eth, both widely em-
ployed to test group detection algorithms. The sequences are
recorded from a single camera with wide view and both groups
and tracking annotations are publicly available on the datasets
websites. These sequences contain both groups and singletons.
The people density is lower in the eth sequence and higher
in stu003. Details about the number of pedestrians, groups
and groups composition are provided in Tab. I. We select the



8

first 1500 consecutive frames for parameter learning and the
remaining ones for testing the algorithm.

For multi-camera evaluation we employ a new dataset,
DukeMTMC-Groups, introduced here for the first time. The
dataset is composed by 4×20 minutes of 1080p video recorded
at 30 frames per second from 4 static cameras, deployed
on the campus of Duke University during periods between
lectures, when pedestrian traffic is heavy. Tab. II summarizes
the peculiarities of this data set in terms of number of (unique)
pedestrians and (unique) groups. Full annotations are provided
in the form of trajectories for the feet of each person on the
ground, and calibration data relates each image plane and the
ground plane through a homography. Bounding boxes are also
available and have been semi-automatically generated. This
data set is part of a larger data set, DukeMTMC, comprising 8
cameras and 85 minutes of video, that will be soon released
separately. We manually annotated DukeMTMC-Groups with
group annotations maintaining group identities across cameras.
A unique identity is given to each group as long as its member
set is the same. Whenever a group splits, a new identity is
created for each subgroup. The old identity is still maintained
if the subgroups merge again. The first 5 minutes of video from
each of the cameras are separated out to form a training set
that can be used to set or learn parameters, and the remaining
15 minutes from each camera constitute the test set.

TABLE I: Public sequences data set statistics.

Sequence
stu003 eth

# of unique individuals 434 362
# of groups 115 57
# of singletons 168 214
# of pairs 87 37
# of groups > 2 28 20

TABLE II: DukeMTMC-Groups data set statistics.

CAMERAS
1 2 3 4

# of individual trajectories 80 88 35 49
# of unique individuals 128
# of groups 40 45 16 24
# of frames for group trajectories (mean) 375 400 600 600
# of unique groups across cameras 64

C. Evaluation Measure

There is no consensus in the literature on which measure
to use to evaluate group detection and tracking performance.
MOTA from CLEAR MOT [47] and GDSR [26] are the most
used ones but both have failing aspects. In particular, GDSR
(Group Detection Success Rate) precision (recall) counts how
often a predicted (ground truth) group is found in the ground
truth (prediction) by having at least 2/3 of its members
in place. The choice of having a threshold, besides being
arbitrary, doesn’t let the measure distinguish between correct
and loosely wrong solutions (in the extreme case, all predicted
groups could be 30% wrong and still score a GDSR of 1).
Moreover, the score is computed each frame separately, and
then averaged over time. By not sharing information across

frames, GDSR is by all means a measure of group detection
and not group tracking, despite it has been previously used
to evaluate both tasks. Conversely, CLEAR MOT measures
can be applied to the case of group tracking by considering
average trajectories every time a group is composed by more
than one member. Nevertheless, MOTA and companion scores
are known to fail to successfully evaluate errors in the case
of multi camera settings and have weaknesses in the case of
single camera as well. Specifically, these shortcomings follow
from CLEAR MOT inability to evaluate for how long –and
not how often– an identity was tracked.

In the following experiments, we report CLEAR MOT
measures whenever needed to compare to previous literature.
Jointly, we introduce the MITRE measure [48] for group
tracking and invite the community to consider it for future
research. MITRE is founded on the idea that tracking is
a clustering task, where each identity (of a group or of a
singleton) corresponds to one cluster and all the observations
in one cluster should belong from the same identity, both
when they are observed from the same camera or across
different ones. These observations can be frame-wise if the
initial detector performs group detection frame-by-frame, or
extended to be window-wise if the detector operates on a time
window. This suggest that MITRE is capable of evaluating
both the group detection and identity association (i.e. tracking)
performances with one fell swoop. The only debatable point
is that miss-matches are equally penalized independently of
where they occur (i.e. at the beginning, in the middle or
at the end of a trajectory). Yet, the significance of such
considerations is still a controversial point in evaluating data
association methods and no definitive answer exists.

The MITRE score is computed by transforming a tracking
solution into a clustering solution by defining a track as the
set/cluster of all the detected instances (i.e. group detections
from all cameras) that have the same identity. The intuition
behind the MITRE score is that a spanning forest is sufficient
to represent the clustering solution, where each tree represents
a group identity. Note that for any clustering solution, a
spanning forest is an equivalence class, as multiple trees that
describe the same identity configuration may exist. The final
score is obtained by accounting for the number of links that
need to be removed or added to recover a spanning forest
equivalent to the correct solution. To keep the paper self
contained we report in the following paragraph the MITRE
computation algorithm. Consider two clusters Yk and Y , and
instances Q and R of their respective spanning forests. The
connected components of Q and R are identified respectively
by the set of trees Q1, Q2, . . . and R1, R2, . . . Note that with
|Qj | elements in Qj , only l(Qj)

def
= |Qj | − 1 links are needed

in order to create a spanning tree. We define πR(Qj) as the
partition of a tree Qj w.r.t. forest R, as the set of subtrees
obtained when considering only the membership relations in
Qj that are also in R. If R partitions Qj into |πR(Qj)|
subtrees, then v(Qj)

def
= |πR(Qj)| − 1 links are sufficient to

restore the original tree. Consequently, the recall error for
Qj is the number of missing links divided by the minimum
number of links needed to create that spanning tree. The global
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recall Q accounts for all trees Qj and is computed as:

RQ = 1−
∑

j v(Qj)∑
j l(Qj)

=

∑
j |Qj | − |πR(Qj)|∑

j |Qj | − 1
(18)

The precision of Q (recall of R) can be computed by exchang-
ing Q and R. Given the definition of precision, recall F -score
F1 is then computed as the standard harmonic mean.
As an implementation detail, since Yk and Y must contain the
same set of elements, the ground truth group detection data
must be split in short temporal windows as well.

D. Do Groups Help in Tracking?

In these experiments we evaluate the performance im-
provement when tracking groups rather than every individual
separately. To this aim, we employ the single-camera stu003
and eth public sequences. Groups were extracted using the
group detector of Solera et al. [13] on ground truth tracklets
(approx. 6 seconds long). The group detector returns both
groups and singletons (as 1-cardinality groups), and we track
both of them. The detection window was empirically set to
250 frames while the tracking window was set to 750 frames
with a stride of 250 frames. As a consequence, the input to
our tracking algorithm is composed of approximately four
detection instances in every tracking window. We evaluate
the results using our proposed performance measure that
accounts for both group detection and group tracking errors.
Moreover, we provide quantitative results using the CLEAR
MOT measures, a well established performance measure for
single-camera tracking. In the CLEAR MOT evaluation, group
trajectories have been obtained by averaging the trajectories of
their members.

By looking at results in Tab. III, we observe that our solution
(white rows) performs well in terms of both MITRE score and
CLEAR MOT. The number of IDS (identity switch) in both
sequences is low, while the high number of FRG (trajectory
fragmentation) in stu003 can be explained through the
higher pedestrian density. On both stu003 and eth, the
MITRE score resembles the MOTA score in ranking methods,
providing empirical evidence that MITRE is a competitive
measure for the task. In order to highlight the importance of
considering groups in crowded scenarios, in Tab. III (shaded
lines) we report the results achieved by our algorithm when
all the people in the scene are considered as singletons
(i.e. no groups are present). By looking at these results the
importance of considering groups in the tracking process is
testified by the performance improvement over the case when
all elements are considered as singletons and tracked individ-
ually. This evidence –in particular for high density scenarios
as for stu003– suggests that groups have different visual
and motion dynamics w.r.t. singletons and these peculiarities
can improve the tracking quality when taken into account.
Qualitative results on the sequences are shown in Fig. 4.

E. Results From an Automated Pipeline and Comparison

In the previous section, we have investigated group tracking
by asserting single camera tracking could be solved, at least
for a short time span. The community knows that is a strong

(a) (b)

(c) (d)

Fig. 4: Visual results of groups and singletons tracking on
stu003 (a,b) and on eth (c,d). Same color corresponds to
same identities. Group members share the same color and
group ID.

TABLE III: Tracking results on single camera public datasets.
Standard tracking measures (CLEAR MOT) are computed by
obtaining, for each group, an average trajectory, both in ground
truth and predicted results. Shaded lines represent our method
when groups are not considered (i.e. every one is a singleton).
The proposed MITRE score emphasizes the set of identities
found in each group more than their trajectories.

CLEAR MOT MITRE
MT IDS FRG MOTA P R F1

eth 0.93 9 3 88.7 0.96 0.97 0.96
0.86 12 8 81.9 0.89 0.93 0.91

stu003 0.77 10 98 79.2 0.74 0.79 0.76
0.61 31 57 59.4 0.47 0.90 0.61

hypothesis and, while this choice is mandatory in order to
assess the capability of our data association proposal, it leaves
open questions on the practical applicability of the system as
a whole. In this experiment, we propose to employ automated
methods at all levels of the pipeline – from people detection
to group tracking. The experiments are carried out on eth
and stu003 sequences, where trajectories were extracted
with the CEM tracker [37] using the ACF detector [49].
The extracted trajectories were input to the group detector
already employed in previous experiments but with a severely
reduced temporal window, namely 1s for stu003 and 2s
for eth. The time window reduction is required to adapt
the group detection to the length of stable tracklets, at the
expense of loosing some group involved in complex motion
and distance patterns. Observing Tab. IV, we can assess that
impact of groups is beneficial for tracking only when both the
density and the number of groups are consistently high. This
is evident by comparing the MOTA improvement on stu003
w.r.t. eth. The eth, as previously stated, contains few groups



10

TABLE IV: From left to right: people detection, people tracking, group detection and tracking of singletons and groups. On
eth we also report results from [26], where the input to group tracking were detections from degraded ground truth trajectories
(by 20%).

Individuals Groups
Detector Tracker Detector Tracker
P R MOTA MOTP MT (%) IDS FRG P R MOTA MOTP MT (%) IDS FRG

student 56.7 36.8 43.3 1.22 06.8 342 876 75.0 71.3 71.20 0.84 51.0 157 193
eth 68.2 53.7 92.3 0.80 75.0 21 68 67.3 64.3 47.38 0.85 61.9 48 97
eth [26] 80.0 80.0 - - - - - - - 29.43 0.44 - - -

TABLE V: Results on the proposed DukeMTMC-Groups data set. Shaded rows report results obtained with the baseline
model (details in the text). Results refer to two different settings: (i) only groups are tracked and (ii) we track both groups and
singletons in the standard last row.

Within-Camera Tracking Across-Camera Tracking Overall Tracking
P R F1 P R F1 P R F1

Only groups 58.3 91.7 71.3 26.6 42.3 32.6 49.5 91.9 64.3
87.1 ±2.6 93.9 ±1.8 90.4 ±2.0 76.67 ±2.8 75.00 ±2.0 75.82 ±2.1 82.2 ±1.3 83.7 ±0.9 83.0 ±0.5

Standard 69.58 83.36 75.85 46.34 49.30 47.77 69.55 71.85 69.11
88.29 ±0.8 91.41 ±1.0 89.82 ±0.2 66.14 ±0.8 58.54 ±0.7 62.10 ±0.2 86.55 ±0.8 81.83 ±0.3 84.12 ±0.2

that rarely appear simultaneously. Moreover the most frequent
path motion is straight with absence of occlusions, resulting
in a problem easily solvable by any multi-target tracking
method. Fairly speaking, the adoption of groups dynamics in
tracking appears to be beneficial when dealing with medium to
high density scenario and frequent occlusions, where standard
tracking typically fails. Still, we report a comparison with
another state of the art method [26] on eth. We show our
method is able to obtain better tracking results even if a less
accurate people detector was used. Unluckily, no other MOTA
score is reported in literature on public dataset and further
comparisons are not possible.

F. Results on DukeMTMC-Groups Multi-Camera Dataset
We evaluate the capability of our solution to deal with multi-

camera scenarios on our DukeMTMC-Groups data set under
different conditions (see Tab. V). Some illustrative examples
are depicted in Fig. 5 and Fig. 1. The method was input
with data from our group detector [13] and tested on both
the tasks of tracking groups only and groups and singletons
simultaneously. For both tests a baseline with no learning (i.e.
by setting empirically the weights, prioritizing visual features)
is provided (shaded rows in Tab. V). For evaluation, we used
the MITRE score. To account for randomness in the training
algorithm, tests were performed over 5 runs and mean and
standard deviation values are reported. The detection window
D has been empirically set to 5 seconds and the tracking
window T to 2.5 minutes with an overlap between tracking
windows of 100 seconds. The SSVM parameter C has been
cross-validated to 104.

The quantitative results show that learning brings a signif-
icant improvement over the baseline score of +15% in term
of F1 score. In particular this difference is more evident when
identities are matched across cameras, where features weights
should be learned according to the source and destination
cameras. In most of the multi-camera cases the baseline fails
dramatically.

The performance improvement w.r.t. the baseline is mainly
due to the success of the feature selection and weighting pro-

cess in our SSVM framework, whereby features are weighted
according to the camera and the specific challenges of the
data set. Moreover, the automatic thresholding and biasing
scheme of Sec. IV-A finds the proper mapping from distances
to correlations. In the considered case, when groups are
automatically detected, performance are negatively affected
by miss-detected groups as well as false positives. Although
the method performs excellently in tracking groups only, its
performance are almost the same even when both groups
and singletons are considered (row Standard in Tab. V). This
testifies that our method is able to adapt to the presence of
singletons by finding a proper set of weights that deals with
groups despite of their size (from cardinality 1 to n).

Additionally, in Fig. 7 we show and analyze performance
of singleton and group tracking in terms of camera-camera
F1 scores. A cell in this matrix accounts only for association
between two specific cameras. Within camera associations are
solved with very few errors by our method (see diagonal
row of F1 matrix in Fig. 7). In particular, Camera 3 is an
easy scene as people move in a constrained corridor and both
their motion model and appearance remain consistent (refer
to Fig. 5 for examples of camera viewpoints). In contrast,
associations between Camera 1 and Camera 2 are the most
difficult, mainly because of the viewpoint change between the
cameras and a large number of mutual occlusions between
group members. Camera 1 is a street scene where people
can enter from both ends and walk either on the sidewalk
(far field) or on the grass (near field). The challenges here
are due to the presence of scene occlusions (e.g. a parked
taxi), and the constrained motion patterns on the sidewalk
versus the unconstrained ones on the grass. Moreover, the
closer the groups are to the camera the more their members
tend to occlude each other. Camera 2, on the other hand, is
a fairly open scene where people can enter typically from a
side view and group members, when arranged in lines, are
often occluded by the member closest to the camera. Similar
considerations hold for Camera 3 and Camera 4. Despite the
viewpoint change, the unconstrained entry and exit points,
and the mutual occlusions among group members, our method
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 5: Illustrative results obtained by the proposed method. In (a-c) and (d,e) two groups (brown and pink) were consistently
tracked across 3 and 2 cameras, respectively. In contrast, (f,g) shows a failure case where the same group is identified differently
in camera 3 and 4.
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Fig. 7: This camera-camera matrix analyzes group and single-
ton tracking performance in terms of F1. Averages of different
runs are color encoded, standard deviation is text inside cells.

scores more than 60% in F1 in both these challenging cases.
To our knowledge, this is the first work that addresses the

problem of group tracking across multiple cameras, and we
have no other methods to benchmark against. Our data set is
the first of its kind with per-frame ground-truth annotation and
consistency of group labels across cameras.

G. Feature Importance in Multi-Camera Group Tracking

To provide insight on the learning ability of our proposal,
we also report the features weights learned during training
in the case of group tracking alone (see Fig. 6a-d). In this
experiment singletons have not been considered as the focus
was to highlight which features are useful in handling groups
in inter- and intra-camera associations.

The matrices shown in Fig. 6a-d report the learned feature
importance in terms of difference between ws − wd, where
ws ∈ w is the parameter associated with the feature similarity

(1−d) and wd ∈ w is the parameter associated with the feature
distance (d), for each pair of cameras and for each feature
separately. It is interesting to observe how the system reacts
to the different cameras. Specifically, by observing Fig. 6.a
and 6.d, Camera 4 exhibits a significant variation in the colors
w.r.t. Camera 2 due to illumination variation. This results in
less importance assigned to the HSV features by the weights
while the SIFT features is promoted in this case. The opposite
occurs for example between Camera 2 and Camera 3 where
the severe viewpoint change decreases the reliability of SIFT
features. Accordingly, the system penalizes SIFT features in
favor of HSV histograms. Fig. 6.d summarizes the relation
among cameras in terms of their distance and placement on
the map. Cameras with a high Time/Speed Coherence score
are more likely to be close to each other and placed in a
continuous and plausible path on the map. The Time/Speed
Coherence scores for Camera 2 by itself show that most of
the groups here break their motion continuity at some point.
A straightforward interpretation is that groups tend to enter the
scene and stop for a while in this zone. These considerations
aside, a poor score in the feature importance matrices does
not necessarily imply that the feature is neglected altogether,
because in the clustering framework all features with non-zero
weights contribute to the final tracking solution.
More generally, feature weights provide interesting informa-
tion on the data set challenges and richness of information,
while also capturing some aspects of the mutual relations
among cameras. Besides appearance features, the weights of
positional features can measure the usefulness of considering
position in the multi-camera group association process: Low
positional feature weights reflect a high distance between
cameras, thus implying that speed and motion prediction
cannot be unquestionably trusted in these cases while still
being important in the single camera case (diagonal cells
of Fig. 6.c). Our joint global formulation pursues the best
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Fig. 6: Relative feature importance measured as ws−wd, where ws ∈ w is the parameter associated with the feature similarity
(1− d) and wd ∈ w is the parameter associated with the feature distance (d), for each pair of cameras.

weight combination for the specific scenario, but still aims
at exploiting as many features as possible.

VII. DISCUSSION

In this work we propose a method for tracking groups in a
multi-camera scenario. The tracking problem is cast as a cor-
relation clustering problem coupled with a learning framework
for feature weighting, selection, and global optimization. To
our knowledge, this is the first proposal of this kind, handling
single- and multi-camera groups and singletons association
seamlessly within the same framework.

The lack of a data set on the topic, already observed also by
other researchers in the field [26], reflects the novelty of the
problem. Our DukeMTMC-Groups data set is the first multi-
camera tracking data set with ground-truth annotations for
group identity. This data set, in conjunction with the MITRE
performance measure that evaluates single- and multi-camera
group-tracking performance appropriately, are in our opinion
important tools for future development in this research field.

Our method also implements a learning-to-cluster strategy
as a starting point for addressing the uncertainties that affect
visual group tracking. Both the proposed orthogonal encoding
of features and the feature-to-correlation scheme perform well
in a real scenario such as the DukeMTMC-Groups data set,
which provides a new baseline for future experiments. Of
course, there are still many open questions, including the
handling of group splits and merges, which we leave for future
research. The code and the data set can be downloaded7 for
evaluation and further improvement by the community.
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