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Abstract: 

The aim of this paper is to propose new normalization schemes for the values obtained from the 

generalized forecast error variance decomposition, in order to obtain more reliable net spillover 

measures. We provide a review of various matrix normalization schemes used in different application 

domains. The intention is to contribute to the financial econometrics literature aimed at building a 

bridge between different approaches able to detect spillover effects, such as spatial regressions and 

network analyses. Considering DGPs characterized by different degrees of correlation and persistence, 

we show that the popular row normalization scheme proposed by Diebold and Yilmaz (2012), as well 

as the alternative column normalization scheme, may lead to inaccurate measures of net contributions 

(NET spillovers) in terms of risk transmission. Results are based on simulations and show that the 

number of errors increases as the correlation between the variable increases. The normalization 

schemes we suggest overcome these limits. 
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1   Introduction 

 

A normalization scheme is a set of one or more constraints to be imposed on a matrix such that the 

resulting scaled version will satisfy certain conditions. Equilibration, i.e. scaling a matrix such that its 

rows or columns sum to one is one of the most common normalization schemes. A normalization 

scheme is adopted either for estimation purposes or simply for interpretative purposes. The aim of 

this paper is to provide a review of the most common normalization schemes used in different 

financial applications, with a particular focus on forecast error variance decomposition. In fact, the 

implementation of the generalized forecast error variance decomposition yields a variance 

decomposition table that has to be normalized for interpretative purposes. In this case, we suggest 

alternative normalization schemes that are aimed at overcoming the limits of the traditional row-

normalization scheme, used in Diebold and Yilmaz (2012). The advantages and disadvantages of the 

normalization schemes are assessed through simulation, using data characterized by different degrees 

of correlation and persistence. The results of the paper are intended to be useful not only for deriving 

spillovers measures, but also in any other field where a matrix normalization scheme is adopted, such 

as network analysis or spatial econometrics. The structure of the paper is as follows. In Section 2 we 

provide an overview of various econometric fields where a normalization scheme is somehow 

necessary, highlighting the parallels and differences between the different application domains. In 

Section 3 we review the most common normalization schemes used in the various fields. Section 4 

concentrates on the spillover analysis based on the forecast error variance decomposition and 

proposes a new normalization scheme for the case of the generalized approach. Section 5 highlights 

how persistence and correlation among the series affect the results of the spillover analysis. The final 

section concludes. 

 

 

2    Proximity, networks and variance decomposition: a bridge based on normalization 

 

In this section we provide an overview of various fields in which a normalization scheme is needed: 

spatial econometrics, networks and forecast error variance decomposition in order to build a bridge 

between them, and in the next section we review the different schemes used in the various fields.   

Spatial econometrics is a strand of econometrics used when the underlying data-generating process 

displays a spatial dependence, i.e. when the observations depend on the values of the neighbouring 

observations. In particular the distance between variables or regions is represented with the so-called 

contiguity matrices. Here is an example of a contiguity matrix describing a first-order neighbouring 

relation: 



                                                                                  𝐶 = [

0 1 0 0
1 0 1 0
0
0

1
0

0
1

1
0

]                                                                  (1) 

This matrix is constructed by placing a value of one if two regions are neighbours, zero otherwise. In 

the example above, the first and the third regions are neighbours of order one of the second region 

(represented in the second row), and as a result a value of one is placed on the entries 𝑐21 and 𝑐23. The 

third region (represented in the third row) is neighbour of the second and the fourth regions, so the 

entries 𝑐32 and 𝑐34 take a value of one. On the contrary the first and the last regions (rows) have only 

one neighbour so a value of one is placed in the entries 𝑐12 and 𝑐43. While the contiguity matrix 

describes the geographical distances across all the regions, in the model equation what usually 

appears is the normalized version of the contiguity matrix, named spatial weight matrix. The most 

common version of spatial weight matrix 𝑊 = (𝑤𝑖,𝑗) for 𝑖, 𝑗 = 1,… , 𝑘 is the one that makes the 

proximity matrix row-stochastic1: 

                                                                      𝑊 = [

0 1 0  0
0.5 0 0. 5 0
0
0

0.5
0

 0
1

0.5
0

]                                                                    (2)   

For example, given a standard generalised spatial autoregressive model of order p, or simply SAR(p) 

model: 

 
𝑢 = ∑ 𝜙ℎ𝑊ℎ𝑢 + 𝜀

𝑝

ℎ=1
 (3) 

where 𝜙ℎ  are autoregressive parameters. Equivalently, we can rewrite equation (3) as follows: 

 
𝑢 =  (𝐼𝑁 − ∑ 𝜙ℎ𝑊ℎ

𝑝

ℎ=1
)
−1

𝜀 (4) 

The row-normalization of the proximity matrix is the easiest way to make the matrix (𝐼𝑁 −

∑ 𝜙ℎ𝑊ℎ
𝑝
ℎ=1 ) non-singular for all the possible values of the parameters 𝜙ℎ, therefore in this case the 

normalization scheme is necessary for estimation purposes. First-order spatial weight matrices, i.e. the 

matrices describing first-order neighbouring relations, are symmetric since if A is a neighbour of B, 

then the reverse is always true, and they usually have zeros on the main diagonal. On the contrary 

second-order contiguity matrices, i.e. the ones describing second-order neighbouring relations, have 

one on the main diagonal because every region is a second-order neighbour of itself.  

According to Billio et al. (2016) contiguity matrices are not flexible enough to deal with financial 

linkages because they are unable to describe the asymmetry and the strength of the relations between 

the variables, but they can be better represented with networks. Contiguity matrices have a number of 

similarities with the so-called adjacency matrices, i.e. the companion representation of networks.  

In networks, the adjacency matrix is a 𝑘 × 𝑘 symmetric matrix such that, for 𝑖 = 1,… , 𝑘: 

                                                        
1 A row stochastic matrix is a non-negative square matrix having row sums normalized (i.e. they equal one). Note that the 
term stochastic here has nothing to do with the usual statistic meaning.  



 𝑎𝑖𝑗 = {
1     𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

 (5) 

where the edge is a line connecting two nodes, for example friendship between individuals, or credit 

exposures between banks. Networks are usually represented in graphs, where nodes and edges are 

graphically displayed. In this formulation, adjacency matrices are similar to proximity (contiguity) 

matrices. However, it is possible to define a more complicated structure that is better able to proxy the 

real phenomenon of interest: a weighted network is a network that allows for weights on the edges in 

order to represent stronger or weaker connections between nodes, while direct networks are 

networks that allow for asymmetries, i.e. 𝑎𝑖𝑗 ≠ 𝑎𝑗𝑖. One example of a weighted and direct network is 

the forecast error variance decomposition (FEVD) (Diebold and Yilmaz, 2014). Forecast error variance 

decomposition is a standard econometric tool used in multivariate time series analysis to assess the 

contribution in terms of forecast error variance of each variable due to a shock to any of the other 

variables. If the shocks are orthogonalized, then the formula of the forecast error variance 

decomposition (FEVD) is as follows: 

 
𝜃𝑖𝑗

𝑜 =
  ∑  (𝑒𝑖

′ 𝐴𝑙  P 𝑒𝑗)
2ℎ−1

𝑙=0

∑ 𝑒𝑖
′𝐴𝑙  Σ 𝐴𝑙  𝑒𝑖

ℎ−1
𝑙=0

     𝑖, 𝑗 = 1,… ,𝑁 (6) 

Where o stands for orthogonalized, 𝐴𝑙  are coefficient matrices of the moving average representation of 

a stationary VAR (that captures the impulse responses over any forecast horizons h), Σ is the 

contemporaneous variance-covariance matrix of the vector of shocks and 𝑃 is the lower triangular 

matrix obtained from the Cholesky decomposition of the covariance matrix. 𝜃𝑖𝑗
𝑜  denotes the fraction of 

the h-step ahead forecast error variance of 𝑥𝑖 due to a shock to 𝑥𝑗. When 𝑖 = 𝑗 we have own effects, 

while when 𝑖 ≠ 𝑗 we have spillover effects.  

Pesaran and Shin (1998) have developed a “generalized” approach that allows shocks to be correlated. 

The generalized approach, that is insensitive to variable ordering, is generally preferred over the 

traditional approach. However, due to the non-orthogonality of the shocks, the sum of the 

contributions is not equal to one. As a result, a normalization scheme is needed in order to interpret 

the results: the suggested approach is once again to constrain the row sums to be equal to one, so that 

they can represent variance shares (Diebold, Yilmaz (2014)).  

As shown, the parallels between the fields of spatial econometrics, network and variance 

decomposition are numerous and recent research in finance, which this paper aims to further develop, 

is attempting to build a bridge between these strands (Billio et al. (2016), Diebold and Yilmaz (2014), 

Keiler and Eder (2013)). In the next section different normalization schemes are reviewed, focusing on 

advantages and disadvantages and on the applications to the different research fields. 

 

  



 

3.    Normalization schemes 

 

In this section we review the most commonly used normalization schemes in the various application 

domains.  

 

3.1   Row normalization 

 Given a (𝑘 × 𝑘) unscaled matrix 𝑊∗ = (𝑤𝑖𝑗
∗ ), we can obtain the corresponding row-stochastic matrix 

𝑊 = (𝑤𝑖𝑗) by row-normalizing 𝑊∗ such that: 

 
𝑤𝑖𝑗 =

𝑤𝑖𝑗
∗

∑ 𝑤𝑖𝑗
∗𝑘

𝑗=1

  (7) 

The resulting matrix W has row sums equal to one. In applications, row normalization is the most 

common normalization scheme. In some spatial regressions models (e.g. SAR(p) models) it represents 

the easiest way to make the matrix (𝐼𝑁 − ∑ 𝜙ℎ𝑊ℎ
𝑝
ℎ=1 ) in equation (4) non-singular. However, row 

normalization is not a restrictive task since the same result can be achieved by constraining the 

parameter space of the autoregressive parameters 𝜙ℎ  (Caporin and Paruolo (2015)); as a result, the 

normalization task would be absorbed by the AR parameter through scaling.  

Moreover, this normalization is useful in interpreting spatial weight matrices, whose elements can be 

thought of as a fraction of all spatial influence. This interpretative advantage also applies for a forecast 

error variance decomposition that does not rely on Cholesky factorization (or any other identifying 

scheme of structural VAR models) so that the matrix coefficients can be interpreted as variance shares. 

This is the normalization scheme proposed by Diebold and Yilmaz (2012) when using the generalized 

forecast error variance decomposition. However, this scheme also has certain drawbacks: by scaling 

the elements of each row by the corresponding row sum, the order of magnitude is preserved only by 

row.  

 

3.2   Column normalization 

This scheme is specular to the row-normalization scheme described above. The only difference is that 

the normalization is done by column: in this case only the columns sum to one. The critical issues 

concerning the row-normalization scheme apply also in this case. Note that for the variance 

decomposition Diebold and Yilmaz (2012) suggest this normalization scheme as an alternative to row 

normalization.   

  



 

3.3   Max row normalization 

In this normalization scheme, the normalization factor is a scalar equal to the maximum row sum of 

the unscaled matrix W*, then the scaled matrix is obtained as 𝑊 = 𝑊∗/𝑘 where: 

 𝑘 = max(𝑟1, … , 𝑟𝑘) (8) 

and: 

 
 𝑟𝑖 = ∑ 𝑤𝑖𝑗

∗
𝑘

𝑗=1
 (9) 

where 𝑤𝑖𝑗
∗   is the element in row i and column j of the unscaled matrix 𝑊∗. This scheme is 

characterized by a single normalization factor instead of the 𝑘 factors of the row normalization 

scheme (one for each row). As a result, it preserves the magnitude relation among the elements of 

rows and columns and column and row values can therefore be safely compared. Moreover, it allows 

for a comparison between different rows and column sums, making it possible to distinguish between 

stronger or weaker influences.  As argued by Billio et al. (2016) it is also possible to normalize by the 

maximum row sum over time in order to compare spatial weight matrices in different time periods 

while preserving a reasonable magnitude of autoregressive parameters. 

 

3.4   Max column normalization 

This scheme is specular to the max row normalization described above: the only difference is that the 

scalar is equal to the maximum column sum of the unscaled matrix W*. The same advantages of the 

max row normalization apply. 

 

3.5   Spectral radius normalization 

Let W* be the (𝑘 × 𝑘) positive unscaled matrix and let { 𝜆1, … , 𝜆𝑘} be the eigenvalues of W*. The 

spectral radius is the maximum eigenvalue (in modul), formally: 

 𝜏 = 𝑚𝑎𝑥{|𝜆1|, |𝜆|2, … , |𝜆|𝑘} (10) 

The scalar normalization factor is set equal to the spectral radius and the scaled matrix 𝑊 is therefore 

obtained as follows: 

 𝑊 = 𝑊∗/𝜏 (11) 

Under the Perron and Frobenius theorem, the spectral radius satisfies the following inequalities: 

 
𝑚𝑖𝑛𝑖  ∑ 𝑤𝑖𝑗 ≤ 𝜏 ≤

𝑁

𝑗=1
𝑚𝑎𝑥𝑖 ∑ 𝑤𝑖𝑗

𝑁

𝑗=1
 (12) 

As a result, some row sums and column sums exceed unity, while others can be less than one. This 

normalization scheme therefore has one main drawback: the elements can no longer be interpreted as 

fractions of the overall influence (e.g. the sum by row and by column) 

Nevertheless, this normalization scheme is widely used in spatial econometrics: in fact, following 

LeSage and Pace (2010) a matrix 𝑊∗ can be transformed to have maximum eigenvalue equal to one 



using 𝑊 = 𝑊∗ 𝑚𝑎𝑥(𝜆𝑊∗), and this is a desirable property because it constrains the autoregressive 

parameter to have maximum possible value equal to one. In particular, Keleijan and Prucha (2010) 

show that (𝐼𝑁 − ∑ 𝜙ℎ𝑊ℎ
𝑝
ℎ=1 ) is non-singular for all the values of the parameter space in the interval 

(−1 ;  1).  

 

 

4   Spillover analysis based on forecast error variance decomposition: problems and 

solutions 

 

Consider a covariance stationary VAR(p) with k endogenous variables: 

 𝑥𝑡 = 𝑐 + 𝐴1𝑥𝑡−1 + ⋯+ 𝐴𝑝𝑥𝑡−𝑝 + 𝜀𝑡 (13) 

where 𝑥𝑡  is a (𝑘 × 1) vector containing the values at time 𝑡 of the endogenous variables, the equation 

above can be written in compact form: 

 𝐴(𝐿)𝑥𝑡 = 𝜀𝑡 (14) 

where 𝐴(𝐿) are coefficient matrices and 𝜀𝑡  are i.i.d. disturbances with covariance matrix Σ. In order to 

derive the moving average representation of the VAR model we multiply both sides of equation (14) 

by 𝐴(𝐿)−1 = (𝐼 − 𝐴1𝐿 − ⋯− 𝐴𝑝𝐿𝑝)
−1

= Ψ(𝐿), then: 

 𝑥𝑡 = Ψ(𝐿)𝜀𝑡  (15) 

where: 

 
Ψ(𝐿) = ∑ Ψ𝑖𝐿

𝑖     ;         Ψ0 = 𝐼
∞

𝑖=0
 (16) 

We obtain the impulse responses at the forecast horizon h by exploiting the following recursive 

relation: 

 𝐴𝑡+ℎ = Ψ0𝐴𝑡+ℎ + Ψ1𝐴𝑡+ℎ−1 + Ψ2𝐴𝑡+ℎ−2 + ⋯+ Ψ𝑝𝐴𝑡+ℎ−𝑝 (17) 

with A0 = 𝐼, A𝑖 = 0 for 𝑖 < 0. The traditional approach relies on the Cholesky factorization of the 

variance covariance matrix: 

 Σ = 𝑃 𝑃′ (18) 

where P is lower triangular. By substituting equation (18) into the infinite moving average 

representation of the VAR(p) the shocks 𝜀𝑡  become orthogonal, formally: 𝜉𝑡 = 𝑃−1𝜀𝑡  and 𝐸(𝜉𝑡
′ 𝜉𝑡) = 𝐼. 

The resulting forecast error variance decomposition in equation (6) would be sensitive to variable 

ordering. To overcome this limit, the generalized approach allows shocks to be correlated and 

accounts for them by using an assumed or an historical distribution of the errors. In this framework, 

the generalized forecast error variance decomposition proposed by Pesaran and Shin (1998) is 

computed as follows: 

 
𝜃𝑖𝑗

𝑔
=

𝜎𝑖𝑖
−1 ∑ (𝑒𝑖

′𝐴𝑙Σ 𝑒𝑖)
2ℎ−1

𝑙=0

∑ (𝑒𝑖
′𝐴𝑙Σ 𝐴𝑙𝑒𝑗)

ℎ−1
𝑙=0

 (19) 



where g stands for generalized. The resulting variance decomposition table Θ = (𝜃𝑖𝑗
𝑔
) for 𝑖, 𝑗 = 1,… , 𝑘 

is a (𝑘 × 𝑘) matrix containing all the variance shares. By using a VAR model on different volatility 

series, Diebold and Yilmaz (2012) exploited the generalized forecast error variance decomposition 

framework developed by Pesaran and Shin (1998) in order to derive measures of volatility spillovers.  

However, due to the non-orthogonality of shocks, the sum of the contributions to the forecast error 

variance (i.e. the row sum) is not equal to one. They therefore propose a row-normalization of the 

values of the variance decomposition in equation (19) in order to interpret its elements as variance 

shares: 

 
𝜃̃𝑖𝑗

𝑔
=

𝜃𝑖𝑗
𝑔

∑ 𝜃𝑖𝑗
𝑔𝐾

𝑗=1

 (20) 

The directional spillover received by each market from all the other markets (FROM others) is 

computed as the off-diagonal row sum; the spillover transmitted by each market to all the other 

markets (TO others) is computed as the off-diagonal column sum. A measure of net contribution (NET) 

of each market is obtained as the difference between the directional spillovers TO others and FROM 

others. In this way we are able to distinguish markets that are net donors from those that are net 

receivers in terms of risk transmission.  

However, as shown in the previous section, row normalization has interpretative limits and, in this 

framework, leads to misspecified spillover measures. In particular: 

- If the normalization is carried out by row, the column sum is not necessarily equal to one. As a 

result, while FROM directional spillovers can be interpreted as a fraction of the total variance 

received via spillovers, TO directional spillovers lack this kind of interpretation (some column 

sums are above unity, while some others are beyond unity). 

- Normalization by row implies that the order of magnitude of the entries of the variance 

decomposition table is preserved only by row. As a result, NET spillovers are obtained as the 

difference between two values incomparable in magnitude. 

The reasoning underlying the choice of Diebold and Yilmaz (2012) to row-normalize the variance 

decomposition table is that by constraining the row sum to unity, the elements can represent variance 

shares. However, in their paper they also state that one can alternatively normalize by column but, as 

we show in the next section, the values of the spillover measures are sensitive to this normalization 

choice, leading to misspecifed measures of net contribution (NET).  

 

 

5   Comparison of the normalization schemes   

 

In this section first of all we show by means of an introductory example how the net spillover values 

are sensitive to the different normalization schemes. Second, we provide simulation results based on 



different degrees of correlation and persistence. We consider four cases: a) LL (Low Persistence; Low 

Correlation); b) LH (Low Persistence; High Correlation); c) HL (High Persistence; Low Correlation); d) 

HH (High Persistence; High Correlation), according to the different setup for the coefficient matrices in 

the lag operator A(L) and of the covariance matrix Σ = 𝑃 𝑃′. In particular the Low Correlation case is 

defined by using a lower triangular matrix 𝑃 in eq. (18) set as follows: 

 

 

𝑃 =

[
 
 
 
 
0.10 0 0
0.15 0.15 0
0.20
0.25
0.30

0.20
0.25
0.30

0.20
0.25
0.30

     

0 0
0 0
0

0.25
0.30

0
0

0.30]
 
 
 
 

 (21) 

 

while the High Correlation case is defined by using the following lower triangular matrix 𝑃: 

 

𝑃 =

[
 
 
 
 
0.40 0 0
0.45 0.45 0
0.50
0.55
0.60

0.50
0.55
0.60

0.50
0.55
0.60

     

0 0
0 0
0

0.55
0.60

0
0

0.60]
 
 
 
 

 (22) 

The 𝑃 matrices have dimension (𝑘 × 𝑘) with 𝑘 = 5, which is the number of variables included in the 

multivariate system. To ensure a stationary VAR(p) (e.g. with roots of the characteristic polynomial 

A(L) outside the unit circle) characterised by Low Persistence, we consider a VAR(2) with coefficient 

matrices A1 and A2 with values equal to 0.05. A stationary VAR(p) characterised by High Persistence is 

a restricted VAR(22) given by the parsimonious Vector HAR representation with coefficient matrices 

𝐴(𝑑), 𝐴(𝑤), 𝐴(𝑚) described as follows: 𝐴(𝑑) with values equal to 0.05, 𝐴(𝑤) with values equal to -0.02 and 

𝐴(𝑚) with values equal to 0.012. 

Consequently, we compute the generalized forecast error variance decomposition as defined by 

equation (19) and we obtain the measures of NET contribution. Formally, the non-normalized NET 

spillovers for the forecast horizon ℎ, which are taken as benchmark, are obtained as follows: 

 𝑁𝐸𝑇𝑖(ℎ) = 𝐷𝑆  →
𝑔 (ℎ) − 𝐷𝑆→ 

𝑔 (ℎ) (23) 

where: 

 
𝐷𝑆

 →
𝑔 (ℎ) = ∑ 𝜃𝑖𝑗

𝑔
𝐾

𝑖=1
𝑖≠𝑗

     ;     𝐷𝑆→ 
𝑔 (ℎ) = ∑ 𝜃𝑖𝑗

𝑔
𝐾

𝑗=1
𝑗≠𝑖

           (24) 

where 𝐷𝑆
 →
𝑔

 denotes the non-normalized directional spillover transmitted by the market 𝑖 to all other 

markets 𝑗 (named TO others), while 𝐷𝑆→ 
𝑔

 denotes the non-normalized directional spillover received 

by market 𝑖 from all the other markets 𝑗 (named FROM others). Second, we compute the  𝑁𝐸𝑇̅̅ ̅̅ ̅̅ ̅̅  

                                                        
2 In the Vector HAR model the matrices 𝐴(𝑑), 𝐴(𝑤) and 𝐴(𝑚) are coefficient matrices associated with the three 
terms of daily, weekly and monthly partial volatility components, respectively. In particular, the Vector HAR 
model can be written as follows: 

𝑥𝑡
(𝑑)

= 𝑐 + 𝜙(𝑑)𝑥𝑡−1
(𝑑)

+ 𝜙(𝑤)𝑥𝑡−1
(𝑤)

+ 𝜙(𝑚)𝑥𝑡−1
(𝑚)

+ 𝜀𝑡 

where 𝑥𝑡  are daily volatilities, while the terms representing the weekly and monthly volatilities are obtained as 
the arithmetic average of the daily volatilities recorded in the last week and the last month, respectively. 



spillovers obtained from the forecast error variance decomposition normalized by the different 

schemes: 

 𝑁𝐸𝑇𝑖
̅̅ ̅̅ ̅̅ ̅(ℎ) = 𝐷𝑆

 →
𝑔̅̅ ̅̅ ̅̅ ̅(ℎ) − 𝐷𝑆→ 

𝑔̅̅ ̅̅ ̅̅ ̅(ℎ) (25) 

where the over bar denotes the normalized spillovers. These normalized measures are compared to 

the benchmark spillovers in equation (23). The comparison is intended to assess the reliability of the 

different normalization schemes both in terms of order of ranking (to assess which market is the 

largest net contributor to the total connectedness) and in terms of sign (to distinguish net donors from 

net receivers). 

 

5.1    Results based on population parameters 

 

In this section we cast light on how the choice of the normalization scheme can affect the ranking and 

the sign of the NET spillovers, by means of an introductory example. Moreover, in order to show how 

the spillover tables change for different forecast horizons, two different horizons are reported: the 

two-day horizon is reported in the upper panel of every Table, while the lower panel contains the ten-

day forecast horizon. 

For this introductory example we report the results based on the population parameters for the “High 

Persistence, High Correlation” scenario, which is the most illuminating one. Table 1 shows the 

spillover table based on the non-normalized forecast error variance decomposition which is taken as a 

benchmark. Tables 2 to 6 show the same spillover table after applying the different normalization 

schemes outlined in Section 3  (Table 2 for row normalization, Table 3 for column normalization, Table 

4 for normalization by spectral radius, Table 5 for normalization by maximum row sum, Table 6 for 

normalization by maximum column sum). These Tables show the directional spillover received from 

others (FROM others), the directional spillover received from others including own (FROM others 

including own), the directional spillover transmitted to others (TO others), the directional spillover 

transmitted to others including own (TO others including own), and the net contribution (NET) 

defined as the difference between the directional spillover transmitted TO others and the directional 

spillover received FROM others for each variable 𝑉𝑖 for 𝑖 = 1,… ,5. The tables also show the sign of the 

NET spillover (NET sign): negative if the market is the net receiver and positive if the market is the net 

donor, and the ranking of the NET spillover from the highest to the lowest (NET ranking).  

In Table 2 we show the standard row-normalization scheme proposed by Diebold and Yilmaz (2012) 

which has the interpretative advantage that the directional spillovers received FROM others including 

own sum to one, and as a result each element of the forecast error variance decomposition matrix can 

be interpreted as a variance share (by row). For example, in the upper panel variable 2 receives the 

most from variable 3 (0.219), and the least from variable 5 (0.140). Moreover, variable 1 represents 



the market least affected by the others (FROM others=0.653), while variable 3 represents the market 

most affected by the others (FROM others=0.705).  

On the contrary in Table 3 all the columns (TO others including own) sum to one: each element of the 

forecast error variance decomposition matrix can be interpreted as the fraction of total variance 

transmitted. For example, in the upper panel of Table 3 variable 2 gives the least to variable 5 (0.131), 

and the most to variable 3 (0.216). Moreover, variable 3 represents the market that transmits the most 

to the others (TO others=0.714), while variable 1 represents the market that transmits the least to 

others (TO others=0.592). In the case of the column normalization, the focus is on how much one 

variable (market or country) affects the system. Despite the neat interpretation, the row normalization 

or column normalization schemes affect the NET spillovers, which may have the opposite sign and the 

wrong ranking if compared to the non-normalized ones. In fact, the first variable in the column 

normalization scheme (Table 3) is misconceived as the net donor, while it is a net receiver in the non-

normalized case (Table 1), whereas variables 3 and 4 are mistakenly considered as net receivers 

instead of net donors, as apparent in Table 1.  The same happens in the row normalization scheme, but 

only for the ten-day horizon. As a result, also there is a change in the ranking of the variables (ranging 

from the one giving the most to the system, that is the major net donor and has rank 1, to the variable 

receiving the most from the system, which is the major net receiver and has rank 5). For example in 

the non-normalized case the variable transmitting the most to the system is variable 5 (for both 

forecast horizons), but in the row-normalized case it emerges that the variable transmitting the most 

to the system is variable 3 for the two-day forecast horizon and variable 4 for the ten-day horizon.  

Tables 4 to 6 show the scalar-normalization cases. The scalar factors applied are: the spectral radius 

(Table 4), the maximum row sum (Table 5) and the maximum column sum (Table 6). In the spectral 

radius normalization it is not possible to interpret each element of the forecast error variance 

decomposition matrix as variance shares by column, or by row. In fact, the sum by row and by column 

(FROM others including own and TO others including own) can attain values higher or lower than 1, 

given the mathematical property of the maximum eigenvalue described in eq. (12). Despite the lack of 

interpretability in terms of variance shares, all the net spillovers maintain the correct sign after 

normalization and the correct ranking as in the non-normalized case.  

It may be noted that in the maximum row sum normalization scheme in Table 5 and in the maximum 

column sum normalization scheme in Table 6, the only values which sum to one are those in the row 

with the maximum sum (the third row in both Panels of Table 5) and those in the column with the 

maximum sum (column 3 for Panel A and column 4 for Panel B of in Table 6), respectively. Only for 

these values is it possible to give a percentage interpretation: in Table 5 it may be seen that for h=2 

variable 3 receives 70.5% FROM others, while variable 4 in Table 6 transmits 71.2% TO others.  

In conclusion, it may be stated that the max row sum and max col sum normalization are slightly 

better than the spectral radius since they can preserve the ranking and the sign of the spillovers and, 

at least for one variable, they can preserve their interpretation as variance share.  



As Tables 2 to 6 focus on the normalization issue for only the high correlated and high persistence 

scenario, in Table 7 and Table 8 we show the results based on population parameters for all the other 

scenarios: by looking at the sign of the net spillovers (Table 7) it is clear that the row-normalization 

scheme performs fairly well with no errors in sign for the horizon H=2 and only one error in sign in 

each of the high-correlated scenarios: on the contrary in each scenario the column normalization 

produces from 1 to 3 errors in sign. By looking at the ranking errors in Table 8, what emerges is that 

both the row normalization and the column normalization scheme affect the ranking in most cases. On 

the other hand, any scalar normalization scheme does not affect the ranking. 

 

5.2   Results based on simulation  

 

In order to account for the role played by parameter estimation on the rank and sign of net spillovers, 

we simulate a multivariate dynamic system, using the DGP given by eq. (13). The shocks 𝜀𝑡 are given 

by 𝑃 𝜂𝑡, where 𝜂𝑡 are iid Gaussian and orthogonal innovations. In order to assess the reliability of the 

different normalization schemes in preserving the order of magnitude and the sign of net 

contributions (NET spillovers) obtained from the generalized forecast error variance decomposition, 

the simulation experiment involves the following steps: 

1) Five artificial data series (where the time series dimension is equal to 500) are obtained by 

simulating either the VAR(2) (in the case of Low Persistence) or the restricted VAR(22)  (in the case of 

High Persistence) with Gaussian innovations. The coefficient matrices for the lags and the lower 

triangular matrices 𝑃 aiming at capturing the different degrees of contemporaneous correlation are 

those used in section 5. 

2) For each replication, we estimate the model parameters by OLS, obtaining the impulse-responses 

for the forecast horizons ℎ = 2, ℎ = 10 and computing the corresponding generalized forecast error 

variance decomposition as defined in eq. (19).  

After obtaining the simulated datasets, we compare the non-normalized matrix 𝑊∗ (e.g. the non-

normalized variance decomposition table for a given forecast horizon) and the five normalized 

matrices 𝑊 (e.g. the normalized variance decomposition table for a given forecast horizon) in terms of 

sign and ranking errors. 

First, we measure the number of errors in the sign of the net spillovers. Errors are counted when the 

net spillover obtained from the normalized matrix has a sign opposite to that of the net spillover 

obtained from the non-normalized matrix. The total number of possible errors is 5000 for each 

scenario (5 variables times 1000 simulations for each scenario).  

Second, we measure the errors in the ranking. Errors are counted when the ranking of the net 

spillovers obtained from the normalized matrix is different from that of the non-normalized matrix. 

The total number of possible errors is 1000 for each scenario (one ranking times 1000 simulations for 

each scenario). Results are shown in Table 9 for sign errors and in Table 10 for ranking errors.  



Table 9 shows that over a total number of 5000 possible errors for each scenario (5 variables times 

1000 simulations for each scenario), the row normalization performs much better than the column 

normalization for each scenario: in fact, for H=2 (H=10) the average number of errors in sign is about 

354 (169) for the row-normalization scheme and about 2525 (1997) for the column normalization 

scheme. This result is surprising since the row normalization and column normalization schemes 

should theoretically be equal. In both normalization schemes, the number of errors increases with the 

degree of correlation. On the contrary, the sum of errors in sign in the low persistence scenarios is 

slightly higher than the sum of the same errors in the high persistence scenarios for both forecast 

horizons. 

Moreover, as shown in Table 10, the row-normalization proposed by Diebold and Yilmaz (2012) and 

the alternative column normalization schemes affect the ranking of the spillovers more than 850 times 

out of 1000 for H=2 and more than 950 times out of 1000 for H=10 (with the sole exception of the row 

normalization scheme in the high persistence scenarios). 

To conclude, even if the row normalization scheme and the column normalization scheme allow for a 

better interpretation of the values of the generalized forecast error variance decomposition, there is a 

need to be cautious in interpreting the resulting net spillovers that should discriminate markets which 

are net donors from those which are net receivers. On the contrary, any scalar normalization scheme 

(by maximum eigenvalue, maximum row sum or maximum column sum) will outperform the 

traditional normalization schemes, preserving the ranking and the sign of the NET spillovers. As a 

result, we suggest using a scalar normalization scheme to derive the correct measures of net 

contribution. Among the scalar normalization schemes, the maximum row sum or the maximum 

column sum are preferred to the spectral radius since they allow for a better interpretation of how 

much one variable receives or transmits in terms of percentage values.  

 

6   Concluding remarks 

 

The focus of this paper was on the variance decomposition to assess how the normalization choice can 

affect the computation and the interpretation of the spillover measures obtained. With respect to 

normalization, the intention was to contribute to the financial literature aiming to build a bridge 

between the strands of spatial econometrics, network analysis and variance decomposition. These are 

the main approaches used to quantify risk-transmission through spillover analyses, and recent 

research efforts are intended to make them converge. We reviewed the main normalization schemes 

used in these strands of literature and in their applications, highlighting the reasons underlying the 

choice of a normalization scheme, as well as the advantages and disadvantages of each method. Finally, 

we showed that the standard row normalization scheme suggested by Diebold and Yilmaz (2012) and 

commonly used in all the applications, as well as the equivalent column normalization scheme, 

produce numerous errors both in the ranking and in the sign of the resulting NET spillovers. These 



normalization schemes, although allowing for a better interpretation (as variance shares) of the 

results, may fail to establish whether the market is a net risk transmitter or net risk receiver. 

Moreover, they are also unable to assess the degree to which a single market influences all the others 

in net absolute terms. As a result, we suggest using a scalar normalization scheme to avoid the 

misspecification of results.  

Among the scalar normalization schemes, the maximum row sum or the maximum column sum 

schemes are preferable to the spectral radius since they allow for a better interpretation of how much 

one variable receives or transmits in terms of percentage values. 
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Table 1. Spillover Table based on the non-normalized variance decomposition table (VDT). 

 

Note. This figure shows the spillover Table based on the non-normalized forecast error variance 
decomposition, which is displayed in the central frame. Results refer to the HH scenario (high-
persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel B). 
The Table shows the directional spillover received from others (FROM others), the directional 
spillover received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking 
based on the absolute value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.889 0.539 0.435 0.376 0.324 2.561 1.672
V2 0.493 0.975 0.683 0.535 0.438 3.124 2.149
V3 0.337 0.668 0.994 0.758 0.612 3.369 2.375
V4 0.255 0.506 0.753 0.997 0.801 3.313 2.316
V5 0.204 0.406 0.605 0.802 0.997 3.015 2.018

TO	others	
including	own 2.178 3.094 3.470 3.467 3.172
TO	others 1.289 2.119 2.477 2.470 2.175
NET -0.383 -0.030 0.102 0.154 0.157

NET	sign + - - - +
NET	ranking 2 4 5 3 1

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.773 0.579 0.540 0.506 0.453 2.850 2.077
V2 0.483 0.940 0.706 0.582 0.490 3.202 2.262
V3 0.343 0.671 0.984 0.769 0.630 3.397 2.413
V4 0.263 0.516 0.759 0.993 0.804 3.334 2.341
V5 0.211 0.416 0.614 0.806 0.992 3.040 2.048

TO	others	
including	own 2.073 3.122 3.603 3.656 3.368
TO	others 1.300 2.181 2.619 2.663 2.377
NET -0.777 -0.080 0.206 0.322 0.329

NET	sign - - + + +
NET	ranking 5 4 3 2 1

Panel	A:	h=2

Panel	B:	h=10



Table 2. Spillover Table based on the row-normalized variance decomposition table (VDT). 

 

Note. This figure shows the spillover Table based on the row-normalized forecast error variance 
decomposition, which is displayed in the central frame. Results refer to the HH scenario (high-
persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel B). 
The Table reports the directional spillover received from others (FROM others), the directional 
spillover received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking 
based on the absolute value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 

 

 

 

 

 

 

 

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.347 0.210 0.170 0.147 0.126 1 0.653
V2 0.158 0.312 0.219 0.171 0.140 1 0.688
V3 0.100 0.198 0.295 0.225 0.182 1 0.705
V4 0.077 0.153 0.227 0.301 0.242 1 0.699
V5 0.068 0.135 0.201 0.266 0.331 1 0.669

TO	others	
including	own 0.750 1.008 1.112 1.110 1.021
TO	others 0.403 0.696 0.817 0.809 0.690
NET -0.250 0.008 0.112 0.110 0.021

NET	sign + - - - +
NET	ranking 2 4 5 3 1

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.271 0.203 0.189 0.178 0.159 1 0.729
V2 0.151 0.294 0.221 0.182 0.153 1 0.706
V3 0.101 0.198 0.290 0.226 0.185 1 0.710
V4 0.079 0.155 0.228 0.298 0.241 1 0.702
V5 0.070 0.137 0.202 0.265 0.326 1 0.674

TO	others	
including	own 0.671 0.986 1.129 1.149 1.065
TO	others 0.400 0.692 0.840 0.851 0.738
NET -0.329 -0.014 0.129 0.149 0.065

NET	sign - - + + +
NET	ranking 5 4 3 2 1

Panel	B:	h=10

Panel	A:	h=2



Table 3: Spillover Table based on the column-normalized variance decomposition table (VDT). 

 

Note. This figure shows the spillover Table based on the column-normalized forecast error variance 
decomposition, which is displayed in the central frame. Results refer to the HH scenario (high-
persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel B). 
The Table shows the directional spillover received from others (FROM others), the directional 
spillover received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines report for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking 
based on the absolute value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 
 
 
 
 
 
 

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.408 0.174 0.125 0.108 0.102 0.918 0.510
V2 0.226 0.315 0.197 0.154 0.138 1.031 0.716
V3 0.155 0.216 0.286 0.218 0.193 1.069 0.782
V4 0.117 0.164 0.217 0.288 0.253 1.038 0.750
V5 0.094 0.131 0.174 0.231 0.314 0.945 0.631

TO	others	
including	own 1 1 1 1 1
TO	others 0.592 0.685 0.714 0.712 0.686
NET 0.082 -0.031 -0.069 -0.038 0.055

NET	sign + - - - +
NET	ranking 2 4 5 3 1

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.373 0.185 0.150 0.138 0.134 0.981 0.608
V2 0.233 0.301 0.196 0.159 0.146 1.035 0.734
V3 0.166 0.215 0.273 0.210 0.187 1.051 0.778
V4 0.127 0.165 0.211 0.272 0.239 1.013 0.741
V5 0.102 0.133 0.170 0.220 0.294 0.921 0.626

TO	others	
including	own 1 1 1 1 1
TO	others 0.627 0.699 0.727 0.728 0.706
NET 0.019 -0.035 -0.051 -0.013 0.079

NET	sign - - + + +
NET	ranking 5 4 3 2 1

Panel	A:	h=2

Panel	B:	h=10



Table 4: Spillover Table based on the variance decomposition table (VDT) normalized by the 
spectral radius. 

 

Note. This figure shows the spillover Table based on the forecast error variance decomposition 
normalized by the spectral radius, which is displayed in the central frame. Results refer to the HH 
scenario (high-persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and 
h=10 (Panel B). The Table shows the directional spillover received from others (FROM others), the 
directional spillover received from others including own (FROM others (including own)) the 
directional spillover transmitted to others (TO others), the directional spillover transmitted to others 
including own (TO others (including own)) and the net contribution (NET) defined as the difference 
between the directional spillover transmitted TO others and the directional spillover received FROM 
others for variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover 
(NET sign): negative if the variable is a net receiver and positive if the variable is a net donor, and the 
ranking based on the absolute value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 

 
 
 
 
 
 

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.284 0.172 0.139 0.120 0.103 0.818 0.534
V2 0.157 0.311 0.218 0.171 0.140 0.998 0.686
V3 0.108 0.213 0.317 0.242 0.195 1.076 0.758
V4 0.081 0.162 0.241 0.318 0.256 1.058 0.740
V5 0.065 0.130 0.193 0.256 0.318 0.963 0.644

TO	others	
including	own 0.695 0.988 1.108 1.107 1.013
TO	others 0.412 0.677 0.791 0.789 0.695
NET -0.122 -0.010 0.032 0.049 0.050

NET	sign + - - - +
NET	ranking 2 4 5 3 1

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.241 0.181 0.169 0.158 0.141 0.890 0.649
V2 0.151 0.294 0.221 0.182 0.153 1.000 0.706
V3 0.107 0.210 0.307 0.240 0.197 1.061 0.754
V4 0.082 0.161 0.237 0.310 0.251 1.041 0.731
V5 0.066 0.130 0.192 0.252 0.310 0.949 0.639

TO	others	
including	own 0.647 0.975 1.125 1.142 1.052
TO	others 0.406 0.681 0.818 0.832 0.742
NET -0.243 -0.025 0.064 0.100 0.103

NET	sign - - + + +
NET	ranking 5 4 3 2 1

Panel	A:	h=2

Panel	B:	h=10



Table 5: Spillover Table based on the variance decomposition table (VDT) normalized by the 
maximum row sum. 

 

Note. This figure shows the spillover Table based on the forecast error variance decomposition 
normalized by the maximum row sum, which is displayed in the central frame. Results refer to the HH 
scenario (high-persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and 
h=10 (Panel B). The Table shows the directional spillover received from others (FROM others), the 
directional spillover received from others including own (FROM others (including own)) the 
directional spillover transmitted to others (TO others), the directional spillover transmitted to others 
including own (TO others (including own)) and the net contribution (NET) defined as the difference 
between the directional spillover transmitted TO others and the directional spillover received FROM 
others for variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover 
(NET sign): negative if the variable is a net receiver and positive if the variable is a net donor, and the 
ranking based on the absolute value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 
 
 
 
 
 
 

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.264 0.160 0.129 0.111 0.096 0.760 0.496
V2 0.146 0.289 0.203 0.159 0.130 0.927 0.638
V3 0.100 0.198 0.295 0.225 0.182 1 0.705
V4 0.076 0.150 0.224 0.296 0.238 0.984 0.688
V5 0.061 0.121 0.180 0.238 0.296 0.895 0.599

TO	others	
including	own 0.647 0.918 1.030 1.029 0.942
TO	others 0.383 0.629 0.735 0.733 0.646
NET -0.114 -0.009 0.030 0.046 0.047

NET	sign + - - - +
NET	ranking 2 4 5 3 1

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.227 0.170 0.159 0.149 0.133 0.839 0.612
V2 0.142 0.277 0.208 0.171 0.144 0.943 0.666
V3 0.101 0.198 0.290 0.226 0.185 1 0.710
V4 0.077 0.152 0.223 0.292 0.237 0.982 0.689
V5 0.062 0.123 0.181 0.237 0.292 0.895 0.603

TO	others	
including	own 0.610 0.919 1.061 1.076 0.992
TO	others 0.383 0.642 0.771 0.784 0.700
NET -0.229 -0.024 0.061 0.095 0.097

NET	sign - - + + +
NET	ranking 5 4 3 2 1

Panel	B:	h=10

Panel	A:	h=2



Table 6: Spillover Table based on the variance decomposition table (VDT) normalized by the 
maximum column sum. 

 

Note. This figure shows the spillover Table based on the forecast error variance decomposition 
normalized by the maximum column sum, which is displayed in the central frame. Results refer to the 
HH scenario (high-persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and 
h=10 (Panel B). The Table shows the directional spillover received from others (FROM others), the 
directional spillover received from others including own (FROM others (including own)) the 
directional spillover transmitted to others (TO others), the directional spillover transmitted to others 
including own (TO others (including own)) and the net contribution (NET) defined as the difference 
between the directional spillover transmitted TO others and the directional spillover received FROM 
others for variable Vi, i=1,…, 5. The bottom lines report for each variable the sign of the NET spillover 
(NET sign): negative if the variable is a net receiver and positive if the variable is a net donor, and the 
ranking based on the absolute value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 
 
 
 
 
 
 

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.256 0.155 0.125 0.108 0.093 0.738 0.482
V2 0.142 0.281 0.197 0.154 0.126 0.900 0.619
V3 0.097 0.193 0.286 0.218 0.176 0.971 0.684
V4 0.073 0.146 0.217 0.287 0.231 0.955 0.667
V5 0.059 0.117 0.174 0.231 0.287 0.869 0.582

TO	others	
including	own 0.628 0.892 1 0.999 0.914
TO	others 0.372 0.611 0.714 0.712 0.627
NET -0.110 -0.009 0.029 0.044 0.045

NET	sign - - + + +
NET	ranking 5 4 3 2 1

V1 V2 V3 V4 V5
FROM	others	

including	own
FROM	others

V1 0.211 0.158 0.148 0.138 0.124 0.779 0.568
V2 0.132 0.257 0.193 0.159 0.134 0.876 0.619
V3 0.094 0.184 0.269 0.210 0.172 0.929 0.660
V4 0.072 0.141 0.208 0.272 0.220 0.912 0.640
V5 0.058 0.114 0.168 0.220 0.271 0.831 0.560

TO	others	
including	own 0.567 0.854 0.986 1 0.921
TO	others 0.356 0.597 0.716 0.728 0.650
NET -0.212 -0.022 0.056 0.088 0.090

NET	sign - - + + +
NET	ranking 5 4 3 2 1

Panel	A:	h=2

Panel	B:	h=10



 
Table 7: Errors in sign (using population parameters). 

 

Note. The Table shows the number of errors in sign for each scenario (L.L. , L.H. , H.L. , H.H. , where L.L. 
= low persistence low correlation, L.H.=low persistence high correlation, H.L.=high persistence low 
correlation, H.H.=high persistence high correlation). Results refer to the forecast horizon h=2 (panel 
A) and h=10 (Panel B). Errors are counted when the net spillover obtained from the normalized matrix 
has a sign opposite to the one of the net spillover obtained from the non-normalized matrix. The total 
number of possible errors is 5 for each scenario. 
 
 

 

 

Table 8: Errors in ranking (using population parameters). 

 

Note. The Table shows the number of errors in ranking for each scenario (L.L. , L.H. , H.L. , H.H. , where 
L.L. = low persistence low correlation, L.H.=low persistence high correlation, H.L.=high persistence low 
correlation, H.H.=high persistence high correlation). Results refer to the forecast horizon h=2 (panel 
A) and h=10 (Panel B). Errors are counted when the ranking of the net spillovers obtained from the 
normalized matrix is different from that of the non-normalized matrix. The total number of possible 
errors is 1 for each scenario. 
 

 

 

L.	L. L.H. H.L. H.H.
normalization	by	row 0 1 0 1
normalization	by	column 3 3 3 3
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

L.	L. L.H. H.L. H.H.
normalization	by	row 0 0 0 0
normalization	by	column 1 3 1 3
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

Panel	A:	h=2

Panel	B:	h=10

L.	L. L.H. H.L. H.H.
normalization	by	row 1 1 1 1
normalization	by	column 1 1 1 1
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

L.	L. L.H. H.L. H.H.
normalization	by	row 1 1 1 1
normalization	by	column 0 1 0 1
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

Panel	A:	h=2

Panel	B:	h=10



Table 9: Errors in sign (using simulations). 

 

Note. The Table shows the number of errors in sign for each scenario (L.L. , L.H. , H.L. , H.H. , where L.L. 
= low persistence low correlation, L.H.=low persistence high correlation, H.L.=high persistence low 
correlation, H.H.=high persistence high correlation). Results refer to the forecast horizon H=2 (panel 
A) and H=10 (Panel B). Errors are counted when the net spillover obtained from the normalized 
matrix has a sign opposite to the one of the net spillover obtained from the non-normalized matrix. 
The total number of possible errors is 5000 for each scenario (5 variables times 1000 simulations for 
each scenario). 
 

 

 

 

Table 10: Errors in ranking (using simulations). 

 

Note. The Table shows the number of errors in ranking for each scenario (L.L. , L.H. , H.L. , H.H. , where 
L.L. = low persistence low correlation, L.H.=low persistence high correlation, H.L.=high persistence low 
correlation, H.H.=high persistence high correlation). Results refer to the forecast horizon H=2 (panel 
A) and H=10 (Panel B). Errors are counted when the ranking of the net spillovers obtained from the 
normalized matrix is different from the one of the non-normalized matrix. The total number of 
possible errors is 1000 for each scenario (one ranking times 1000 simulations for each scenario). 
 

L.	L. L.H. H.L. H.H.
normalization	by	row 118 607 198 492
normalization	by	column 2802 3226 1746 2324
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

L.	L. L.H. H.L. H.H.
normalization	by	row 28 293 111 243
normalization	by	column 1368 3143 1644 1833
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

Panel	A:	h=2

Panel	B:	h=10

L.	L. L.H. H.L. H.H.
normalization	by	row 1000 990 870 989
normalization	by	column 1000 1000 934 949
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

L.	L. L.H. H.L. H.H.
normalization	by	row 1000 991 481 743
normalization	by	column 966 1000 981 977
normalization	by	spectral	radius 0 0 0 0
normalization	by	max	row	sum 0 0 0 0
normalization	by	max	col	sum 0 0 0 0

Panel	A:	h=2

Panel	B:	h=10


