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Abstract   

 

The aim of this paper is to propose a simple and unique measure of risk, that subsumes the 

conflicting information in volatility and skewness indices and overcomes the limits of these indices 

in correctly measuring future fear or greed in the market. To this end, we exploit the concept of 

upside and downside corridor implied volatility, which accounts for the asymmetry in risk-neutral 

distribution, i.e. the fact that investors like positive spikes in returns, while they dislike negative 

ones. We combine upside and downside implied volatilities in a single asymmetry index called the 

risk-asymmetry index (ܴܺܣ). The risk-asymmetry index ሺܴܺܣሻ plays a crucial role in predicting 

future returns, since it subsumes all the information embedded in both the Italian skewness index 

 index is the only index that is able to	ܺܣܴ The .(ܺܫܸܶܫ) and the Italian volatility index ܹܧܭܵܶܫ

indicate (when reaching very high values) a clearly risky situation for the aggregate stock market, 

which is detected neither by the ܺܫܸܶܫ index nor by the ܹܧܭܵܶܫ index. 
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1.  Introduction  

The CBOE skewness index ሺܹܵܧܭ) is intended to measure the perceived tail risk, i.e. the 

probability that investors attach to extreme negative returns. As such, it is intended to supplement 

the information of the CBOE volatility index ሺܸܺܫሻ, which measures the overall risk in the 30-day 

S&P500 log-returns. Despite its critical role in describing the return distribution, the ܹܵܧܭ index 

has not acquired the same outstanding reputation as the ܸܺܫ index. This may be at least partially 

due to the positive relationship between changes in the ܹܵܧܭ index and those of the market returns 

(see e.g. Chang et al. (2013), Faff and Liu (2016)).  In this connection, two points are worthy of 

note. First, while the volatility index (ܸܺܫሻ spikes during periods of market downturn, the skewness 

measure (ܹܵܧܭሻ has been found to spike in both calm and turmoil periods. Second, the US risk-

neutral distribution of returns1 has been found to be more negatively skewed (indicating higher 

levels of risk) during bullish market periods than during bearish market periods. These two points 

raise questions about the validity of the ܧܱܤܥ	ܹܧܭܵ index as an indicator of US market fear, 

casting light on the importance of investigating alternative asymmetry measures better suited to 

describe market fear. Similar questions  have been raised about the nature of the ܹܵܧܭ index in the 

Italian market: Elyasiani et al. (2015) find that, for the 2011-2014 period, the Italian ܹܵܧܭ	index 

 performed more as a barometer of investor greed (excitement) due to the possible (ܹܧܭܵܶܫ)

market upturn, than as a measure of investors’ fear of a market downturn. Moreover, from the 

investors’ point of view it is difficult to combine ܸܺܫ and ܹܵܧܭ information. High levels of  ܸܺܫ 

may be associated with both high and low levels of ܹܵܧܭ and this may give rise to more confusion 

than confidence.   

The aim of this paper is to offer to investors a simple measure of risk, that subsumes the 

information in the ܸܺܫ volatility index, while disentangling good (positive returns) and bad 

volatility (negative returns), and overcoming the limits of both the ܸܺܫ and the ܹܵܧܭ index in 

                                                            
1 The risk-neutral distribution of the returns on an asset is the expectation under the risk-neutral measure of the future 
distribution of the stock returns. It can be obtained from option prices listed on the underlying asset. 



 

 

correctly measuring fear or greed in the market. To this end, we exploit the concept of upside and 

downside corridor  implied volatility measures which accounts for the asymmetry in the risk-neutral 

distribution, i.e. the fact that investors like positive spikes in the returns, while they dislike negative 

ones by focusing on positive and negative returns above and below the forward price. We then 

combine upside and downside implied volatilities in an asymmetry index called the risk-asymmetry 

index (ܴܺܣ), which is our proposed new measure of risk.  

The paper proceeds as follows. First, we compute a skewness index similar to the ܧܱܤܥ	ܹܧܭܵ 

index for the Italian stock market, which we call ܹܧܭܵܶܫ, and we use it as a benchmark for 

measuring skewness. Second, we introduce upside and downside corridor implied volatilities and 

we combine them in the risk-asymmetry index (ܴܺܣ) which is intended to disentangle the 

contribution of positive and negative shocks to the risk-neutral distribution of returns on the FTSE 

MIB (Milano Indice Borsa). Third, in line with Rubbaniy et al. (2014), we investigate the 

relationship between market returns, the proposed risk-asymmetry index (ܴܺܣ), the Italian ܹܵܧܭ 

index (ܹܧܭܵܶܫ), the Italian volatility index (ܺܫܸܶܫ) and the two corridor upside and downside 

indices (ܫܥ ௎ܸ௉	and ܫܥ ஽ܸௐ).  

Fourth, in order to provide investors with a sound indicator of future fear or greed, we examine 

whether extremely high or low levels of the risk-asymmetry index may be related to positive or 

negative future returns. Rubbaniy et al. (2014) test the relation between volatility (proxied by ܸܺܫ, 

ܸܺܰ and ܸܺܣܦ indices) and future market returns and find that implied volatility indices are good 

predictors of future market returns. We complement their analysis by investigating the predicting 

power of volatility indices, the skewness index and our new proposed risk-asymmetry index. In 

order to provide investors with a time-frame for the relation between the risk-asymmetry index and 

future returns, we investigate their relation in the short, medium or long term. 

This allows us to address two interesting and controversial issues in literature: the relation 

between skewness and future returns, and the forecast horizon of the returns predictability. In this 

connection, while Bali and Murray (2013) and Conrad et al. (2013) find a negative relation between 



 

 

risk-neutral skewness and future stock returns (i.e. stocks with a left skewed risk-neutral 

distribution earn higher future returns to compensate for their higher left-tail risk), many authors 

find the opposite relationship: Xing et al. (2010), Yan (2011), Cremers and Weinbaum (2010), 

Rehman and Vilkov (2012), Faff and Liu (2016) and Stilger et al. (2016)) find a positive relation 

between future stock returns and risk-neutral skewness or other proxies for skewness. Regarding the 

forecast horizon of returns predictability, Pan and Poteshman (2006) find that publicly observable 

option signals are able to predict stock returns only for the next one or two trading days, before 

stock prices subsequently reverse. Other papers (Xing et al. 2010) find that the predictive content of 

volatility smirks persists for a period much longer (six months).  

 Our data set consists of daily FTSE MIB (Milano Indice Borsa) index options data over the 

period 2005-2014. In order to estimate skewness and corridor implied volatility measures, we 

exploit the model-free formula of Bakshi et al. (2003), adapted to the Italian market, as outlined in 

Sections 2 and 3. We obtain several results. First, we find a negative relationship between changes 

in the Italian volatility index ܺܫܸܶܫ and changes in the Italian ܹܧܭܵܶܫ	index. Specifically, an 

increase in the Italian volatility index is associated with a decrease in the Italian ܹܧܭܵܶܫ	index 

(risk-neutral distribution becomes more symmetrical). This suggests that volatility and 

 move together but in opposite directions, and as a result combining their information on	ܹܧܭܵܶܫ	

future fear could be problematic. We find a neat result for the risk-asymmetry index ܴܺܣ, which, 

unlike the ܹܧܭܵܶܫ, is only marginally positively related to the Italian volatility index.  

Second, the volatility indices (ܺܫܸܶܫ, upside and downside corridor volatilities	ܫܥ ௎ܸ௉	and 

ܫܥ ஽ܸௐ) provide useful information about future returns only in the high volatility period and for the 

long-term forecast horizon (60 and 90 days), while the ܴܺܣ index provides useful information 

throughout the sample.  

Third, the risk-asymmetry index ܴܺܣ subsumes all the information in ܹܵܧܭ and ܺܫܸܶܫ in 

predicting future market returns. This suggests that the risk-asymmetry index ܴܺܣ is the only index 



 

 

investors should trust for the purpose of predicting future returns, without having to complement the 

information in the implied volatility index with that of the skewness index. 

Fourth, when we consider very low values in the volatility indices, we find a positive 

relation between volatility levels and future returns, consistent with a buy signal for the stock 

market index. On the other hand, when volatility is very high, the relation becomes negative, 

suggesting a sell-signal. However, when volatility reaches extremely high values, the relation 

between volatility levels and future market returns becomes positive, suggesting positive future 

returns, consistent with an oversold market and a buy opportunity for investors (similar to the 

findings in Rubbaniy et al. (2014) for the ܸܺܫ index). As a result, the volatility index does not 

provide a clear signal for investors, who are not in a position know in advance whether the level of 

volatility can be considered high or extremely high. 

On the other hand, the ܴܺܣ index gives a clear and unambiguous signal. When considering 

extremely low values of the risk asymmetry index ܴܺܣ, we find a positive relation between the 

 and future market returns, suggesting a buy opportunity. On the other hand, for extremely high ܺܣܴ

values of the risk-asymmetry index ܴܺܣ, we find a strong negative relation between the ܴܺܣ and 

future market returns, suggesting a sell opportunity. As a result, the risk-asymmetry index can be 

interpreted as an early warning for future aggregate market returns. This means that the ܴܺܣ index 

performs better than both the ܹܧܭܵܶܫ, which shows a negative relation with future market returns 

only for extremely low values, and the ܺܫܸܶܫ index, that displays changes in the sign of the relation 

with future returns for high and very high volatility levels, leaving investors without a clear 

indication. 

The structure of the paper is as follows. In Section 2, we introduce the risk-asymmetry index 

 the ,ܹܧܭܵܶܫ In Section 3, we describe the data and the methodology used to compute the .ܺܣܴ

 and upside and downside corridor implied volatility (ܺܫܸܶܫ) the Italian volatility index ,ܺܣܴ

indices (ܫܥ ௎ܸ௉ and ܫܥ ஽ܸௐ). In Section 4, we analyze the properties of the risk-asymmetry index 

and the other indices. In Section 5, we investigate the relationship between the indices and future 



 

 

market returns in both high and low volatility periods. In Section 6 we investigate the relationship 

between extreme levels of the ܴܺܣ index and future aggregate market returns, and compare the 

results with the volatility indices and the ܹܧܭܵܶܫ. The final section concludes. 

 

2. The risk-asymmetry index (RAX) 

In this section we introduce the risk-asymmetry index (ܴܺܣ), which is based on upside and 

downside corridor implied volatilities. Corridor implied volatility (ܸܫܥ), introduced in Carr and 

Madan (1998) and Andersen and Bondarenko (2007) is obtained from model-free implied volatility 

due to Britten-Jones and Neuberger (2000) by truncating the integration domain between two 

barriers. These authors show that it is possible to compute the expected value of corridor variance 

-and, consequently, the corridor implied volatility measure as its square root, under the risk (ܸܫܥ)

neutral probability measure. This objective is achieved by using a portfolio of options with strikes 

ranging from ܤଵ to ܤଶ, as described by: 

,ሺ0ܸܫܥ෠ሾܧ ܶሻሿ ൌ ෠ܧ ቈ
1
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In this specification,  ܯሺܭ, ܶሻ is the minimum between a call or put option price, with strike price 

 ଶ are the barrier levels within which theܤ ଵ andܤ is the risk-free rate, and ݎ ,ܶ and maturity ܭ

variance is accumulated. In particular, if ܤଵ and ܤଶ are set equal to 0 and ∞, respectively, the 

corridor variance coincides with model-free variance. The square root of model-free variance is 

model-free implied volatility (ܸܫܨܯ) . 

In order to compute the downside corridor implied volatility measure ߪ஽ௐሺ0, ܶሻ, we set ܤଵ 

equal to 0 and ܤଶ equal to ܨ௧, which is equal to the forward price. On the other hand, we compute 

upside corridor volatility measure ߪ௎௉ሺ0, ܶሻ	by setting ܤଵ equal to ܨ௧ and ܤଶ equal to ∞: 
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with ܨ௧ ൌ ௥்݁∗ܭ	 ∙  is the reference strike price (i.e. the strike at which the ∗ܭ where ݁ܿ݊݁ݎ݂݂݁݅݀

 in absolute value between the at-the money call and put prices is the smallest).2 The ݁ܿ݊݁ݎ݂݂݁݅݀

sum of upside and downside corridor implied variance coincides with model-free implied variance.  

The volatility of the left tail part of the distribution (downside corridor implied volatility, 

 (௎௉ߪ ,upside corridor implied volatility) ஽ௐ) and the volatility of the right part of the distributionߪ

are used in order to compute the risk-asymmetry index ሺܴܺܣሻ measure as follows: 

,ሺ0ܺܣܴ ܶሻ ൌ
,௎௉ሺ0ߪ ܶሻ െ ,஽ௐሺ0ߪ ܶሻ

,ை்ሺ0்ߪ ܶሻ
 (4)

In order to have a constant 30-day measure for implied skewness, we derive the ܴܺܣଷ଴ index by 

using a linear interpolation of near and next term options, with the same formula adopted for the 

computation of the ܧܱܤܥ	ܹܧܭܵ index: 

ଷ଴ܺܣܴ ൌ ௡௘௔௥ܺܣܴ	ݓ ൅ ሺ1 െ ௡௘௫௧ (5)ܺܣሻܴݓ

with ݓ ൌ ೙்೐ೣ೟ିଷ଴

೙்೐ೣ೟ି ೙்೐ೌೝ
, and ௡ܶ௘௔௥ ( ௡ܶ௘௫௧	ሻ	is the time to expiration of the near (next) term options, 

 ,is the annualized index measure which refers to the near (next) term options (௡௘௫௧ܺܣܴ) ௡௘௔௥ܺܣܴ	

respectively.  

ܺܣܴ ൌ 100 െ 10 ൈ ଷ଴ܺܣܴ (6)

   

                                                            
2  In this application, corridor implied volatility is computed as a discrete version of equations (2) and (3) with 
integration domain equal to [

minK , F] and [F, 
maxK ]. 

minK  and 
maxK correspond to the minimum and maximum strike 

price ensuring an insignificant truncation error (for more details see Muzzioli (2015)).  

 



 

 

3. Data description and methodology 

The data set consists of closing prices on FTSE MIB3-index options (MIBO) and closing 

prices of the FTSE MIB-index recorded from 3 January 2005 to 28 November 2014. The FTSE 

MIB is adjusted for dividends as follows:  

መܵ௧ ൌ ܵ௧݁ିఋ೟∆௧ (7)

where ܵ௧ is the FTSE MIB index value at time ݐ, whereas ߜ௧ is the dividend yield at time ݐ, and ∆ݐ 

is the time to maturity of the option. We use Euribor rates with maturities of one week, and one, 

two, and three months as a proxy for the risk-free rate (the appropriate yield to maturity is computed 

by linear interpolation). The data-set for the MIBO is kindly provided by Borsa Italiana S.p.A. The 

time series of the FTSE MIB index, the dividend yield and the Euribor rates are obtained from 

Datastream. 

We apply several filters to the option data set in order to eliminate arbitrage opportunities and 

other irregularities in the prices. First, consistently with the computational methodology of other 

indices (such as the ܧܱܤܥ	ܹܧܭܵ), we eliminate options close to expiry that may suffer from 

pricing anomalies that might occur close to expiration (options with time-to-maturity of less than 

eight days). Second, following Ait-Sahalia and Lo (1998), only at-the-money and out-of-the-money 

options are retained (put options with moneyness lower than 1.03 and call options with moneyness 

higher than 0.97). Last, option prices violating the standard no-arbitrage constraints and positive 

prices for butterfly spreads (Carr and Madan, 2005) are eliminated. Following Muzzioli (2013a), we 

interpolate the volatility-strike knots by using cubic splines, and extrapolate outside the existing 

domain of strike prices by using a constant extrapolation scheme. In this way, we ensure an 

insignificant truncation and discretization error. For more details see Muzzioli (2013a, 2013b). 

In order to obtain 30-day constant maturity indices, each day we compute by linear interpolation 

between near-term and next-term maturity options, the Italian ܹܵܧܭ index (ܹܧܭܵܶܫ) by using the 

                                                            
3 Financial Times Stock Exchange Milano Indice di Borsa: it is a capital-weighted index consisting of 40 major stocks 
listed on the Italian market 



 

 

formula of the ܧܱܤܥ	ܹܧܭܵ index, adapted to the Italian market, the Italian volatility index 

ܸܫܨܯ as ,4(ܺܫܸܶܫ) ∗ 100, the upside and downside corridor implied volatility indices ܫܥ ௎ܸ௉=ߪ௎௉ ∗

100 and ܫܥ ஽ܸௐ=ߪ஽ௐ ∗ 100. Further details of the computation of the ܹܧܭܵܶܫ index are provided 

in Appendix A. 

Physical skewness is obtained from daily FTSE MIB (Milano Indice Borsa) log-returns by 

using a rolling window of 30 calendar days that is then annualized. In this way the physical measure 

refers to the same time-period covered by the risk-neutral counterparts. Following the methodology 

adopted by the CBOE, we compute the ܹܧܭܵܶܫ index as in equations (5 and 6). Also the skewness 

index (ܵܧܭ ௉ܹுሻ is computed as in equation (6) for ease of comparison.  

 

5. Descriptive analysis of the RAX index, the ITSKEW and the implied volatility indices 

Table 1 provides the descriptive statistics of the FTSE-MIB index returns (ܴ), the index of 

physical skewness (ܵܧܭ ௉ܹு) and the levels and the initial differences compared to the Italian 

volatility index (ܺܫܸܶܫ), the upside and downside corridor implied volatility indices 

ܫܥ) ௎ܸ௉,	ܫܥ ஽ܸௐ), the Italian  skewness index (ܹܧܭܵܶܫ) and the risk-asymmetry index (ܴܺܣሻ. 

Physical returns are far from normality, displaying a slightly negative skewness and a pronounced 

excess kurtosis. The hypothesis of a normal distribution is strongly rejected also for implied 

volatility indices, indicating the presence of extreme movements in volatility, i.e. fat tails. When we 

split the Italian volatility index (ܺܫܸܶܫሻ into its two components (upside and downside corridor 

implied volatilities), it may be seen that each component is far from the normality assumption, with 

downside corridor implied volatility being on average higher than the upside one. This indicates 

that extreme movements are more often present in the left part (downside) of the risk-neutral 

distribution, suggesting that peaks of volatility are more often associated with increases in the 

volatility of the left-hand side of the distribution (bad news). 

                                                            
4 The Italian Volatility Index (IVI) which is the Italian version of the VIX index is currently quoted in the Italian market. 
However, we prefer to use our ITVIX index for consistency with the computational methodology of upside and 
downside corridor implied volatilities.  



 

 

Turning our attention to the skewness index and the risk-asymmetry index, we can observe that 

they are on average higher than the threshold level of 100 (103.44, and 101.72 for ܹܧܭܵܶܫ, and 

 respectively) pointing to a highly negatively skewed risk-neutral distribution. On the other ,ܺܣܴ

hand, the physical skewness index (ܵܧܭ ௉ܹு) is close to 100 (100.06), pointing to an almost 

symmetrical distribution of physical returns. This suggests the presence of a positive skewness risk 

premium (i.e., the difference between physical and risk-neutral skewness) which is mainly 

attributable to the negative asymmetry of the risk-neutral distribution, i.e. to investor expectations 

that overestimate the real probability of negative returns. This result is consistent with the evidence 

from the US market provided by Foresi and Wu (2005) and Kozhan et al. (2013). The excess 

kurtosis in all the risk-neutral asymmetry measures indicates the presence of extreme movements 

not only in implied volatility, but also in higher moments.  

The fact that ܴܺܣ	is on average higher than 100, suggests that downside corridor implied 

volatility is on average higher in percentage terms than the upside corridor implied volatility. In 

fact, downside corridor implied volatility attains an average of 0.19, whereas upside corridor 

implied volatility an average of 0.15. The evidence of the difference between the volatility of the 

left and right part of the distribution is supported by a t-test, where errors are corrected by Newey 

West (t-stat = -81.70, p-value = 0.00). 

Figure 1 depicts the FTSE MIB index along with the Italian volatility index (ܺܫܸܶܫ) and the 

upside and downside corridor implied volatility indices (ܫܥ ௎ܸ௉	and ܫܥ ஽ܸௐ). It may be seen that 

downside movements of the FTSE MIB index are associated with spikes of the three implied 

volatility indices; downside corridor implied volatility is on average higher than upside volatility, 

and during turbulent periods the difference between downside and upside corridor measures is 

exacerbated. This is also clear if we look to Figure 2 where a plot of the Italian skewness index 

 is provided, along with physical skewness. It is ܺܣܴ and the risk-asymmetry index ܹܧܭܵܶܫ

apparent that the risk-asymmetry index (ܴܺܣሻ, being normalized by model-free implied volatility, 



 

 

spikes when downside corridor implied volatility increases as a percentage of the total (or upside 

corridor implied volatility decreases as a percentage of the total). This represents an initial 

advantage of the risk-asymmetry index, which is not only able to account for volatility, but also for 

the asymmetric behaviour of upside and downside volatility parts.  

In Table 2 we report the correlation coefficients between returns, physical skewness and the 

levels and the initial differences of the ܴܺܣ index, the ܹܧܭܵܶܫ index and the model-free implied 

volatility indices (ܺܫܸܶܫ, ܫܥ ௎ܸ௉	and	ܫܥ ஽ܸௐሻ	. It may be observed that both the ܴܺܣ and the 

 index display a positive significant correlation with the realized skewness index ܹܧܭܵܶܫ

ܧܭܵ) ௉ܹுሻ, and as a result they can be used as predictors of future realized skewness. Notably, 

while the ܹܧܭܵܶܫ index displays a negative significant correlation with the Italian volatility index 

(-0.16), the ܴܺܣ index is positively and significantly correlated (0.099). The low positive 

correlation of both the levels and the daily changes of the ܴܺܣ index with implied volatility 

represents a second advantage of the latter: it goes in the same direction as implied volatility, and is 

negatively related to returns, but it contains additional information beyond the information in 

volatility. As a result, according to the ܴܺܣ index, the risk-neutral distribution of the FTSE-MIB 

index returns is riskier when the implied volatility index is high. For the ܹܧܭܵܶܫ index the relation 

is exactly the opposite. This can be considered as a third advantage of the ܴܺܣ since we expect the 

risk-asymmetry measure to positively spike in periods of turmoil (when 	ܺܫܸܶܫ is high). This is 

confirmed by the positive relation between changes in the ܴܺܣ index and changes in the Italian 

volatility index (on the other hand, the relation between changes in the ܹܧܭܵܶܫ index and changes 

in the ܺܫܸܶܫ index is negative), suggesting that an increase in the volatility index is associated with 

a riskier risk-neutral distribution (the opposite is true if we use the ܹܧܭܵܶܫ, suggesting that the 

risk-neutral distribution is less negatively skewed). The correlation between the Italian volatility 

index (ܺܫܸܶܫሻ and upside and downside corridor implied volatilities is close to 1, showing a higher 

degree of association between them. 



 

 

6.  Can we use the risk-asymmetry index as an indicator of future index returns? 

In this section, we examine the forecasting power of the risk-asymmetry index ܴܺܣ, the 

skewness index ܹܧܭܵܶܫ, and the model-free implied volatility indices on future stock returns by 

estimating the following regression: 

ܴ௧,௧ା௡ ൌ ߙ ൅ ௧ݔଵ݅݊݀݁ߚ ൅ ௧  (8)ߝ

where ܴ௧,௧ା௡ is the market aggregate log-return computed between day ݐ and day ݐ ൅ ݊, and 

݊ is equal to 1, 7, 30, 60 and 90 calendar days, in order to consider both short (1, 7 days), medium 

(30 days) and long-term (60-90 days) returns; ݅݊݀݁ݔ௧ is proxied by levels of , ܹܧܭܵܶܫ	ܺܣܴ, 

ܫܥ	,ܺܫܸܶܫ ௎ܸ௉ and ܫܥ ஽ܸௐ. Equation (8) is intended to establish whether index values are associated 

with positive or negative future returns, thus highlighting the possibility of profits or losses in the 

market on a short-, medium- or long-term forecast horizon. As noted by Cremers and Weinbaum 

(2010), options have a predictive power on future market returns, since informed investors trade 

first in the option market and only subsequently is the relevant information reflected in stock prices. 

The results are reported in Table 3, Panel A. None of the implied volatility indices has any 

explanatory power on future stock returns in any forecast horizon. As a result, neither the Italian 

volatility index (ܺܫܸܶܫሻ, nor upside corridor implied volatility index ሺܫܥ ௎ܸ௉ሻ, nor downside 

corridor implied volatility index ሺܫܥ ஽ܸௐሻ can be used to forecast returns over the next 90 days. On 

the other hand, we find that the ܴܺܣ index shows a significant negative relationship at the 1% level 

for all the forecast horizons. The ܹܧܭܵܶܫ index displays a highly significant relation in the short 

term (1-, 7- and 30- days), that weakens for longer time horizons (60- and 90- days). These results 

suggest that high (low) values in the ܴܺܣ and in the ܹܧܭܵܶܫ index are reflected in low (high) 

future market returns in the short-, medium- and long–term forecast horizons.  

The unexpected results for the information content of model-free implied volatility indices 

drive the investigation further, since we expect them to be informative at least during turmoil 

periods. As a result, in this section we investigate whether the volatility level can affect the 

predictability of returns. Two main volatility regimes are evident during the sample period: one 



 

 

regime is characterized by low volatility and positive market returns (2005-2007 and 2013-2014), 

the second regime is characterized by high volatility and a decline of about 70% in the stock market 

(2008-2012). Figure 1, which reports the comparison between FTSE MIB index and the model-free 

implied volatility indices, helps to enucleate the two sub-periods. In order to contrast the predictive 

power of skewness and volatility indices under calm and intense market volatility conditions, we 

estimate the models described by regression (8) in both sub-periods.  

Overall, both the ܴܺܣ	and the Italian skewness index ܹܧܭܵܶܫ	, outperform volatility 

indices in forecasting future market returns in both high and low volatility periods. The results for 

the calm period, reported in Table 3, Panel B, confirm the predictive power of the ܴܺܣ and the 

 indices only for medium- and long-term forecast horizons (30-, 60- and 90- days), while ܹܧܭܵܶܫ

the results for the volatility indices do not exhibit any significant relationship with future market 

returns.   

The results for the high volatility period, reported in Table 3, Panel C show that both the 

 indices embed useful information for predicting future market returns in any ܺܣܴ and ܹܧܭܵܶܫ

considered forecast horizon. In this case, also the model-free implied volatility indices (ܺܫܸܶܫ, 

ܫܥ ஽ܸௐ and ܫܥ ௎ܸ௉ሻ	display a significant relation, but only with long-term future returns. Among the 

volatility indices, the corridor upside volatility index (ܫܥ ௎ܸ௉ሻ achieves the better forecasting 

performance, since it embeds useful information to predict both short- and medium-term aggregate 

market returns. The positive sign of the relationship between model-free implied volatility indices 

and future returns is consistent with the findings in Rubbaniy et al. (2014) who document a 

significant positive long-term relation between volatility indices and future stock returns in both the 

German and the US market.  

 

In order to establish whether the ܴܺܣ index subsumes all the information contained in the 

 ሻ in predicting future market returns, we estimateܺܫܸܶܫ) and in the Italian volatility index ܹܧܭܵܶܫ

the following regression: 



 

 

ܴ௧,௧ା௡ ൌ ߙ ൅ ܧܭܵܶܫଵߚ ௧ܹ ൅ ௧ܺܣଶܴߚ ൅ ௧ܺܫܸܶܫଷߚ ൅ ௧  (9)ߝ

and test if  ߚଵ ൌ 0 and ߚଷ ൌ 0. 

The results for the full sample period are reported in Table 4, Panel A. It may be seen that only the 

 index shows a significant relation with future market returns. The coefficient is negative and ܺܣܴ

statistically significant at the 1% level for both the medium- and the long-term forecast horizons 

(30, 60 and 90-days). In line with equation (8), high values in the ܴܺܣ index are associated with 

low future market returns. Both ܹܧܭܵܶܫ and ܺܫܸܶܫ	indices appear to be ineffective in terms of 

forecasting market index (FTSE MIB) returns in the future. This is confirmed by a joint Wald test 

(β1=0, β3=0) which suggests that the risk-asymmetry index (ܴܺܣሻ subsumes all the information of 

 ,for any considered forecast horizon. This is clearly important for investors ܺܫܸܶܫ and ܹܧܭܵܶܫ

who can rely on a single measure of risk, the ܴܺܣ index, without having to consider two different 

indices: the ܹܧܭܵܶܫ and the ܺܫܸܶܫ.  

The results for the low and high volatility periods are shown in Panels B and C, 

respectively. According to these results, during the low volatility period, only the ܴܺܣ index is 

significant at the 1% level and only for the long-term forecast horizon (90-days). During the high 

volatility period (2008-2012), both the ܴܺܣ and ܺܫܸܶܫ	indices are significant, pointing to the 

usefulness of complementing the information in the ܴܺܣ index with that provided in ܺܫܸܶܫ.  

However, the sign in the betas shows that the information in the ܴܺܣ index and ܺܫܸܶܫ move in the 

opposite direction: if high values of the ܴܺܣ index are associated with low future market returns, 

high values in volatility are associated with high future returns.  

To sum up, we find that the ܴܺܣ index outperforms both the Italian volatility index ܺܫܸܶܫ  

and the ܹܧܭܵܶܫ index in forecasting future market returns. This result is important for investors: 

they can exploit the information of the ܴܺܣ index in order to set profitable trades. Moreover, when 

the ܴܺܣ index is high, they can promptly hedge their portfolios in order to avoid large losses. This 



 

 

information could have dramatically improved portfolio selection procedures during the recent 

financial crisis. 

 

7.  The information content of extreme values of the RAX index 

 

In the financial literature it is recognized that high levels of volatility in the market are 

associated with investor fear and downturns in the stock prices. This is explained by the strong 

negative relation between parallel changes in volatility indices and stock market returns (see e.g. 

Whaley (2000), Giot (2005)). However, this relation is not necessarily true if we consider future 

market returns. Giot (2005) suggests that high or very high implied volatility levels may indicate an 

oversold market and, as a result, possible positive future returns for long positions in the underlying 

market. This hypothesis is investigated in Rubbaniy et al. (2014), who estimate the relation between 

different levels of implied volatility indices (index values higher than the 90%, 95% and 99% 

percentiles or lower than the 1%, 5% and 10% percentiles) and the corresponding future index 

returns. They find that very high levels of volatility are related to positive future market returns, in 

line with the suggestion in Giot (2005).  

In keeping with this observation, our aim is to investigate the relation between future returns 

and extreme levels of the ܴܺܣ index. In order to make a comparison, and establish which is the 

most reliable index, we also include the Italian ܹܧܭܵܶܫ index and model-free implied volatility 

indices in the analysis. We use both the Italian volatility index (ܺܫܸܶܫሻ and the corridor upside and 

downside volatility indices (ܫܥ ௎ܸ௉ and ܫܥ ஽ܸௐ). We consider only extreme index values, namely 

extremely low and very low values (index values lower than the 1% and the 5% percentiles, 

respectively) and extremely high and very high values (index values higher than the 99% and 95% 

percentiles, respectively) and accordingly construct four subsamples on which to estimate equation  



 

 

(8).5 In this way we examine whether extreme upside or downside index levels can be considered as 

an early signal of future negative or positive returns.   

The results for extremely low and very low index values (values lower than their 1%, and 

5%, percentile) are shown in Table 5, Panels A and B, respectively. The results for extremely high 

and very high index values (values higher than their 95% and 99% percentiles) are shown in Table 

6, Panels A and B, respectively. As all the indices are constructed in order to have a constant 

forecast horizon of 30-days, we expect them to have the highest information content on the 

medium-term forecast horizon.  

Starting from the analysis of extremely low values (Table 5), a desirable property of a fear index 

is that when the index is extremely low, investors may feel safe and expect positive future returns. 

This is exactly what we find for the ܴܺܣ index: when the level of the index is extremely low (lower 

than its 1% percentile), we can see a positive and marginally significant relationship between the 

index and future aggregate market returns only for very short and medium forecast-horizons (1-, 7- 

and 30- days). As a result we can interpret extremely low values of the ܴܺܣ index as indicators of 

short- and medium-term market greed. The same relation is found for ܫܥ ,ܺܫܸܶܫ ௎ܸ௉ and ܫܥ ஽ܸௐ, for 

the 7-day and the 30-day forecast horizon.  For long-term forecast horizons, very low implied 

volatility index (ܺܫܸܶܫሻ values have a significant relationship with future aggregate market returns, 

which however is not constant in sign, making it difficult for investors to interpret the signal. 

For extremely and very high levels of the ܴܺܣ index (Table 6), we see a negative and 

significant relation between the ܴܺܣ index and future aggregate market returns, mainly for the 

medium-term and the long-term forecast horizons. This suggests that extremely and very high 

values in the ܴܺܣ	index are a clear signal of low future market returns in the medium- and long-

term forecast horizon. In this framework the ܴܺܣ	index acts as measure of medium- and long-term 

market fear since high value in the skewness index can be regarded as an early warning of future 

                                                            
5 Results for the 10% and the 90% percentiles are not reported for reasons of space but are available upon request and 
are similar to the 5% and 95% percentiles, respectively. 



 

 

market returns. We do not find any evidence for the ܹܧܭܵܶܫ index as a warning of future negative 

returns. For the Italian volatility index (ܺܫܸܶܫሻ we find a different signal depending on the level of 

volatility: very high values are associated with negative future returns, but extremely high values 

are associated with positive future returns. This result may be interpreted as follows: if volatility 

becomes extremely high, then the market has already discounted all the fear, and positive returns 

can be expected. From ܫܥ ௎ܸ௉ and ܫܥ ஽ܸௐ we obtain almost the same conflicting information as that 

obtained from ܺܫܸܶܫ.  However, given that from the investors’ point of view it is impossible to 

assess whether the volatility level is very high (in this case “sell”) or extremely high (in this case 

“buy”), the mainstream information obtained from the ܴܺܣ (if high then “sell”, if low then “buy”) 

is the simplest and most valuable for investors.  Moreover, given that we prefer to correctly measure 

fear than greed, we can state that the ܴܺܣ	index is the only index able to indicate (when reaching 

very high values) a possible risky situation for the aggregate stock market. In Figure 3 we report a 

comparison between the “buy” (green) and “sell” (red) signals given by the ܴܺܣ index and the 

FTSE MIB returns. We can see that in many points the ܴܺܣ index correctly signals future market 

returns. This result is important for investors who can promptly hedge their portfolios in order to 

avoid losses.  

 

8. Conclusions 

Given the importance of disentangling positive and negative shocks to volatility, which are seen 

by investors respectively as good or bad news, we exploit the information in upside and downside 

corridor implied volatilities in order to measure the asymmetry of the return distribution. Upside 

and downside corridor implied volatilities are aggregated into the risk-asymmetry index (ܴܺܣ) 

which measures the difference between upside and downside corridor implied volatilities 

standardized by total volatility. Standardization is intended to isolate the asymmetric effect from the 

volatility level. Given that the two risk measures that capture the second and the third moments (the 



 

 

 may provide conflicting information (it is difficult to interpret a high (ܹܧܭܵܶܫ and the ܺܫܸܶܫ

 index, which is ܹܧܭܵܶܫ index, which is meant to measure fear, together with a low ܺܫܸܶܫ

intended to measure additional tail risk), the ܴܺܣ index is meant to be the only risk measure that 

investors should trust for determining portfolio strategies. We compare the properties of the ܴܺܣ 

index with the Italian skewness index (ܹܧܭܵܶܫ), the Italian volatility index (ܺܫܸܶܫ), and the two 

corridor upside and downside implied volatilities indices (ܫܥ ௎ܸ௉ and ܫܥ ஽ܸௐ).  

We obtain several findings. First, the risk-asymmetry index presents many advantages: it is 

positively correlated with realized skewness (as a result, it can be considered a market-based 

forecast of the subsequently realized measure), and it is positively but weakly related with the 

Italian volatility index (ܺܫܸܶܫ). Therefore, according to the ܴܺܣ index, the risk-neutral distribution 

of the FTSE-MIB index returns is riskier when model-free implied volatility is high, and as a result 

we expect the ܴܺܣ index to positively spike in turmoil periods. 

Second, the ܴܺܣ index subsumes all the information in the Italian volatility index and in the 

 index in forecasting future market returns at any forecast horizon (1, 7, 30, 60 and 90 ܹܧܭܵܶܫ

days). This result is important for investors who could rely on just one simple indicator in order to 

plan profitable trades.  

Third, the ܴܺܣ index can be considered as a greed index in the short and medium term (up to 30 

days) and a fear index in the medium and long-term (from 30 to 90 days), since extremely low 

values of the ܴܺܣ index can be interpreted as indicators of future positive returns over the next 30-

days and extremely high values of the ܴܺܣ index indicate future negative returns over the next 30 

to 90-days. 

Last, unlike the ܺܫܸܶܫ index which cannot be easily used by investors since it indicates future 

negative returns if very high, but future positive returns if extremely high, the ܴܺܣ	index is the only 

index able to indicate (when reaching very high values) a clear possibly risky situation for the 

aggregate stock market. This result is important for investors who can hedge their portfolios in 

order to avoid losses.  
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Appendix A. The Italian skewness index (ITSKEW) 

Currently, the only skewness index quoted is the ܧܱܤܥ	ܹܧܭܵ	 index for the S&P500 market, 

defined as:  

ܹܧܭܵ ൌ 100 െ 10 ൈ ܭܵ (A1)

where	ܵܭ is the 30-day measure of risk-neutral skewness. Risk-neutral skewness measures the 

asymmetry in the returns distribution obtained from option prices. It is equal to zero for a normal 

distribution, indicating the symmetry in the returns. If skewness is negative it means that the mass 

of the distribution is concentrated in the left tail; to elaborate, the left tail is longer or thicker, or 

both, compared to the right tail. Symmetrically, if skewness is positive, it means that the right tail is 

longer or thicker, or both, with respect to the left tail (the mass of the distribution is concentrated in 

the right tail. In order to have a 30-day measure of risk-neutral skewness, ܵܭ is computed by linear 

interpolation between two values of risk-neutral skewness: the first refers to near-term options, with 

maturity possibly less than 30 days, the second refers to next-term options with time to maturity 

possibly greater than 30 days. As the risk-neutral skewness attains typically negative values for 

equity indices, the ܹܵܧܭ index attains in general a value above 100; the higher the value of the 

 is (ܭܵ) the higher the riskiness of the returns distribution. The risk-neutral skewness ,ܹܧܭܵ

computed by means of the Bakshi et al. (2003) formula. 

According to Bakshi et al. (2003) model-free skewness is obtained from the following equation as:  



 

 

ሺt,τሻܭܵ ≡ 	
௧ܧ
௤൛ሺܴሺt,τሻ െ ௧ܧ

௤ሾܴሺt,τሻሿሻଷൟ

൛ܧ௧
௤ሺܴሺt,τሻ െ ௧ܧ

௤ሾܴሺt,τሻሿሻଶൟ
ଷ/ଶ

ൌ 		
݁௥τܹሺt,τሻ െ 3݁௥τߤሺt,τሻܸሺt,τሻ ൅ ሺt,τሻଷߤ2

ሾ݁௥τܸሺt,τሻ െ ሺt,τሻଶሿଷ/ଶߤ
 

(A2)

Where ߤሺݐ, ߬ሻ, ܸሺݐ, ߬ሻ , ܹሺݐ, ߬ሻ and ܺሺݐ, ߬ሻ are the prices of the contracts, at time ݐ with maturity ߬, 

based on first, second, third and fourth moment of the distribution, respectively; their value are 

computed as:  
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where ܥሺݐ, ߬; ,ݐሻ and ܲሺܭ	 ߬;  ߬ with maturity ݐ ሻ are the prices of a call and a put option at timeܭ	

and strike ܭ, respectively, ܵሺݐሻ, is the underlying asset price at time ݐ.  
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Table 1 – Descriptive statistics	

ܧܭܵ  ௉ܹு ܹܧܭܵܶܫ ܫܥ ܺܫܸܶܫ ܺܣܴ ௎ܸ௉ ܫܥ ஽ܸௐ ܴ 
Δ

ܹܧܭܵܶܫ

Δ 

 ܺܣܴ

Δ

 ܺܫܸܶܫ

Δ

ܫܥ ௎ܸ௉	

Δ

ܫܥ ஽ܸௐ	

Mean 100.06 103.44 101.72 24.90 15.08 19.35 -0.00 -0.00 -0.00 0.01 0.00 0.00 

Median 100.06 103.17 101.66 23.15 14.11 17.93 0.00 0.02 0.01 -0.05 -0.03 -0.04 

Maximum 101.32 110.98 105.46 80.36 50.25 61.18 0.11 5.00 1.75 27.51 16.59 21.19 

Minimum 98.74 100.08 100.11 8.76 4.78 6.95 -0.09 -8.37 -2.89 -14.96 -9.16 -11.20 

Std. Dev. 0.34 1.43 0.56 10.77 6.32 8.40 0.02 0.95 0.30 1.77 1.12 1.41 

Skewness -0.04 1.30 1.47 1.23 1.06 1.31 -0.05 -0.61 -0.64 1.72 1.31 1.69 

Kurtosis 3.85 5.55 8.55 5.08 4.50 5.38 7.72 10.71 11.73 34.39 30.82 31.26 

Jarque-Bera 76 1365 4054 1070 693 1284 2291 6259 8006 102487 80307 83278 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note: The table shows the descriptive statistics of the physical skewness index, the Italian skewness index ܹܧܭܵܶܫ, the risk asymmetry index ܴܺܣ,  the Italian implied volatility 

index ܺܫܸܶܫ	and the corridor upside and downside implied volatility indices ܫܥ ௎ܸ௉ and ܫܥ ஽ܸௐ, along with FTSE MIB returns. We indicate as ܵܧܭ ௉ܹு the index of subsequently 

realized skewness in the next 30 days, ܹܧܭܵܶܫ is the skewness index computed using the CBOE method, adapted to the Italian market, ܴܺܣ is the risk-asymmetry index defined 

as: ܴܺܣ ൌ 	100 െ 10 ∗ ሺ	ܫܥ ௎ܸ௉ െ ܫܥ ஽ܸௐሻ/ܸܫܨܯ ,ܸܫܨܯ is the model-free implied volatility, ܴ is the FTSE MIB daily return (continuously compounded). The p-value refers to 

the Jarque-Bera test for normality (the null hypothesis is that both skewness and kurtosis are zero).  

 

 



 

 

Table 2 – Correlation table 	

 
ܧܭܵ ௉ܹு   ܹܧܭܵܶܫ  ܺܣܴ ܫܥ ܺܫܸܶܫ ௎ܸ௉ ܫܥ ஽ܸௐ ܴ  Δ	

 ܹܧܭܵܶܫ
Δ 

 ܺܣܴ
Δ

 ܺܫܸܶܫ
Δ

ܫܥ ௎ܸ௉	
Δ

ܫܥ ஽ܸௐ	

ܧܭܵ ௉ܹு 1.000            

           1.000 ***0.154 ܹܧܭܵܶܫ

          1.000 ***0.674 ***0.073 ܺܣܴ

         1.000 ***0.099 ***0.162- ***0.104- ܺܫܸܶܫ

ܫܥ ௎ܸ௉ -0.111*** -0.253*** -0.036* 0.988*** 1.000        

ܫܥ ஽ܸௐ -0.103*** -0.128*** 0.154*** 0.998*** 0.977*** 1.000       

ܴ  0.041** 0.090*** 0.034* -0.074*** -0.081*** -0.072*** 1.000      

Δ1.000 ***0.230 0.006 0.019- 0.000- ***0.152 ***0.331 0.024 ܹܧܭܵܶܫ     

Δܴ1.000 ***0.515 ***0.170 0.021 0.026- 0.007 ***0.268 ***0.153 0.006 ܺܣ    

Δ1.000 ***0.059 **0.051- ***0.552- ***0.080 ***0.078 ***0.080 0.006 *0.035- 0.019- ܺܫܸܶܫ   

Δܫܥ ௎ܸ௉ -0.022 -0.095*** -0.096*** 0.070*** 0.086*** 0.064*** -0.620*** -0.248*** -0.321*** 0.894*** 1.000  

Δܫܥ ஽ܸௐ -0.018 -0.012 0.050** 0.079*** 0.070*** 0.082*** -0.499*** 0.0228 0.222*** 0.983*** 0.800*** 1.000 

Note: The table shows the correlation coefficients between the measures used in the study. For the definition of the measures see Table 1. Significance at the 1% level is denoted 

by ***, at the 5% level by **, and at the 10% level by *



 

 

Table 3 - Regression output for equation (8) 

Panel A: Entire 
sample 

ܫܥ ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ ௎ܸ௉ ܫܥ ஽ܸௐ 

ܴ௧,௧ାଵ 
-0.00065*** 
(-2.921616) 

-0.001587*** 
(-2.673362) 

0.000025 
(0.603892) 

0.000071 
(1.002847) 

0.000022 
(0.436441) 

ܴ௧,௧ା଻ 
-0.001827*** 
(-2.583778) 

-0.005424*** 
(-2.854139) 

0.000022 
(0.161209) 

0.0000135 
(0.543698) 

-0.000000 
(-0.000579) 

ܴ௧,௧ାଷ଴ 
-0.005761*** 
(-2.701228) 

-0.020406*** 
(-3.690731) 

0.000026 
(0.064179) 

0.000364 
(0.482305) 

-0.000068 
(-0.136004) 

ܴ௧,௧ା଺଴ 
-0.008978** 
(-2.546163) 

-0.032146*** 
(-3.470575) 

0.000303 
(0.518663) 

0.001027 
(0.928293) 

0.000218 
(0.306702) 

ܴ௧,௧ାଽ଴ 
-0.011450** 
(-2.517156) 

-0.037305*** 
(-3.277063) 

0.000440 
(0.604029) 

0.001327 
(1.008014) 

0.000369 
(0.408745) 

Panel B: 
Low  
volatility 

ܫܥ ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ ௎ܸ௉ ܫܥ ஽ܸௐ 

ܴ௧,௧ାଵ 
-0.000277 

(-1.424649) 
-0.000421 

(-0.868950) 

0.000054 
(0.962620) 

0.000098 
(1.077808) 

0.000066 
(0.900893) 

ܴ௧,௧ା଻ 
-0.000971* 
(-1.780910) 

-0.002274 
(-1.599408) 

0.000139 
(0.702255) 

0.000279 
(0.868187) 

0.000160 
(0.620922) 

ܴ௧,௧ାଷ଴ 
-0.004620*** 
(-2.923938) 

-0.010010*** 
(-2.605760) 

0.000216 
(0.374499) 

0.000622 
(0.673962) 

0.000209 
(0.278664) 

ܴ௧,௧ା଺଴ 
-0.005738** 
(-2.494838) 

-0.016705*** 
(-3.309428) 

-0.000152 
(-0.209936) 

0.000321 
(0.280836) 

-0.000368 
(-0.387932) 

ܴ௧,௧ାଽ଴ 
-0.007349** 
(-2.531650) 

-0.028578*** 
(-3.828066) 

0.000214 
(0.271997) 

0.001178 
(0.919506) 

-0.000037 
(-0.036209) 

Panel C: High 
volatility  

ܫܥ ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ ௎ܸ௉ ܫܥ ஽ܸௐ 

ܴ௧,௧ାଵ 
-0.001232*** 
(-2.997762) 

-0.002473** 
(-2.557477) 

0.000097 
(1.480084) 

0.000234** 
(1.998150) 

0.000104 
(1.272882) 

ܴ௧,௧ା଻ 
-0.003314** 
(-2.524932) 

-0.007758** 
(-2.507862) 

0.000248 
(1.138857) 

0.000638 
(1.604815) 

0.000257 
(0.949498) 

ܴ௧,௧ାଷ଴ 
-0.008773** 
(-2.295404) 

-0.027956*** 
(-3.060369) 

0.000976 
(1.624556) 

0.002375** 
(2.081653) 

0.001030 
(1.414919) 

ܴ௧,௧ା଺଴ 
-0.016015** 
(-2.510918) 

-0.043048*** 
(-2.900375) 

0.002525*** 
(2.628935) 

0.005506*** 
(3.002638) 

0.002851** 
(2.465019) 

ܴ௧,௧ାଽ଴ 
-0.021104*** 
(-2.625392) 

-0.042060** 
(-2.264853) 

0.003732*** 
(2.850310) 

0.007740*** 
(3.314539) 

0.004350*** 
(2.689793) 

Note: The table shows the estimated output of the following regressions: 

ܴ௧,௧ା௡ ൌ ߙ ൅ ௧ݔଵ݅݊݀݁ߚ ൅ ܧܭܵܶܫ) ௧ is proxied by the Italian skewness indexݔ݁݀݊݅ ௧ whereߝ ௧ܹ), the risk-asymmetry 

index (ܴܣ ௧ܺ), the Italian implied volatility index (ܺܫܸܶܫ) and corridor upside and downside implied volatility indices 

ܫܥ) ௎ܸ௉ and ܫܥ ஽ܸௐሻ; t-stats are shown in parentheses.  

.  

  

 

 

 



 

 

 

 

Table 4 – Regression output for equation (9) 

Panel A: 
Entire sample 

 (%) Adj. R2 ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ

ܴ௧,௧ାଵ 
-0.000361 

(-1.322733) 
-0.001002 

(-1.229248) 
0.000022 

(0.529116) 
0. 28% 

ܴ௧,௧ା଻ 
-0.000648 

(-0.865298) 
-0.004358 

(-1.806853) 
0.000031 

(0.219334) 
0.93% 

ܴ௧,௧ାଷ଴ 
-0.000387 

(-0.165645) 
-0.019964*** 
(-2.704735) 

0.000120 
(0.290628) 

2.60% 

ܴ௧,௧ା଺଴ 
0.000519 

(0.141122) 
-0.033984*** 
(-2.878317) 

0.000488 
(0.809743) 

3.34% 

ܴ௧,௧ାଽ଴ 
-0.001182 

(-0.256222) 
-0.036404*** 
(-2.847297) 

0.000600 
(0.830842) 

3.30% 

Panel B: Low 
vol ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ Adj. R2 (%) 

ܴ௧,௧ାଵ -0.000327 
(-1.084868) 

0.000271 
(0.351197) 

0.000049 
(0.864760) 

0.00% 

ܴ௧,௧ା଻ -0.000796 
(-1.050477) 

-0.000596 
(-0.302059) 

0.0001154 
(0.584977) 

0.44% 

ܴ௧,௧ାଷ଴ -0.004210* 
(-1.873242) 

-0.001601 
(-0.290357) 

0.000104 
(0.182816) 

2.32% 

ܴ௧,௧ା଺଴ -0.003382 
(-1.047355) 

-0.010327 
(-1.395449) 

-0.000322 
(-0.443683) 

2.51% 

ܴ௧,௧ାଽ଴ -0.001076 
(-0.336401) 

-0.026496*** 
(-2.876931) 

-0.000046 
(-0.059316) 

4.31% 

Panel C: 
High vol ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ Adj. R2 (%) 

ܴ௧,௧ାଵ -0.000415 
(-0.787702) 

-0.002220 
(-1.468014) 

0.000112 
(1.558574) 

0.75% 

ܴ௧,௧ା଻ -0.000342 
(-0.233009) 

-0.008398* 
(-1.940233) 

0.000333 
(1.416679) 

2.02% 

ܴ௧,௧ାଷ଴ 0.006541 
(1.478720) 

-0.043813*** 
(-3.349260) 

0.001590** 
(2.487418) 

6.25% 

ܴ௧,௧ା଺଴ 0.010034 
(1.480762) 

-0.071160*** 
(-3.939689) 

0.003510*** 
(3.463493) 

10.60% 

ܴ௧,௧ାଽ଴ 0.004326 
(0.489911) 

-0.064849*** 
(-3.087087) 

0.004531*** 
(3.381408) 

11.86% 

Note: The table shows the estimated output of the following regressions: 	

ܴ௧,௧ା௡ ൌ ߙ ൅ ܧܭܵܶܫଵߚ ௧ܹ ൅ ܣଶܴߚ ௧ܺ ൅ ௧ܺܫܸܶܫଷߚ ൅  .௧; t-stats are shown in parenthesesߝ

 



 

 

Table 5 - Regression output for extremely low values of skewness and volatility indices and future market 

returns.  

Panel A: Regression output for indices values lower than their 1% percentiles  

ܫܥ ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ  ௎ܸ௉ ܫܥ ஽ܸௐ 

ܴ௧,௧ାଵ 0.014466 
(1.031944) 

0.035348** 
(2.357625) 

0.008089 
(1.468854) 

0.002623 
(0.731199) 

-0.007956 
(-1.250212) 

ܴ௧,௧ା଻ 0.037134* 
(1.835505) 

0.070943** 
(2.233811) 

0.032349*** 
(4.631337) 

0.009490 
(1.082955) 

0.000305 
(0.020654) 

ܴ௧,௧ାଷ଴ 0.073227 
(1.116273) 

0.262788** 
(2.484363) 

0.046702** 
(2.571395) 

0.043354*** 
(2.939944) 

0.018176 
(0.949452) 

ܴ௧,௧ା଺଴ 0.131104 
(1.261162) 

0.232770 
(1.394869) 

0.011721 
(1.014633) 

0.011156 
(1.306686) 

0.031071** 
(2.321420) 

ܴ௧,௧ାଽ଴ 0.099972 
(0.953886) 

0.253625 
(1.710892) 

-0.033717** 
(-2.251462) 

-0.022765 
(-1.673043) 

-0.027345 
(-1.318468) 

Panel B: Regression output for indices values lower than their 5% percentile 

  ܫܥ ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ ௎ܸ௉ ܫܥ ஽ܸௐ 

ܴ௧,௧ାଵ -0.009287 
(-1.613375) 

0.005212 
(1.033078) 

0.000134 
(0.137745) 

0.001055 
(0.914814) 

0.001508 
(1.243269) 

ܴ௧,௧ା଻ -0.021018 
(-1.390669) 

-0.011521 
(-0.888116) 

0.003431 
(1.542787) 

0.006543** 

(2.059015) 
0.004410** 
(2.252417) 

ܴ௧,௧ାଷ଴ -0.073775** 
(-2.079119) 

-0.014997 
(-0.290577) 

0.022029*** 
(5.886880) 

0.024404*** 
(5.058825) 

0.023516*** 
(5.691177) 

ܴ௧,௧ା଺଴ -0.119576* 
(-1.819462) 

-0.003855 
(-0.069268) 

0.009466*** 
(3.129890) 

-0.004087 
(-0.893722) 

0.017622*** 
(4.395200) 

ܴ௧,௧ାଽ଴ -0.137499** 
(-2.247259) 

-0.012432 
(-0.187372) 

0.028415*** 
(5.240268) 

0.019809** 
(2.086106) 

0.033013*** 
(-5.480334) 

The table shows the estimated output of the following regressions: 

ܴ௧,௧ା௡ ൌ ߙ ൅ ௧ݔଵ݅݊݀݁ߚ ൅ ܧܭܵܶܫ) ௧ is proxied by the Italian skewness indexݔ݁݀݊݅ ௧ whereߝ ௧ܹ), the risk-asymmetry 

index (ܴܣ ௧ܺ), the Italian implied volatility index (ܺܫܸܶܫ) and corridor upside and downside implied volatility indices 

ܫܥ) ௎ܸ௉ and ܫܥ ஽ܸௐሻ on their 1% and 5% percentiles; t-stats are shown in parentheses.  

 

 

 

 

 

 

 

 

 

 



 

 

Table 6 - Regression output for extremely high values of skewness and volatility indices and future market 

returns 

Panel A: Regression output for indices values higher than their 95% percentile 

ܫܥ ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ  ௎ܸ௉ ܫܥ ஽ܸௐ 

ܴ௧,௧ାଵ 
-0.000961 

(-1.396201) 
-0.000551 

(-0.308623) 

0.000620 
(1.35060) 

0.001535 
(1.467557) 

0.000804 
(1.650477) 

ܴ௧,௧ା଻ 
-0.002367* 
(-1.925587) 

-0.009146* 
(-1.881243) 

0.000295 
(0.542678) 

0.002109 
(1.259702) 

0.000528 
(0.528827) 

ܴ௧,௧ାଷ଴ 
-0.001804 

(-0.555332) 
-0.018269*** 
(-2.780934) 

-0.002894*** 
(-2.754037) 

-0.003044 
(-1.380144) 

-0.002796** 
(-2.269866) 

ܴ௧,௧ା଺଴ 
0.000510 

(0.115184) 
-0.034288*** 
(-3.254203) 

-0.004247*** 
(-3.735622) 

-0.007126*** 
(-3.003377) 

-0.002965*** 
(-3.044390) 

ܴ௧,௧ାଽ଴ 
-0.006114 

(-0.645176) 
-0.034211*** 
(-2.700623) 

-0.006493*** 
(-3.757592) 

-0.010193*** 
(3.149699) 

-0.005895*** 
(-3.367929) 

Panel B: Regression output for indices values higher than their 99% percentile 

ܫܥ ܺܫܸܶܫ ܺܣܴ ܹܧܭܵܶܫ  ௎ܸ௉ ܫܥ ஽ܸௐ 

ܴ௧,௧ାଵ 
-0.002684 

(-0.903917) 
0.006160 

(1.165369) 

0.003604** 
(2.315007) 

0.006725*** 
(4.456405) 

0.003724 
(1.655507) 

ܴ௧,௧ା଻ 
-0.006287 

(-1.694173) 
0.000665 

(0.061092) 

0.002554 
(1.429367) 

0.004262 
(1.088074) 

0.001971 
(0.659539) 

ܴ௧,௧ାଷ଴ 
-0.005403 

(-0.483798) 
-0.048271*** 
(-4.434558) 

0.004888*** 
(3.628004) 

0.006293* 
(1.744985) 

0.005407* 
(1.857409) 

ܴ௧,௧ା଺଴ 
0.012236 

(0.943765) 
-0.076980*** 
(-3.369418) 

0.000871 
(0.520089) 

-0.001480 
(-0.395555) 

0.001000 
(0.401809) 

ܴ௧,௧ାଽ଴ 
0.018617 

(1.112619) 
-0.047172* 
(-1.977307) 

0.002942 
(1.320599) 

0.001110 
(0.278492) 

0.002508 
(0.832160) 

 
The table shows the estimated output of the following regressions: 

ܴ௧,௧ା௡ ൌ ߙ ൅ ௧ݔଵ݅݊݀݁ߚ ൅ ܧܭܵܶܫ) ௧ is proxied by the Italian skewness indexݔ݁݀݊݅ ௧ whereߝ ௧ܹ), the risk-asymmetry 

index (ܴܣ ௧ܺ), the Italian implied volatility index (ܺܫܸܶܫ) and corridor upside and downside implied volatility indices 

ܫܥ) ௎ܸ௉ and ܫܥ ஽ܸௐሻ on their 99% and 95% percentiles; t-stats are shown in parentheses.  

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1 – Comparison between the FTSE MIB index and implied volatility indices.  

Note: The Figure shows the closing values of the Italian market index FTSE MIB, the Italian volatility index (ܺܫܸܶܫ) in 

blue, the upside corridor implied volatility index (ܫܥ ௎ܸ௉) in green, and the downside corridor implied volatility index 

ܫܥ) ஽ܸௐሻ in red. FTSE MIB index refers to the left axis, while implied volatility indices (,ܺܫܸܶܫ	ܫܥ ௎ܸ௉ and ܫܥ ஽ܸௐሻ refer 

to the right axis. 

 

 

 

 

 

 

 

 



 

 

Figure 2 - Graphical comparison of physical skewness, the Italian skewness index ܹܧܭܵܶܫ and the 

risk-asymmetry index ܴܺܣ.  

 

Note: We indicate as ܵܧܭ ௉ܹு the index of subsequently realized skewness in the next 30 days, ܹܧܭܵܶܫ is the Italian 

skewness index, computed using the CBOE methodology adapted to the Italian market and ܴܺܣ is the risk-asymmetry 

index defined as:	ܴܺܣ ൌ 	100 െ 10 ∗ ሺ	ܫܥ ௎ܸ௉ െ ܫܥ ஽ܸௐሻ/ܸܫܨܯ. 

 

 

 

 

 

 



 

 

Figure 3 - Graphical comparison between the FTSE MIB index and the ܴܺܣ index.  

Note: we indicate with green dots the “buy” signals, and with red dots the “sell” signals indicated by the ܴܺܣ index.  
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