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Abstract 

The 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 𝐵𝑜𝑎𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 (CBOE) SKEW index is designed to capture investors’ fear in the US 

stock market. In this paper we pursue two objectives. First, we investigate the properties of the CBOE SKEW index 

in order to assess whether it captures fear or greed in the market. Second, we introduce and compare three 

measures of asymmetry of the Italian index options return distribution. These measures include: (i) the CBOE 

SKEW index adapted to the Italian market (we call it ITSKEW) and (ii) two model-free measures of skewness 

based on comparison of a bear and a bull index. Finally, we explore the existence and sign of the skewness risk 

premium. Several results are obtained. First, the Italian skewness index (ITSKEW) presents many advantages 

compared to the two model-free measures: it has a significant contemporaneous relation with market index returns 

and with model-free implied volatility. Both the ITSKEW and the CBOE SKEW indices act as measures of market 

greed (the opposite of market fear), since returns react positively to an increase in the skewness indices. Trading 

strategies show that the Italian market is characterized by a significant positive skewness risk premium.  

Keywords: skewness index, risk-neutral moments, implied volatility, skewness risk premium.  
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1. Introduction  

The Chicago Board Options Exchange (CBOE) Volatility Index (VIX) has been called the “investors’ fear 

gauge” (Whaley, 2000) since it measures the investors’ consensus view about expected future stock market 

volatility (market sentiment). The higher the value of VIX, the greater the fear is considered to be. The fact that 

the VIX spikes during periods of market turmoil (bad news) is because when expected volatility increases, 

investors demand higher rates of return and stock prices fall. However, the correlation is not exact and sometimes 

it is even in the opposite direction (VIX spikes when stock prices rise). In this case, it can be said that the VIX 

index captures the investors’ excitement. As a result, we can consider the “investors’ greed gauge” (or expectation 

of earnings) to be the opposite of market fear. In other words, in this case, VIX becomes a measure of the 

investors’ consensus view of expected future stock market volatility (market sentiment) characterized by positive 

returns (good news) (Whaley, 2000 defines greed as the investors’ excitement in a market rally). 

The CBOE SKEW index has been listed on the CBOE since February 2011 to measure the tail risk not fully 

captured by VIX. While VIX measures the overall risk in the 30-day S&P500 log-returns, without disentangling the 

probabilities attached to positive and negative returns; the skewness index (CBOE SKEW) is intended to measure 

the perceived tail risk, i.e. the probability that investors attach to extreme negative returns. The CBOE SKEW index 

varies around a value of 100. Values above the threshold level 100 tend to point to a negative risk-neutral 

skewness and a distribution skewed to the left. These values indicate that negative returns are more often expected 

than positive ones. The opposite is true for values below 100: they indicate that positive returns are more often 

expected than negative ones. Moreover, a high value of the CBOE SKEW index indicates that buying protection 

against downturn (put options) is more expensive. In practice, however, the CBOE SKEW index has been found to 

spike both in periods of market downturn and in periods of market excitement, and its relation with returns is less 

clear-cut than that of the VIX index (which has been called the “investors’ fear gauge”) as highlighted in the 

descriptive analysis of the CBOE SKEW index in Section 3 and Section 7 below. 

Our contributions include the following. First, we provide a descriptive analysis of the properties of the CBOE 

SKEW index, in order to highlight its role as a measure of market fear or greed (or expectation of earnings). 



Second, in the lines of the CBOE SKEW index formula, we delineate a skewness index for an important European 

market: the Italian stock market, that we call ITSKEW. While the implied volatility of the aggregate Italian market 

is currently measured by the implied volatility index (the IVI index),
1
 a measure of the asymmetry in the return 

distribution and tail risk has yet to be adopted for this market. Third, this paper complements the existing studies 

by casting light on the properties of both the CBOE SKEW and the ITSKEW indices as barometers of the investors’ 

fear of the downside, or of the investors’ greed (excitement) of the possible upside. Fourth, we contribute to the 

literature by casting additional light on both the relation between risk-neutral skewness and future returns and the 

existence and the sign of a skewness risk premium.   

The predictive power of risk-neutral skewness on future realized returns and, in turn, the sign of the skewness 

risk premium, are debated in the literature. Bali and Murray (2013) and Conrad et al. (2013) find a negative 

relation between risk-neutral skewness and future stock returns. This indicates that, consistent with investors’ 

preference for positive skewness, stocks with a left skewed risk-neutral distribution earn higher future returns to 

compensate for their higher left-tail risk. However, several other studies find the opposite (positive) relation 

between risk-neutral skewness (or similar proxies) and future stock returns (Xing et al. (2010), Yan (2011), 

Cremers and Weinbaum (2010), Rehman and Vilkov (2012), Faff and Liu (2016), Stilger et al. (2016)). This 

finding is consistent with the theory that informed investors trade in options rather than in the underlying asset. 

According to this theory, good news is immediately reflected in higher call prices, while bad news is manifested 

in higher put prices. Good and bad news are subsequently incorporated into the underlying asset. Higher call 

prices make the risk-neutral distribution more skewed to the right (risk-neutral skewness increases) and when the 

positive information is incorporated into the underlying asset, returns become positive. On the other hand, higher 

put prices make the risk neutral distribution more skewed to the left (risk-neutral distribution decreases) and when 

the negative information is incorporated into the underlying asset, returns become negative.  

The paper proceeds as follows. First, we provide a descriptive analysis of the properties of the CBOE SKEW 

index, in order to highlight its role as a measure of fear or greed. Second, we introduce an index similar to the 
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CBOE SKEW index for the Italian stock market and we call it ITSKEW. We highlight that this is the first attempt of 

computing a skewness index for a European market. Third, we investigate on the Italian market, two model-free 

asymmetry indices based on the Faff and Liu (2016) intuition of measuring skewness as the ratio between the 

right and left part of the distribution of the asset return, as explained in detail in Section 3. Fourth, we investigate 

the properties of the skewness indices. In particular, we consider whether these indices measure fear, as they are 

intended to, or greed in the market. Fifth, we investigate the relationship between skewness indices and future 

market returns. Sixth, we investigate the existence and sign of the skewness risk premium by analyzing portfolio 

strategies based on skewness and disentangle the contribution of the left and the right part of the risk-neutral 

distribution to the profitability of these strategies.  

We obtain several findings. First, if the ITSKEW index falls by 100 basis points, the FTSEMIB index 

decreases by 0.349%. On the other hand, if the Italian ITSKEW index increases by 100 basis points, the FTSEMIB 

index goes up by 0.14%, manifesting an asymmetric behaviour. However, unlike the sign of the effect of volatility 

on returns (the FTSEMIB increases when expected volatility decreases and vice versa) a decrease (increase) in the 

ITSKEW index is associated with a decrease (increase) in the FTSEMIB index. We find a similar correlation 

between the CBOE SKEW index and S&P500 returns in the US market, though changes in the CBOE SKEW do not 

show any asymmetric effect. As a result, in contrast with the VIX, both the ITSKEW and the CBOE SKEW indices 

can be considered more as a measure of market greed than market fear, due to their positive relation with market 

returns. Both in the US market and the Italian market, high returns are in general associated with low levels of the 

volatility index and with high levels of the skewness index. The higher the volatility, the greater the fear; the 

higher the skewness index, the greater the greed (expectation of earnings). The model-free asymmetry indices 

based on the comparison of a bear and a bull index are not useful as indicators of current risk or greed because 

they are unrelated to market returns. Therefore, we find that the ITSKEW index presents many advantages relative 

to asymmetry indices: it has a significant contemporaneous relation with both returns, it has model-free implied 

volatility and it is still significant in the explanation of returns, even after controlling for model-free implied 

volatility.  



Furthermore, our results point to an investor preference for positive skewness and a positive skewness risk 

premium (unlike the results in Bali and Murray (2013)). The positivity of the risk premium is supported also by 

portfolio trading strategies based on risk-neutral skewness. We find that selling out-of-the-money puts and buying 

out-of-the-money calls (a long position in risk-neutral skewness) is on average profitable. Moreover, the better 

performance of the portfolio composed of only put options, compared to the portfolio consisting of only call 

options, indicates that the mispricing of options is mainly focused on the left part of the distribution, meaning that 

put options are overpriced. As a result, buying risk-neutral skewness yields a positive return, consistently with the 

findings in Kozhan et al. (2013) and unlike the results in Bali and Murray (2013), who find that buying risk-

neutral skewness yields a negative return. To make a comparison with variance, selling risk-neutral variance is 

found to be profitable in the literature (Carr and Wu, 2009). Selling risk-neutral variance is an insurance selling 

strategy, buying risk-neutral variance is an insurance buying strategy. Taking a long position on a variance swap 

(selling physical variance i.e. receiving floating and buying the risk-neutral one, i.e. paying fixed) yields a 

negative profit, and as a result the variance risk premium (defined as the difference between physical and risk-

neutral variance) is negative. The negative sign on the variance risk premium means that investors regard as a 

negative shock to their portfolios any increase in market volatility and are willing to pay a premium in order to 

hedge against increases in market volatility. In our study buying risk-neutral skewness was found to be profitable, 

representing an insurance selling strategy, whereas selling risk-neutral skewness represents an insurance buying 

strategy. Taking a long position on a skewness swap yields a positive profit (selling physical skewness i.e. 

receiving floating and buying the risk-neutral one, i.e. paying fixed). As a result, the skewness risk premium 

(defined as the difference between physical and risk-neutral skewness) is positive. The positive sign on the 

skewness risk premium means that investors consider an increase in skewness to be a positive shock (the risk-

neutral distribution shifts to the right). Investors are willing to pay a premium to be hedged against decreases in 

market skewness.  

 

2. Literature review  



After the October 1987 stock market crash, many authors recognized that the implied volatility of index 

options varies according to a pre-specified pattern: out-of-the-money put options are more expensive than out-of-

the-money call options (the so-called skew or smirk). This phenomenon has been called “crash-o-phobia” 

(Rubinstein, 1994), due to the fact that put options are deemed to be more expensive than call options as they 

provide protection against stock market crashes. Jackwerth and Rubinstein (1996) investigate S&P 500 index 

option prices over an eight-year period from April 1986 to December 1993. They find that risk-neutral skewness 

and kurtosis show a discontinuity across the 1987 market crash, indicating that there was a significant change in 

the investors’ downward risk perception. Moreover, the risk-neutral probability of another significant decline in 

the S&P 500 index increased after the 1987 crash. Aït-Sahalia and Lo (1998) propose a non-parametric technique 

for estimating the state price density implicit in option prices which can account for the skewness and the kurtosis 

of the risk-neutral density. Even though the skew pattern of implied volatilities has been widely documented in 

the literature (see Rubinstein, 1994 and Jackwerth and Rubinstein, 1996), only recently has it attracted the 

attention of researchers from the modelling perspective. The skew is reflected in a (negatively) skewed risk-

neutral distribution, pointing to the presence of sizeable risk premia and the need for hedging against negative 

realizations of the underlying asset (tail risk).  

Bakshi et al. (2003) propose a formula (BKM formula hereafter) to extract implied moments from a cross-

section of option prices. The formula is model-free because it is not based on an option-pricing model and it is 

consistent with many different asset price dynamics. Many authors find that risk-neutral skewness computed 

using the Bakshi et al. (2003) formula to be a good predictor of the realized skewness. Lin et al. (2008) investigate 

the structure of the implied volatility smile in the LIFFE
2
 option market by using prices from 79 individual stock 

options and the FTSE 100 index options, recorded from March 1992 to December 2002. They find a significantly 

positive relation between the physical and the risk-neutral moments. More recently, Neuberger (2012) finds that 

implied skewness predicts future realized skewness (computed from high-frequency returns) in the S&P500 index 

options market from December 1997 to September 2009.  
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Several methods are proposed in literature to investigate the skewness risk premium. First, the skewness risk 

premium can be computed as the simple difference between physical and risk-neutral skewness. Foresi and Wu 

(2005) are the first to point to the existence of a premium charged by the market on downside index movements. 

They analyze twelve major equity indices using ten years of data (May 1995-May 2005). The discrepancy 

between these two skewness measures suggests that the market charges a high risk premium on downside index 

movements. Second, Zhao et al. (2013) propose computing the skewness risk premium as the negative difference 

between the physical and risk-neutral third moments, in order to ensure that the swap rate of the contract will be 

positive. They find the skewness risk premium and the risk-neutral skewness in the S&P500 index option market 

between January 1996 and December 2005 to be significantly negative and time-varying for all the considered 

sub periods, and for the 30, 60, and 90 day time to maturity. This evidence is consistent with a risk-neutral 

distribution more negatively skewed than the physical one. Third, an alternative measure of the skewness risk 

premium is proposed by Kozhan et al. (2013), who generalize the notion of variance swap (Carr and Wu, 2009) to 

higher order moments where the fixed leg is the option-implied moment and the floating leg is the realized 

moment. The average profit from the third moment swap can be interpreted as the premium for being exposed to 

the moment’s risk. In the S&P500 equity index option market, in the period between January 1996 and January 

2012, they find the average realized skewness to be negative and substantially smaller, in absolute terms, than the 

average implied skewness, indicating a more symmetrical realized distribution compared to the implied one. In 

addition, they show that the skewness risk premium is closely related to the variance risk premium: they both vary 

over time and are driven by a common factor (strategies to capture one and hedge out exposure to the other earn 

insignificant trading profits). Similarly, Neumann and Skiadopoulos (2013) find a positive relation between risk-

neutral skewness and the variance risk premium. Fourth, along the lines of Muzzioli (2013a), Feunou et al. (2015) 

break down the variance risk-premium into upside and downside premia, supposing that investors like good 

uncertainty (as it increases the probability of gains) and dislike bad uncertainty (since it increases the likelihood of 

losses). In this setting, the skewness risk premium is computed as the difference between upside and downside 

variance risk premia. They find it to be negative in the S&P500 market in the period from September 1996 to 

December 2010, consistent with a risk-neutral distribution more negatively skewed than the physical one. Fifth, 



another strand of literature investigates the skewness risk premium by using portfolio strategies consisting of 

positions in options and in the underlying asset. Javaheri (2005) looks for profit opportunities arising from the 

mispricing of options. Based on the assumption that the option-implied distribution is in general more negatively 

skewed than the historical one, the author suggests a strategy of buying out-of-the-money calls and selling out-of-

the-money put options. This portfolio can be interpreted as an insurance selling strategy. In fact the trade 

generates consistent profits if no crash occurs. However, it results in a significant loss in the case of a sudden 

large downward movement. By using S&P500 options from January 2002 to January 2003, the author finds 

mixed evidence on the profitability of skewness trades. Liu (2007) implements vega and delta neutral strategies 

by using FTSE 100 index options data from January 1996 to April 2000. Portfolios with long positions in put 

options and short positions in call options result in significant negative returns. The evidence suggests that out-of-

the-money put options are overpriced compared to out-of-the-money call options. However, the profitability of 

the opposite strategy is unlikely to materialize because arbitrage profits are eroded by bid-ask spreads. Chang et 

al. (2013), measuring the skewness risk premium by means of portfolio sorting techniques in the American 

market in the period from January 1996 to January 2012, find a negative and economically significant skewness 

risk premium, not explained by other common risk factors. Bali and Murray (2013) investigate the pricing of risk-

neutral skewness by using options on individual stocks in the American market from January 1996 to October 

2010. The portfolios are delta and vega neutral, isolating a position in skewness (hence the portfolios are called 

skewness assets). They find a strong and robust relationship between risk-neutral skewness (measured with BKM 

methodology) and the skewness asset returns which represent a long skewness position. They argue that these 

results are consistent with a negative skewness risk premium and an investor preference for positive skewness. 

Similar results are obtained by Conrad et al. (2013) on a sample of individual stock options in the American 

market from January 1996 to December 2005. They find a strong and negative relationship between the third-

order moment and the subsequent returns: firms with less negative or positive skewness are associated with lower 

returns over the following month. This means that investors seem to prefer assets with positive skewness. The 

relationship between skewness and returns is both economically and statistically significant and persists even after 

various controls. Moreover, they find that risk-neutral skewness can be considered as a market-based forward-



looking prediction of physical skewness. An investor preference for positively skewed assets is documented also 

in Amaya et al. (2015), where a physical measure of skewness is used in place of the option implied one. 

Overall we can say that the majority of the papers focus on individual stocks, pointing to the existence of a 

significant skewness risk premium. The evidence is mixed regarding the relationship between skewness and 

subsequently realized returns. More specifically, although Bali and Murray (2013) and Conrad et al. (2013) find a 

negative relation, indicating that stocks characterized by a positive or less negative skewed distribution earn lower 

future returns and vice versa, many other papers find a positive relation. Xing et al. (2010) investigate the 

relationship between the shape of the volatility smirk and the cross-section of future equity returns, by using 

options on individual stocks in the period from January 1996 to December 2005. They find that stocks with the 

steepest smirks in the option market underperform stocks with a less pronounced smirk. Yan (2011) in the Option 

Metrics database from January 1996 to January 2005 finds that low slope portfolios earn higher returns than high 

slope portfolios, where the average stock jump size is proxied by the slope of option implied volatility smile. 

Cremers and Weinbaum (2010), using the Option Metrics database from January 1996 to January 2005 find that 

stocks with relatively expensive calls outperform stocks with relatively expensive puts. Rehman and Vilkov 

(2012) in the Option Metrics database from January 1996 to June 2007 find that option-implied ex-ante skewness 

is positively related to future stock returns. Finally, Faff and Liu (2016) in the S&P index options market on the 

period from January 1996 to August 2013 find that the more negatively skewed the risk-neutral distribution, the 

lower the future returns in the SPX market, suggesting that a skewness index is useful in forecasting the future 

index returns. Stilger et al. (2016) investigate the relationship between risk-neutral skewness of individual stocks 

and future realized stock returns over the period January 1996 to December 2012. By using a strategy that is long, 

the quintile portfolio with the highest risk-neutral skewness stocks and short the quintile portfolio with the lowest 

risk-neutral skewness stocks, they find that the relationship is significant and positive. They also argue that the 

underperformance of the portfolios with the lowest risk-neutral skewness is driven by those stocks that are 

perceived as overpriced by investors but hard to sell short.  

To sum up, the majority of the papers find a positive relation between risk-neutral and physical skewness, 

indicating that the implied option measure is a good predictor of the realized measure (as is the case for volatility, 



see e.g. Muzzioli (2010) and Muzzioli (2015)). The skewness risk premium is found to be significant but the 

evidence on the sign is mixed (most of the studies find that risk-neutral skewness is generally greater in absolute 

value than physical skewness). The relationship between skewness and subsequently realized returns is debated: 

some papers find a positive relation, others a negative one. The majority of the papers have investigated the US 

market and individual stocks. The evidence on European markets and market indices remains scant.  

 

3. Skewness measures  

Skewness is a statistical measure of the asymmetry of the distribution. It is defined as: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝐸[(𝑅(t) − 𝜇)3]

𝜎3
=  

𝐸[(𝑋 − 𝜇)3]

(𝜎2)3/2
 (1) 

where (𝑅(t) − 𝜇)3 is the third central moment, 𝜇 is the mean of returns, 𝜎 is its standard deviation, and 𝐸() is the 

expectation operator under the physical measure. Skewness of a normal distribution is zero, indicating symmetry 

in the returns around the mean; if skewness is negative, it means that the mass of the distribution is concentrated 

in the left tail, meaning that the left tail is longer or thicker, or both, compared to the right tail. Conversely, if 

skewness is positive it means that the right tail is longer or thicker, or both, relative to the left tail (the mass of the 

distribution is concentrated in the right tail). It should be noted that in the literature, other statistical measures of 

asymmetry have been proposed (see e.g. Bowley's (1901), Pearson’s (1895) and Groeneveld & Meeden’s (1984))
3
 

which are not discussed here. 

  

                                                           
3 Pearson’s (1895) and Groeneveld & Meeden’s (1984) are based on the relationship between mean, median and standard 

deviation of a distribution, while Bowley's (1901) exploits the quantiles of the distribution.  



3.1 The model-free formula and the CBOE-SKEW index 

Bakshi et al. (2003) develop a model-free method to extract volatility, skewness and kurtosis of the risk-

neutral distributions from a cross-section of option prices. Their methodology is called model-free, since it does 

not rely on any option pricing model, being consistent with many underlying asset price dynamics. According to 

Bakshi et al. (2003) model-free skewness is obtained from the following equation, which represents the risk-

neutral version of equation (1): 

𝑆𝐾(t, τ) ≡  
𝐸𝑡

𝑞
{(𝑅(t, τ) − 𝐸𝑡

𝑞[𝑅(t, τ)])3}

{𝐸𝑡
𝑞

(𝑅(t, τ) − 𝐸𝑡
𝑞[𝑅(t, τ)])2}

3/2
  (2) 

In this specification, 𝑅(t,τ), [𝑅(t,τ)])2 and [𝑅(t,τ)])3 are the payoffs of the contracts, at time 𝑡 with maturity 

𝜏, based on first, second and third moment of the distribution, respectively, and the prices of these contracts are 

obtained under the risk-neutral expectation (𝐸𝑡
𝑞

) (for a more detailed discussion of the contracts see the 

Appendix). Equation (2) is used in the computation of the skewness index called CBOE SKEW, which measures 

the investors’ perceived skewness of the Chicago Board Option Exchange (CBOE). Since the risk-neutral 

skewness attains typically negative values for equity indices because the implied option distribution is in general 

asymmetric to the left, in order to enhance the interpretation, CBOE defines SKEW as:  

𝑆𝐾𝐸𝑊 = 100 − 10 × 𝑆𝐾 (3) 

where SK is the 30-day measure of risk-neutral skewness, computed by using linear interpolation between two 

values of risk-neutral skewness which refer to option series with different time to maturity (in general a first 

option series with a maturity of less than 30 days and a second one with time to maturity greater than 30 days are 

used). As a result, for a symmetric distribution, risk-neutral skewness is equal to zero and the CBOE SKEW index 

is equal to 100. This value can be considered as a threshold level for the CBOE SKEW index (zero risk-neutral 

skewness) since values greater (lower) than 100 mean that the risk-neutral distribution displays asymmetry to the 



left (right). Furthermore, CBOE SKEW measures the slope of the implied volatility curve:
4
 the steeper the curve, 

the higher the CBOE SKEW index will be in value. Therefore, CBOE SKEW can also be considered as a measure of 

the perceived tail risk of S&P500 log-returns in a 30-day horizon. Tail risk is the risk associated with the 

probability of extreme negative returns, in other words, returns two or more standard deviations below the mean 

(market crash, black swan). The probability of this type of event may be small for a normal distribution, but it 

could be significantly greater for a skewed distribution with fat tails. This is the case of the distribution of 

S&P500 log-returns which has a sizeable left tail and it is, therefore, riskier than a normal distribution with the 

same mean and variance: CBOE SKEW quantifies this additional risk.  

Historically, CBOE SKEW has varied over a range of about 50 points and with an average value of 115. Its 

maximum value is 153.66 reached on 28 June 2016, a few days after the UK Brexit referendum. CBOE SKEW 

reached its all-time low of 101.09 on 21 March 1991 at the end of the recession that started in July 1990. This 

means that the implied distribution of S&P500 log-returns has historically always been left-skewed (Neumann 

and Skiadopoulos (2013)). It is worth noting that in order to apply formula (2) to the financial market, where a 

continuum of option prices in strikes is not traded, both truncation and discretization errors occur. In the 

computation of the CBOE SKEW index, only at-the-money and out-of-the money options with maturity of at least 

one week are considered. Furthermore, the interval of strike prices used is cut when two consecutive options with 

zero bid prices are found. As a result, if a change in volatility occurs, then the number of options considered in the 

computation may change. Other critical issues in the CBOE construction method concern the linear interpolation 

between near- and next-term maturities, which may induce a bias if model-free skewness is not a linear function 

of maturity. Furthermore, the use of the average between the lowest ask price and the highest bid price as a proxy 

of the option price may lead to errors when the bid-ask spreads are wide. Nonetheless, the CBOE SKEW index 

formula is considered the market standard for the computation of skewness indices. 

The data set for the US market consists of closing prices recorded from 3 January 2011 to 28 November 

2014 (the same time period used for the Italian data set). The data for the S&P500 index is obtained from 
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 The volatility curve is obtained by plotting implied volatilities against strike prices for a given expiry. Since volatility 

decreases as the strike price increases in equity options, the implied volatility curve is negatively sloped, and the slope can be 

considered as a proxy for risk-neutral skewness. 



Datastream, the data for the CBOE VIX and the CBOE SKEW  indices are obtained from the CBOE website. The 

descriptive statistics for the CBOE SKEW index, the CBOE VIX index and the S&P500 returns are shown in Table 

1. In this sample, the CBOE SKEW index varied between 111.31 and 146.08, with an average value of 123.68, 

pointing to a pronounced left-skewed risk-neutral distribution. The VIX index varied between 10.32 and 48.00, 

with an average value of 17.63, pointing to a heavy tailed risk-neutral distribution. All the series in levels are far 

from normality, as highlighted by the Jarque Bera test which strongly rejects the hypothesis of a normal 

distribution. For this reason, daily changes are defined in logarithmic terms as follows: ∆𝑥𝑡+1 =

ln(𝑥𝑡+1 𝑥𝑡⁄ ), where x is the series under investigation. 

The correlation coefficients between the CBOE SKEW index, the VIX index and the S&P500 daily returns 

are shown in Table 2, both in terms of levels and the daily changes. We can see that the CBOE SKEW index 

displays a negative significant correlation (-0.331) with the VIX index and a marginally significant correlation 

(positive) with daily market returns. On the other hand, the relation between the VIX index and S&P500 daily 

returns is negative and statistically significant. We find that high values of the VIX index are associated with 

negative returns and low values of the CBOE SKEW index. The results are similar in terms of daily changes. Daily 

changes in the CBOE SKEW index display a negative significant relation with daily changes in the VIX index and a 

positive significant relation with market returns. On the other hand the daily changes in the VIX index show a 

strong negative relation with market returns (-0.814). Therefore, while we expect the VIX index to act as a 

measure of market fear (Whaley (2000)), the role of the CBOE SKEW index, due to its positive relation with 

market returns, is not clear and will be investigated in Section 7. 

 

3.2  The SIX asymmetry index proposed by Faff and Liu (2016). 

In order to overcome some of the limits of the CBOE SKEW methodology when only a few strike prices 

are traded, Faff and Liu (2016) propose a model-based methodology to compute skewness in a Black-Scholes 

(1973) framework, by using a state-preference pricing approach. They use Black-Scholes implied volatilities 

instead of the model-free formula extracted from a few options: only two at-the-money call and put options with 



maturity closest to a 30-day period. They define the skewness index 𝑆𝐼𝑋, which is computed as the ratio of the 

lower partial moment volatility to the upper partial moment volatility of market returns as follows:  

𝑆𝐼𝑋 =
𝐵𝐸𝑋

𝐵𝑈𝑋
 (4) 

where 𝐵𝐸𝑋 (the bear index) and 𝐵𝑈𝑋 (the bull index) are the lower and upper partial moment volatility indices of 

market returns. Liu and O’Neill (2016) define 𝐵𝐸𝑋2 as a financial asset that pays a USD amount of 𝑙𝑛 (𝑆𝑇 𝑆𝑡⁄ )2 at 

some future date 𝑇, for every future index level 𝑆𝑇 and spot price level 𝑆𝑡 if 𝑆𝑇 ≤ 𝑆𝑡, or $0 otherwise. 𝐵𝐸𝑋2 can 

be obtained as: 

𝐵𝐸𝑋2 = ∑ 𝛷𝑠

𝑆

𝑠=1

[𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) − ℎ]

2

𝐼ln (𝑆𝑇 𝑆𝑡)≤ℎ⁄  (5) 

with 𝑆𝑡 that is the current stock market index, 𝑆𝑇 is the index value at time 𝑇, 𝛷𝑠 is the risk-neutral probability of 

reaching 𝑆𝑇 (or equivalently the state price density) and ℎ is the threshold level that can be set to any arbitrary 

value in order to distinguish between positive and negative returns (e.g. 0, the risk-free rate, or the expected return 

𝐸(𝑅)). Symmetrically 𝐵𝑈𝑋2 is computed as follows:   

𝐵𝑈𝑋2 = ∑ 𝛷𝑠

𝑆

𝑠=1

[𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) − ℎ]

2

𝐼ln (𝑆𝑇 𝑆𝑡)>ℎ⁄  (6) 

i.e. it pays a USD amount of 𝑙𝑛 (𝑆𝑇 𝑆𝑡⁄ )2 if 𝑆𝑇 > 𝑆𝑡, or $0 otherwise. The argument underlying the skewness 

index (𝑆𝐼𝑋) formula is the following: if the risk-neutral distribution is symmetric, 𝑆𝐼𝑋 in equation (4) is equal to 

1; if the risk-neutral distribution is left (right) skewed, 𝑆𝐼𝑋 is greater (lower) than 1. Liu and O’Neill (2016) 

estimated the state prices 𝛷(𝐾𝑖, 𝐾𝑖+1) as: 

𝛷(𝐾𝑖, 𝐾𝑖+1) = 𝑒−𝑟𝑇{𝑁[𝑑2(𝐾𝑖)]} − {𝑁[𝑑2(𝐾𝑖+1)]} 
(7) 

where 𝐾𝑖 < 𝐾𝑖+1 denotes the i-th strike price, 

𝑑2(𝐾) =
ln(𝑆𝑡 𝐾⁄ ) + (𝑟 − 𝛿 − 𝜎2 2⁄ )𝑇

𝜎√𝑇
 

(8) 

where 𝛿 is the dividend yield and 𝜎 is estimated as the average of four Black-Scholes implied volatilities from 

two at-the-money calls and two at-the-money puts with maturities the closest to a 30-day period. In order to 



discretize the state price density, Liu and O’Neill (2016) choose a grid of states spanning from 0.1 to 9999, with 

0.10 increments. 

It is worth noting that in order to capture the asymmetry of the distribution, many authors in the literature use 

the difference between the implied volatilities of two options with different moneyness as a proxy for risk-neutral 

skewness. In a skewed risk-neutral distribution, the smile or smirk is downward sloping; therefore the difference 

between the implied volatility of two options with opposite delta can be considered as a measure of the smile 

slope. Bali et al. (2016) use the difference in implied volatilities between an out-of-the-money call option and an 

out-of-the-money put option with delta equal to -0.25 and 0.25, respectively. Yan (2011) uses the difference in 

implied volatilities between a near-the-money put option and a near-the-money call option with delta equal to -0.5 

and 0.5, respectively. Xing, Zhang and Zhao (2010) measures the slope of the volatility smile as the difference 

between the implied volatility of an out-of-the-money put option whose moneyness is between 0.80 and 0.95 and 

the implied volatility of an at-the-money call option with moneyness between 0.95 and 1.05. Similar proxies are 

used in the present paper to define portfolio trading strategies. 

 

4. Data and methodology  

The data set consists of closing prices on FTSE MIB
5
-index options (MIBO), recorded from 3 January 2011 

to 28 November 2014. MIBO are European options on the FTSE MIB, a capital-weighted index composed of 40 

major stocks listed on the Italian market. As for the underlying asset, closing prices of the FTSE MIB-index 

recorded in the same time-period are used. The FTSE MIB is adjusted for dividends as follows:  

�̂�𝑡 = 𝑆𝑡𝑒−𝛿𝑡∆𝑡 (9) 

where 𝑆𝑡 is the FTSE MIB index value at time 𝑡, 𝛿𝑡 is the dividend yield at time 𝑡 and ∆𝑡 is the time to maturity of 

the option. As a proxy for the risk-free rate, Euribor rates with maturities of one week, one month, two months, 

and three months are used: the appropriate yield to maturity is computed by linear interpolation. The data set for 

the MIBO is kindly provided by Borsa Italiana S.p.A; the time series of the FTSE MIB index, the dividend yield 

and the Euribor rates are obtained from Datastream.  
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Several filters are applied to the option data set in order to eliminate arbitrage opportunities and other 

irregularities in the prices. First, consistently with the computational methodology of other indices (such as the 

CBOE SKEW), we eliminate options near to expiry (options with time to maturity of less than eight days) because 

they may suffer from pricing anomalies that occur close to expiration. Second, following Ait-Sahalia and Lo 

(1998) only at-the-money option and out-of-the-money options are retained. These include put options with 

moneyness (X/S, where X is the strike price and S the index value) lower than 1.03 and call options with 

moneyness higher than 0.97. Finally, option prices violating the standard no-arbitrage constraints are eliminated. 

In order to compute risk-neutral skewness, we follow two different model-free methods: the procedure adopted by 

the CBOE that relies on the Bakshi et al. (2003) formula and the ratio between the volatility of the left part and 

the volatility of the right part of the distribution. The Faff and Liu (2016) formula provides an appealing insight 

into the possibility to measure skewness as the ratio between the right and left part of the distribution of the asset 

return. However, this formula suffers from the following drawbacks. First, it is a model-based approach, since it 

relies on the Black-Scholes formula. Many studies have highlighted the inconsistency of the assumption of a 

constant volatility, as supposed in the Black-Scholes model, with the empirical evidence in the financial markets 

(see e.g. Rubinstein (1985), Rubinstein (1994), Jackwerth and Rubinstein (1996)). Second, it considers only four 

around-the-money options in the estimation of the implied volatility to plug in the Black-Scholes formula, other 

options traded are discarded. This limitation results in a considerable loss of information. In order to overcome 

these limits, we propose to compute the asymmetry index, which we indicate as 𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓, in a model-free setting.  

We compute the ratio between the volatility of the left part and the volatility of the right part of the 

distribution. However, in order to obtain a model-free measure of the upside and downside volatility, we use the 

enhanced Derman and Kani method (Moriggia et al. (2009))  to derive the risk-neutral distribution of the 

underlying asset at the maturity date 𝑇. The implied tree has uniformly spaced levels ∆𝑡 apart. Let j=0,…,n be the 

number of levels of the tree that are spaced by ∆𝑡 = 𝑇/𝑛. As the tree recombines, the number of nodes at level j 

will be: i=1,...,j+1. The use of the Enhanced Derman and Kani method ensures the absence of no-arbitrage 

violations in the implied tree and it is motivated by its simplicity and the good replication of the smile pattern, as 



documented e.g. in Muzzioli (2013a, 2013b). The volatilities in the upper and lower part of the tree are computed 

as in Faff and Liu (2016), with the only difference that we adopt a model-free approach in order to estimate the 

risk-neutral distribution: 

𝑉𝑂𝐿𝑈𝑃(𝑡, 𝑇) = √∑ 𝛷𝑖[𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ ) − ℎ]2 𝐼𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ )>ℎ

𝑗+1

𝑖=1

 
 (10) 

𝑉𝑂𝐿𝐷𝑊(𝑡, 𝑇) = √∑ 𝛷𝑖[𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ ) − ℎ]2 𝐼𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ )≤ℎ

𝑗+1

𝑖=1

 (11) 

In this specification, 𝛷𝑖 is the state price density and corresponds to the risk-neutral probability of reaching the 

ending node 𝑖 at time 𝑇, with 𝑖 = 1, … , 𝑗 + 1; 𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ ) is the log-return of the underlying asset at node 𝑖; 𝑆𝑖 is the 

underlying asset price at the ending node 𝑖; 𝑆𝑡 is the underlying spot price at time 0 and ℎ is threshold level. In 

particular, following Faff and Liu (2016) we use two values for ℎ: 

- ℎ = 0 to compute 𝑆𝐼𝑋𝑚𝑓0 ; 

- ℎ = 𝐸(𝑅) to calculate 𝑆𝐼𝑋𝑚𝑓𝑅 . 

The new skewness index 𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓 is computed as follows: 

𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓 =

𝑉𝑂𝐿𝑈𝑃

𝑉𝑂𝐿𝐷𝑊
 (12) 

In order to have a constant 30-day measure for implied skewness, we derive the skewness indices by using a 

linear interpolation with the same formula, which is adopted for the computation of the CBOE SKEW index 

(CBOE, 2010):  

𝑆𝐾 = 𝑤 𝑆𝐾𝑛𝑒𝑎𝑟 + (1 − 𝑤)𝑆𝐾𝑛𝑒𝑥𝑡 (13) 

with 𝑤 =
𝑇𝑛𝑒𝑥𝑡−30

𝑇𝑛𝑒𝑥𝑡−𝑇𝑛𝑒𝑎𝑟
, and 𝑇𝑛𝑒𝑎𝑟 (𝑇𝑛𝑒𝑥𝑡 ) is the time to expiration of the near (next) term options,  𝑆𝐾𝑛𝑒𝑎𝑟 (𝑆𝐾𝑛𝑒𝑥𝑡) 

is the skewness measure which refers to the near (next) term options, respectively.  

Physical moments are obtained from daily FTSE MIB log-returns by using a rolling window of 30 

calendar days. In this way the physical measures refer to the same time-period covered by the risk-neutral 



counterparts. Following the methodology adopted by the CBOE, to facilitate the interpretation and the 

comparison with CBOE SKEW index, we compute the Italian skewness indices (ITSKEW) as in equation (3). For 

the 𝑆𝐼𝑋𝑚𝑓 index 𝑆𝐾 = (1 − 𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓0) or (1 − 𝑆𝐼𝑋̅̅ ̅̅ ̅

𝑚𝑓𝑅) in equation (3) in order to have the same interpretation as 

CBOE SKEW: values above the threshold level 100 suggest that the distribution displays negative skewness and 

vice versa. Physical skewness is computed as in equation (3) for ease of comparison.  

 

5. Results for the Italian skewness indices  

Skewness indices for the Italian market are shown in Figure 1. From this figure, we can observe the two 

skewness indices computed as the ratio between the volatility of the left and the right tail of the distribution which 

use a different barrier level h in order to separate positive and negative returns. 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅, show the 

same pattern, but 𝑆𝐼𝑋𝑚𝑓0 is shifted upward and its range of variation is slightly narrower. This differential pattern 

is due to the different barrier levels ℎ used in the two measures (ℎ = 0 for 𝑆𝐼𝑋𝑚𝑓0 and ℎ = 𝐸(𝑅) for 𝑆𝐼𝑋𝑚𝑓𝑅): in 

the first case a return is defined as positive if it is bigger than zero: in the second, if it is bigger than the expected 

return. Compared to these measures, ITSKEW displays a higher standard deviation. Moreover, 𝑆𝐼𝑋𝑚𝑓 indices 

present fewer peaks than ITSKEW does.  

 

5.1 Descriptive analysis 

Table 3 provides the summary statistics for the FTSE-MIB index returns, model-free implied volatility, 

physical and risk-neutral skewness indices, daily changes in the model-free implied volatility, and daily changes 

in the risk-neutral skewness indices. For each variable the last rows provide the Jarque-Bera test for normality and 

the p-value of the test. A high Jarque-Bera statistic value indicates that the null hypothesis of a normal distribution 

for the variable is rejected. A few observations are in order in this connection. First, the physical returns display 

slightly negative skewness and a pronounced excess kurtosis; the hypothesis of a normal distribution is rejected, 

according to the Jarque-Bera test. Also for model-free implied volatility, the hypothesis of a normal distribution is 

strongly rejected, indicating the presence of extreme movements in volatility in the form of fat tails. Second, all 



the skewness indices are on average higher than the threshold level of 100 (103.78, 103.11 and 101.44 for 

ITSKEW, 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅 respectively), suggesting that both physical and risk-neutral skewness are in 

general negative in the sample period, with the physical distribution (100.13 for 𝑆𝐾𝐸𝑊𝑃𝐻) less negatively skewed 

than the risk-neutral distribution (as measured by the ITSKEW index). Third, we find that extreme price decreases 

are more likely to occur than extreme price rises. Moreover, extreme price decreases are more frequently expected 

during the sample period (under the risk-neutral distribution) than subsequently realized (similar findings are in 

Conrad et al. (2013)). Fourth, all the risk-neutral skewness measures (ITSKEW, 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅 ) display 

positive skewness and excess kurtosis and the hypothesis of a normal distribution is strongly rejected based on the 

Jarque-Bera test. This indicates the presence of extreme movements also in the skewness measures. Fifth, 

physical skewness is found to be the most symmetric among all skewness measures, followed by the ITSKEW 

index. The 𝑆𝐼𝑋𝑚𝑓 indices are the furthest from the normal distribution. The 𝑆𝐼𝑋𝑚𝑓 indices are not directly 

comparable in the levels to the other indices due to their different construction methods. They are less volatile 

than ITSKEW and on average 𝑆𝐼𝑋𝑚𝑓0 points to a more negative skewed distribution than 𝑆𝐼𝑋𝑚𝑓𝑅, being the 

distribution sliced slightly left of zero. This suggests that the expected return implied in an option price is slightly 

less than zero.  

The correlation coefficients between the skewness measures and the other moments of the return 

distribution are shown in Table 4, both in terms of levels and the daily changes. According to this table, the 

ITSKEW index displays the highest significant correlation (0.156) with realized skewness index (𝑆𝐾𝐸𝑊𝑃𝐻), while 

the 𝑆𝐼𝑋𝑚𝑓 indices are almost unrelated with physical skewness. Therefore, only the ITSKEW index can be used to 

forecast realized skewness. The ITSKEW measure also presents a positive and significant correlation (0.21) with 

daily returns, the highest in absolute value, while the 𝑆𝐼𝑋𝑚𝑓 indices are almost unrelated to daily returns. 

Interestingly, while the ITSKEW index has a negative and significant correlation with the model-free implied 

volatility, the 𝑆𝐼𝑋𝑚𝑓 indices show a positive and significant correlation. Therefore, according to the ITSKEW 

(𝑆𝐼𝑋𝑚𝑓) index, the risk-neutral distribution of the FTSE-MIB index returns is less (more) negatively skewed 

when model-free implied volatility is high. The value of the correlation between ITSKEW and model-free implied 



volatility (-0.284) is similar to the value of the correlation between the CBOE SKEW index and the CBOE VIX 

index computed over the same period (-0.331). The ITSKEW index also shows an average value of about 103.78 

over the period 2011-2014, far lower than the corresponding average value of CBOE SKEW index (123.68). This 

means that in general the risk-neutral distribution of log-returns of the FTSE MIB index is less asymmetric in the 

sample period than that of the S&P 500 index. One possible explanation for this evidence is that S&P500 index is 

broadly representative of the stock market (compared to the Italian market index) and, as a results, of the 

investment opportunity set. This makes the S&P500 put options an ideal candidate in order to hedge portfolios 

against downside market risk and this may increase the volatility of the put and in turn the asymmetry of the 

distribution. On the other hand the average implied volatility of the Italian market is about twice that of the US 

market (measured by the VIX index). This is due to the higher sectorial diversification of the S&P500 index (the 

FTSE MIB index is composed by a limited number of stocks and it is highly representative of the financial sector) 

and to the European debt crisis that affected the Italian market during the 2011-2012 time-period.  

The correlation between the daily changes of the ITSKEW index and the daily changes in model-free 

implied volatility is negative, suggesting that a greater model-free implied volatility is associated with more 

symmetry in the distribution. Daily changes in the 𝑆𝐼𝑋𝑚𝑓 indices are almost unrelated to volatility changes. The 

correlation between the daily changes of the ITSKEW index and the returns is positive, suggesting that a positive 

return is associated with a positive change in the ITSKEW index. The 𝑆𝐼𝑋𝑚𝑓 indices are almost unrelated to 

returns. Figure 2 shows the graphs of the ITSKEW index and of the 𝑆𝐼𝑋𝑚𝑓0 index along with the FTSE MIB index 

(the graphical comparison with 𝑆𝐼𝑋𝑚𝑓𝑅 is not shown, since it shares the same pattern as 𝑆𝐼𝑋𝑚𝑓0).  

 

5.2 Properties of the skewness indices 

In order to investigate the relation between changes in the skewness measures and changes in model-free 

implied volatility, we estimate the model described by equation (14). To this end, we compute the changes in 

model-free implied volatility using the model-free methodology as in Muzzioli (2013b) with an extrapolation 

outside the existing domain of strike prices with a constant volatility function.   



𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 = 𝛼 + 𝛽𝛥𝐼𝑉𝑡 + 휀𝑡  (14) 

In this model 𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 is proxied by daily changes in ITSKEW index (𝛥𝐼𝑇𝑆𝐾𝐸𝑊𝑡), 𝑆𝐼𝑋𝑚𝑓0    

index ( 𝛥𝑆𝐼𝑋𝑚𝑓0𝑡
) and 𝑆𝐼𝑋𝑚𝑓𝑅 index (𝛥𝑆𝐼𝑋𝑚𝑓𝑅𝑡

); 𝛥𝐼𝑉𝑡 is the daily change in model-free implied volatility. The 

estimation results, presented in Table 5, point to a negative relation between volatility changes and changes in the 

ITSKEW index as 𝛽 is negative and statistically different from zero. This indicates that an increase in model-free 

implied volatility is associated with a decrease in the ITSKEW index or a less negative risk-neutral distribution. 

We do not find any significant relation between model-free implied volatility and the 𝑆𝐼𝑋𝑚𝑓 indices. The results 

for the ITSKEW index are consistent with the findings in Chang et al. (2013) in the S&P500 index options market. 

Moreover, Neuberger (2012) also finds a positive correlation coefficient between model-free variance and 

skewness, implying that the higher the variance, the less skewed the distribution will be (the magnitude of the 

correlation is 0.297 in the period 1997-2009, on the S&P500 index options market). Recall that the correlation 

between volatility and returns is negative (leverage effect). A possible explanation is that when volatility is high, 

returns are low (for example, in a stressed market or after a market crash) and a repeat crash (as indicated by the 

ITSKEW index) may not be viewed as that likely. On the other hand, when volatility is low, returns are high 

(tranquil market) and a crash is deemed to be more probable.  

In order to investigate whether the skewness indices act as a measure of market fear or market greed, we 

analyze the relation between changes in the skewness measures and the returns of the FTSE-MIB index. To this 

end we estimate the following regression:  

𝑅𝑡 = 𝛼 + 𝛽𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 휀𝑡  (15) 

In this model  Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 is proxied by Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡  , Δ𝑆𝐼𝑋𝑚𝑓0𝑡
 , Δ𝑆𝐼𝑋𝑚𝑓𝑅𝑡

. Results are presented in Table 6. 

We intend to assess whether the skewness measures can be considered as indicators of market fear or market 

greed, i.e. whether they measure more investors’ excitement than investors’ fear. The slope coefficient of changes 

in the ITSKEW is positive and significant, suggesting that an increase in the ITSKEW index (i.e. the risk-neutral 

distribution becomes more negatively skewed), is associated with positive returns. Therefore, positive peaks in 

ITSKEW can be considered as indicators of investor greed, negative peaks in ITSKEW can be considered as 



indicators of investor fear (market stress). When skewness is proxied by the 𝑆𝐼𝑋𝑚𝑓 indices, the slope coefficients 

are insignificant, pointing to the uselessness of the 𝑆𝐼𝑋𝑚𝑓 indices as indicators of current risk.  

In order to disentangle the effect of positive and negative changes in the ITSKEW index on FTSE-MIB 

index returns, we divide the changes in the ITSKEW index into positive ones: 

Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡
+ = ∆𝐼𝑇𝑆𝐾𝐸𝑊𝑡  if  ∆𝐼𝑇𝑆𝐾𝐸𝑊𝑡 > 0, otherwise ∆𝐼𝑇𝑆𝐾𝐸𝑊𝑡

+ = 0  (16) 

and negative ones: 

∆𝐼𝑇𝑆𝐾𝐸𝑊𝑡
− = ∆𝐼𝑇𝑆𝐾𝐸𝑊𝑡  if  ∆𝐼𝑇𝑆𝐾𝐸𝑊𝑡 < 0, otherwise ∆𝐼𝑇𝑆𝐾𝐸𝑊𝑡

− = 0  (17) 

and estimate the following regression: 

𝑅𝑡 = 𝛼 + 𝛽1Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡
+ + 𝛽2Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡

− + 휀𝑡 
 (18) 

Table 7 shows the regression results on asymmetry of effects from positive and negative changes in ITSKEW on 

returns. Both positive and negative changes in the ITSKEW index are highly significant as both slope coefficients 

are positive. In terms of magnitude, the coefficient of negative changes in the ITSKEW index is more than twice as 

large as that of the positive changes, indicating an asymmetric effect (the Wald test for H0: β1 is statistically equal 

to β2 is strongly rejected at the 1% level). Specifically, a decrease in the ITSKEW index (risk-neutral skewness 

increases) is associated with a strong decrease in returns (0.349), while an increase in the ITSKEW index (risk-

neutral skewness become more negative) is associated with a less pronounced increase in returns (0.140). The 

market reacts more negatively to decreases in the ITSKEW index than it reacts positively to increases in the 

ITSKEW index. Therefore, in this setting the ITSKEW index acts as a measure of market greed and the opposite of 

the ITSKEW index (risk-neutral skewness) acts as a measure of market fear.  

A comparison with volatility can be useful for a better understanding of this relation. An increase in 

market volatility is reflected in a deterioration of the investment opportunity set (Chang et al., 2013), due to its 

negative correlation with market returns, an increase in the ITSKEW index (decrease in risk-neutral skewness) is 

viewed as an improvement of the investment opportunity set, due to its positive correlation with market returns. 

Moreover, the negative relation between market returns and the VIX index allows us to define it as an indicator of 



investor fear (Whaley, 2000). Symmetrically, the positive relation between market returns and the ITSKEW index 

allows us to define it a barometer of investor excitement (greed) rather than investor fear. While the investors’ 

aversion to changes in model-free implied volatility is well documented in the literature (see Carr and Wu, 2009), 

a few papers investigate investor preference for skewness uncertainty (Chang et al. 2013, Chabi-Yo, 2012). It is 

assumed that risk-averse investors prefer right-skewed assets and as a consequence are willing to obtain a lower 

return on these assets (Chang et al. 2013). Therefore, a positive change in the ITSKEW index, i.e. a decrease in 

risk-neutral skewness, is related to an increase in the possibility of negative jumps representing bad news for 

investors. In this context, stocks which react positively to a decrease in risk-neutral skewness, which is perceived 

as bad news, provide a desirable hedge against downside jump risk and as a consequence require lower future 

returns. As the FTSE MIB index reacts positively to a decrease in risk-neutral skewness, it provides a hedge 

against skewness risk since it increases in value when the riskiness of the distribution (in term of skewness) 

increases. The market index is perceived as a well-diversified portfolio, and therefore it is less vulnerable to jump 

risk compared to individual stocks. 

As a final step, in order to assess the correlation between returns, changes in model-free implied volatility 

and changes in the skewness measures, we estimate the following regression: 

𝑅𝑡 = 𝛼 + 𝛽1Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 𝛽2Δ𝐼𝑉𝑡 + 휀𝑡  (19) 

In this specification the change in skewness (Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡) is proxied alternatively by the three measures 

Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡  , Δ𝑆𝐼𝑋𝑚𝑓0𝑡
 , Δ𝑆𝐼𝑋𝑚𝑓𝑅𝑡

, and Δ𝐼𝑉𝑡 is the change in model-free implied volatility. Estimation results for 

the model are shown in Table 8. We can see that the coefficient of changes in model-free implied volatility (Δ𝐼𝑉𝑡) 

is negative and highly significant in every regression. Among skewness measures, changes in the ITSKEW index 

are the only significant ones, demonstrating the power of this skewness measure in the explanation of market 

returns. Therefore, the ITSKEW index presents several advantages, compared to the 𝑆𝐼𝑋𝑚𝑓 indices: it has a 

significant contemporaneous relation with both index returns and model-free implied volatility, and it augments 

the volatility explanation content with valuable information about returns (in fact the adjusted R-squared increases 

when we add the ITSKEW index into the regression).   



As a second goal of our study, we aim to assess whether the ITSKEW index can be used to forecast future 

market returns. A previous study, Muzzioli (2013b) found that changes in implied volatility (as measured by both 

Black-Scholes implied volatility and model-free implied volatility) can serve as an early-warning indicator of 

market stress, and that the returns have explanatory power in forecasting future implied volatility. Pan and 

Poteshman (2006) find that publicly observable option signals are able to predict stock returns only for the next 

one or two trading days, before stock prices subsequently reverse. Other papers (Xing et al. 2010) find that the 

predictability from volatility smirks persists for a much longer period (six months).  

To investigate the power of skewness indices in predicting future market returns, we estimate a vector 

autoregression (VAR) model as follows:  

𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡−𝑙 + ∑ 𝑏𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 (20) 

Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 + ∑ 𝑏𝑙Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 
(21) 

The lag length 𝑘 = 2, is chosen according to both the Schwarz and Hannan-Quinn information criteria. 

The estimation output of the model is shown in Table 9. The VAR coefficient estimates show that changes in the 

ITSKEW index can be explained by past returns (one lag) and past changes in the ITSKEW index (lags one and 

two). On the other hand, returns cannot be explained by past returns, but can be explained by past changes in the 

ITSKEW index (one lag). We perform a Granger causality test for the null hypothesis of zero effect (H: 𝑎𝑙 = 0, 

𝑙 = 1,2) from skewness on returns in equation (20) and from market returns on skewness in equation (21) in order 

to understand whether ∆𝐼𝑇𝑆𝐾𝐸𝑊 Granger causes returns 𝑅 in the first regression, as opposed to 𝑅 Granger 

causing ∆𝐼𝑇𝑆𝐾𝐸𝑊 in the second regression. The results are shown in Table 10. The Granger causality test shows 

that both the null hypothesis that returns do not Granger cause changes in the ITSKEW index and that changes in 

the ITSKEW index do not Granger cause returns are rejected at the 5% level. Therefore, there is weak evidence 

that positive changes in the ITSKEW index are reflected in a negative return the following day, and that, on the 

other hand, a positive return is reflected in an increase of the ITSKEW index in the following day. This is in line 



with Harvey and Siddique (2000), who find that when past returns have been high, the investors’ forecast of 

skewness becomes more negative. This is consistent with the so-called “bubble theory” purporting that if past 

returns have been high, this indicates that the bubble has been inflating and, therefore, a significant drop can be 

expected when the bubble bursts.  

 

 6. Sub-period analysis  

In order to investigate if high or low levels of implied volatility have an effect on skewness, we propose a 

comparison between the FTSE MIB index, model-free implied volatility and the ITSKEW index, as shown in 

Figure 3.  From the graph we can observe two different medium-term trends: a negative trend (bearish market) 

characterized by a higher volatility between February 2011 and the end of July 2012, and a positive trend (bullish 

market) in the second part of the sample period, which is characterized by lower volatility. We may attribute the 

reversal in trend to the positive effect of the “whatever it takes” London Speech of the ECB President Mario 

Draghi (26 July 2012) that put an end to the acute phase of the European sovereign debt crisis. Proclaiming that 

the ECB would do “whatever it takes” to save the Euro was the incipit to the Outright Monetary Transactions
6
 

policy, putting an end to speculation on government bonds of the peripheral countries. The speech was followed 

by an immediate increase in the market indices of the European stock markets. Therefore, in order to assess the 

behaviour of the skewness indices in high and low volatility periods, we split the data set according to these 

volatility periods and report the descriptive statistics of the skewness indices in the two sub-periods in Table 11.  

Physical skewness is negative in the first sub-period characterized by a bearish market, and slightly 

positive in the second sub-period characterized by a bullish market. Risk-neutral skewness indices attain a value 

higher than 100 in both sub-periods, pointing to an overall negative skewness. The 𝑆𝐾𝐸𝑊 index is high in the 

bullish period and low in the bearish period, pointing to a more negatively skewed distribution in the period 

characterized by a stable market and low volatility. These findings are consistent with the findings in Han (2008), 

Faff and Liu (2016) in the S&P500 options market. Also Neuberger (2012) finds in the S&P500 options market 

                                                           
6
 Outright Monetary Transactions, announced on 2 August, 2012, is a programme which allows the ECB to purchase, under 

certain conditions, sovereign bonds issued by Eurozone member-states. http://www.ft.com/cms/s/0/448a6f28-f822-11e1-
828f-00144feabdc0.html 

http://www.ft.com/cms/s/0/448a6f28-f822-11e1-828f-00144feabdc0.html
http://www.ft.com/cms/s/0/448a6f28-f822-11e1-828f-00144feabdc0.html


that in the period when index volatility was low (2003-2007) negative skewness was relatively high, whereas it 

was rather low in the volatility spike of 2008. When the market returns are positive (bullish market) risk-neutral 

skewness tends to be more negative. On the other hand, in periods of bearish market, risk-neutral skewness tends 

to be more positive, since investors are expecting an inversion of the tendency. In fact, when the market is 

bearish, investors may purchase out-of-the-money calls instead of buying the underlying asset, shifting the risk-

neutral distribution to the right. The information we obtain from the 𝑆𝐼𝑋𝑚𝑓 is the opposite. The behavioral pattern 

of the 𝑆𝐼𝑋𝑚𝑓 index is found to be more consistent with physical skewness which is slightly less negative (more 

positive) in the low volatility period. The 𝑆𝐼𝑋𝑚𝑓 index is consistent with Dennis and Mayhew (2002), who find 

that risk-neutral density tends to be more negatively skewed for stocks in periods of higher market volatility. The 

difference between physical and risk-neutral skewness (𝑆𝐾𝐸𝑊 index) is higher in the bullish market period. This 

indicates the presence of a skewness risk premium in the Italian market, that is more consistent in the low 

volatility period. This means that in bullish market periods investors expect a more negatively skewed risk-neutral 

distribution than subsequently realized. This is investigated further in the following section by means of portfolio 

trading strategies.  

 

7. A comparison with the CBOE SKEW index 

In order to assess whether the properties of the ITSKEW index observed in the Italian market also apply to the 

US market, we replicate the analysis based on equations (14)-(21) for the US market on the same time-period. We 

estimate the regression in equation (14) by using changes in the CBOE SKEW index as a proxy for 𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 

and changes in the VIX index as a proxy for 𝛥𝐼𝑉𝑡. The results, presented in Table 12, show a negative statistically 

significant relation between changes in the CBOE SKEW index and changes in the VIX index, in line with the 

results found in the Italian market. This indicates that an increase in the VIX index is associated with a decrease in 

the CBOE SKEW index (less negative risk-neutral distribution). However, the adjusted R-squared is lower than the 

one for the ITSKEW index in Table 5. 



In order to investigate the relation between changes in the CBOE SKEW index and S&P500 daily returns, we 

estimate equation (15) where 𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 is proxied by changes in the CBOE SKEW index and Rt by S&P500 

daily returns. The results, shown in Table 13, display a positive statistically significant relationship between 

changes in the CBOE SKEW index and S&P500 returns: an increase in the CBOE SKEW index is associated with an 

increase in market returns. Again, the relation, though weaker than the one in the Italian market (lower adjusted 

R-squared) is of the same sign.  

In order to disentangle the effect of positive and negative changes in the CBOE SKEW index on S&P500 index 

returns, we divide the changes in the CBOE SKEW index into positive and negative ones (equations 16-17) and 

estimate the regression in equation (18). The results, reported in Table 14, show positive coefficients for both 

positive and negative changes in the CBOE SKEW index. However, while the coefficient for positive changes in 

the skewness index is statistically significant at the 1% level, the one for negative changes in the CBOE SKEW 

index is only marginally significant at the 5% level. This result suggests that positive changes in CBOE SKEW are 

associated with positive returns; and negative changes in the CBOE SKEW are associated with negative returns. 

Unlike the results for the ITSKEW, we do not detect any asymmetric effect (the Wald test for H0: β1 is statistically 

equal to β2 is not rejected). This is the main dissimilarity between the US and the Italian stock market. In fact, in 

the Italian case the coefficient for negative changes in the ITSKEW index (β2) is more than twice the coefficient 

for positive changes in the Italian skewness index (β1), as reported in Table 7. 

We also investigate whether the relationship between changes in the CBOE SKEW index and market returns 

persists if we add changes in the VIX index as an explanatory variable (equation 19). The results, reported in Table 

15, show that the coefficient for changes in the VIX index (β2) is negative and statistically different from zero, 

while the coefficient for changes in the CBOE SKEW index is positive but only marginally significant. This result 

suggests that changes in the CBOE SKEW index lose explanatory power when we consider changes in the volatility 

index in the model. In contrast, in the Italian market, when we add changes in implied volatility as an explanatory 

variable (equation 19), the ITSKEW coefficient is still statistically different from zero. To sum up, we find that 

CBOE SKEW index has similar properties to the ITSKEW index. In particular changes in the CBOE SKEW index 



present a positive relation with market returns and a negative relation with the VIX index. Therefore we can state 

that also the CBOE SKEW index acts more as a measure of market greed than as a measure of market fear.  

Another interesting and debated issue is the relation between skewness and future market returns. In order to 

assess whether we can use the CBOE SKEW index in order to forecast future market returns, or vice versa, market 

returns to forecast future changes in the CBOE SKEW index, we estimate the following VAR models: 

𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡−𝑙 + ∑ 𝑏𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 (22) 

Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 + ∑ 𝑏𝑙Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 
(23) 

where 𝑅𝑡 is proxied by S&P500 daily returns. We chose the lag length equal to 3, according to both the Schwarz 

and Hannan-Quinn information criteria. The estimation output of the model is reported in Table 16. We can see 

that the S&P500 returns can be explained only by lagged returns (one, two and three lags). On the other hand, 

changes in the CBOE SKEW index can be explained mainly by lagged changes in the CBOE SKEW index (one, two 

and three lags) and by market returns (at lag two). We perform a Granger causality test for the null hypothesis of 

zero effect (H: 𝑎𝑙 = 0, 𝑙 = 1,2,3) from change in the CBOE SKEW index on returns in equation (22) and from 

market returns on changes in the skewness index in equation (23) in order to understand whether ∆𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 

Granger causes returns 𝑅 in equation (22), as opposed to 𝑅 Granger causing ∆𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 in equation (23). The 

results, reported in Table 17, show that the null hypothesis that returns do not Granger cause changes in the CBOE 

SKEW index is rejected at the 10% level. Therefore, there is weak evidence that positive returns are reflected in 

positive changes in the CBOE SKEW index the following day; this result, although weaker, is in line with the one 

found in the Italian market. On the other hand, we cannot reject the null hypothesis that changes in the CBOE 

SKEW index do not Granger cause future market returns. Therefore, unlike the ITSKEW index, changes in the 

CBOE SKEW index are not useful to forecast future market returns. 

  



8. Trading strategies  

The difference between risk-neutral and physical skewness may be exploited by skewness trades which allow 

investors to profit from an overvalued or undervalued third moment. When the implied third moment is 

undervalued with respect to the physical skewness, Javaheri (2005) suggests a strategy consisting of buying out-

of-the-money calls and selling out-of-the-money puts. This strategy is exploited also in Bali and Murray (2013) 

where three different skewness assets (they are named skewness assets since their value depends solely on the 

skewness of the underlying asset) are used to test mispricing in different portions of the risk-neutral density of 

returns. Therefore, in order to assess whether it is possible to exploit the difference between risk-neutral and 

physical skewness, in line with Bali and Murray (2013), we create three different portfolios: a 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 (a 

short position in out-of-the-money (OTM) puts and a long position in out-of-the-money (OTM) calls) a 

𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 (a short position in out-of-the-money (OTM) puts and a long position in at-the-money (ATM) puts) 

and a 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 (a long position in out-of-the-money (OTM) calls and a short position in at-the money (ATM) 

calls). In order to isolate the effect of skewness, the exposure to changes in the underlying asset (delta-neutral) 

and volatility (vega-neutral) is removed. As a result, each asset represents a long skewness position. A 

comparison with volatility trading strategies can be useful for a better understanding of these portfolios. Indeed, 

as a long straddle position is considered as a long volatility position since it increases (decreases) in value when 

the volatility of the underlying security increases (decreases), skewness assets increase (decrease) in value when 

the skewness of the underlying security increases (decreases). Portfolio strategies are investigated also in Kozhan 

et al. (2013): they find that buying low-strike puts and selling high-strike calls generates on average a negative 

return, and as a result buying risk-neutral skewness is profitable.  

The 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡, described by equation (24), is designed to change value if there is a change in the 

skewness of the risk-neutral return density coming either from a change in the left tail, or from a change in the 

right tail, or from both:  

𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 = 𝐶𝑂𝑇𝑀 −
𝑉𝐶𝑂𝑇𝑀

𝑉𝑃𝑂𝑇𝑀

 𝑃𝑂𝑇𝑀 − (∆𝐶𝑂𝑇𝑀
−  

𝑉𝐶𝑂𝑇𝑀

𝑉𝑃𝑂𝑇𝑀

∆𝑃𝑂𝑇𝑀
) 𝑆 (24) 



where 𝐶𝑂𝑇𝑀 and 𝑃𝑂𝑇𝑀 indicate the price of out-of-the-money call and put, respectively, ∆ is the delta of the 

option, 𝑉 is the vega of the option, and 𝑆 is the position of the investor in the underlying asset. The return of the 

𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 is expected to be positive if OTM calls are undervalued relative to OTM puts. This condition is 

consistent with an implied distribution more negatively-skewed than the physical one. 

The 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡, described by equation (25), is designed to change in value if there is a change in the skewness of 

the underlying asset coming from a change in the left tail of the risk-neutral density: 

𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 = −𝑃𝑂𝑇𝑀 +
𝑉𝑃𝑂𝑇𝑀

𝑉𝑃𝐴𝑇𝑀

𝑃𝐴𝑇𝑀 − (−∆𝑃𝑂𝑇𝑀
+  

𝑉𝑃𝑂𝑇𝑀

𝑉𝑃𝐴𝑇𝑀

∆𝑃𝐴𝑇𝑀
) 𝑆 (25) 

where 𝑃𝑂𝑇𝑀 and 𝑃𝐴𝑇𝑀 indicate the price of out-of-the-money put and at-the-money put, respectively, ∆ is the delta 

of the option, 𝑉 is the vega of the option and 𝑆 is the position in the underlying asset. The return of the 

𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 is expected to be positive if OTM puts are overvalued relative to ATM puts. 

The 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡, described by equation (26), is designed to change value if there is a change in the skewness of 

the underlying asset arising from a change in the right tail of the risk-neutral density. 

𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 = 𝐶𝑂𝑇𝑀 −
𝑉𝐶𝑂𝑇𝑀

𝑉𝐶𝐴𝑇𝑀

𝐶𝐴𝑇𝑀 − (∆𝐶𝑂𝑇𝑀
−  

𝑉𝐶𝑂𝑇𝑀

𝑉𝐶𝐴𝑇𝑀

∆𝐶𝐴𝑇𝑀
) 𝑆 (26) 

where 𝐶𝑂𝑇𝑀 and 𝐶𝐴𝑇𝑀 indicate the price of out-of-the-money put and at-the-money put, respectively, ∆ is the delta 

of the option, 𝑉 is the vega of the option and 𝑆 is the position in the underlying asset. The return of the 

𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 is expected to be positive if OTM calls are undervalued relative to ATM calls.  

We create the skewness assets in equations (24)-(26), by using next-term option prices that usually have a 

maturity between 30 and 70 days. The options with the closest strike price to the underlying asset value are taken 

to be the at-the-money options. Out-of-the-money options are taken to be the ones whose strike price to 

underlying asset price ratio is the closest to 0.90 for puts and 1.10 for call options, respectively. In order to have 

delta and vega neutral portfolios, trades are set at day 𝑡 and are closed at day 𝑡 + 1. Daily profits and losses are 

computed as the difference between the value of the portfolios in 𝑡 + 1 and in 𝑡 and represent the daily risk 

premium for being exposed to skewness. Daily return is computed as: 



𝑟 =  
𝑃𝑡+1 − 𝑃𝑡

|𝑃𝑡|
 (27) 

where 𝑃𝑡+1 and 𝑃𝑡 are the prices of the skewness asset at day 𝑡 + 1 and 𝑡, respectively. In line with Bali and 

Murray (2013), we use the absolute value of the skewness asset price at time 𝑡 because skewness asset prices are 

not guaranteed to be positive. Transaction costs are not considered. 

The cumulative return of the three skewness assets is reported in Figure 4. We can observe that the 

cumulative return of all skewness assets is positive during the sample. The descriptive statistics of the skewness 

assets’ returns are reported in Table 18. Average daily returns are ascertained to be statistically different from 

zero, by using the Newey West adjusted errors. The 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 achieves the best performance with a 

cumulative return of 56.43%, the average daily return is statistically different from zero, pointing to a heavy 

overvaluation of out-of-the-money put options and symmetrically, an undervaluation of out-of-the-money call 

options. The 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 achieves a cumulative return of 49.16% and the average daily returns are statistically 

different from zero. This result suggests that out-of-the-money put options are highly overvalued with respect to 

at-the-money options. The 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 realizes a cumulative return of 10.64%. However, the average daily return 

is not statistically different from zero. Therefore, the undervaluation of out-of-the-money call options with respect 

to at-the-money call options is not statistically significant. We can conclude that the mispricing of options is 

concentrated in the left tail of the distribution. This means that the implied distribution is in general more 

negatively-skewed than the physical one and that buying skewness is on average profitable. Although Bali and 

Murray (2013) find the opposite result, this evidence is consistent with Kozhan et al. (2013) and the literature that 

documents the overvaluation of out-of-the-money put options with respect to out-of-the-money call options (see 

e.g. Javaheri (2005) and Liu (2007)). The dissimilarity might be related to the different rebalancing in the 

skewness assets implementation: in fact, Bali and Murray (2013) do not rebalance the position daily for delta and 

vega, retaining the same portfolios until option expiration. 

  



 

9. Conclusions 

In this paper we analyzed the role of the CBOE SKEW index as a as a measure of market fear or greed and 

proposed different skewness measures for the Italian index option market. In order to delineate for the first time a 

skewness index for the Italian stock market we exploited both the CBOE method to compute a skewness index 

(we call it ITSKEW) and a model-free measure based on the ratio between the volatilities on the left and on the 

right part of the risk-neutral distribution (𝑆𝐼𝑋𝑚𝑓). The CBOE method yields a skewness index which is negatively 

related to the Italian volatility index, both in terms of levels and daily changes, indicating that higher volatility is 

associated with less negative skewness. This is consistent with the results obtained for the S&P500 option market, 

in line with Han (2008) and Faff and Liu (2016). Unlike the ITSKEW, the 𝑆𝐼𝑋𝑚𝑓 index has a weak positive 

correlation with model-free implied volatility. We also find a negative relation between volatility changes and 

changes in the ITSKEW index: an increase in model-free implied volatility is associated with a decrease in the 

ITSKEW index (less negative risk-neutral distribution). We do not find a significant relation between model-free 

implied volatility and the other asymmetry indices (𝑆𝐼𝑋𝑚𝑓) indicating that the 𝑆𝐼𝑋𝑚𝑓 is not related to model-free 

implied volatility. Unlike the 𝑆𝐼𝑋𝑚𝑓 indices, the ITSKEW index can also be considered as a predictor of future 

realized skewness, thanks to its good correlation with the latter. Moreover, the ITSKEW index behaves similarly to 

the CBOE SKEW index: positive changes in the CBOE SKEW index are associated with negative changes in the VIX 

index.  

By investigating the relation between the skewness indices and market returns, we find that an increase in the 

ITSKEW index (i.e. the risk-neutral distribution becoming more negatively skewed), is associated with an increase 

in returns. Therefore, in this setting the ITSKEW index acts as a measure of market greed. We also find that the 

effect of positive and negative changes in ITSKEW is asymmetric: a decrease in the ITSKEW index, indicating that 

the distribution becomes more skewed to the right, is associated with a strong decrease in the returns, while an 

increase in the ITSKEW index is associated with a less pronounced increase in returns. The market reacts more 

negatively to decreases in the ITSKEW index than it reacts positively to increases in the ITSKEW index. When 



skewness is proxied by the 𝑆𝐼𝑋𝑚𝑓 indices, the slope coefficients in equation (15) are insignificant, pointing to the 

uselessness of the 𝑆𝐼𝑋𝑚𝑓 indices as indicators of current risk. Therefore, we find that the ITSKEW index presents 

some advantages compared to the 𝑆𝐼𝑋𝑚𝑓 indices: it is a better predictor of future realize skewness, it has a 

significant contemporaneous relation with returns and model-free implied volatility, and it is significant in the 

explanation of returns, even after having controlled for volatility. The CBOE SKEW index behaves, similarly to the 

Italian skew index, as a measure of market excitement, even if it does not show any asymmetric effect. Moreover, 

changes in the CBOE SKEW index lose explanatory power on returns when the VIX index is considered in the 

model. This suggests that part of the information content of the CBOE SKEW index is already embedded in the VIX 

index. This highlights the importance of investigating other skewness measures that may better complement the 

implied volatility information in explaining market returns, which is left for future research, since also the 

skewness measure based on the ratio between the volatilities on the left and on the right part of the risk-neutral 

distribution (𝑆𝐼𝑋𝑚𝑓)  do not have any explanatory power.   

We also find weak evidence that positive changes in the ITSKEW index are reflected in a negative return the 

following day, and that a positive return is reflected in an increase of the ITSKEW index. This is in line with 

Harvey and Siddique (2000), who find that when past returns have been high, the investors’ forecast of skewness 

becomes more negative, consistent with the so-called “bubble theory”: if past returns have been high, this means 

that the bubble has been inflating and, therefore, a large drop can be expected when the bubble bursts. In 

particular, the combination of a high skewness index and a low implied volatility may indicate an overly 

complacent market, and signal the creation of speculative bubbles. 

Finally, our findings point to the existence of a positive skewness risk premium in the Italian market, 

consistently with an investors’ preference for positive skewness. This emerges both from the fact that implied 

skewness is more negative than physical skewness in the sample period and from the profitability of skewness 

trading strategies. The positive returns of the three portfolios (a short position in out-of-the-money puts and a long 

position in out-of-the-money calls; a short position in out-of-the-money puts and a long position in at-the-money 

puts; a long position in out-of-the-money calls and a short position in at-the money calls) confirm that the implied 



distribution of log-returns is more negatively skewed than the physical one. In addition, the better performance of 

the portfolios composed by only put options indicates that the mispricing of options is mainly focused on the left 

part of the distribution. Unlike Bali and Murray (2013), but consistently with Kozhan et al. (2013), portfolio 

strategies show that buying skewness (long out-of-the-money call options and short out-of-the-money put options) 

is on average profitable.  

As investors are averse to volatility, the 𝑉𝐼𝑋 has been called the investors’ fear gauge, since it has been found 

to spike mainly during high levels of market turmoil. From the findings of the paper, both in the Italian and in the 

US market the  𝑆𝐾𝐸𝑊 index has been found to be an investors’ greed gauge, given its positive relation with 

market returns. The higher the volatility, the greater the fear, the higher the 𝑆𝐾𝐸𝑊 measure, the greater the greed.  

Given the possibility to use the Italian 𝑆𝐾𝐸𝑊 index for settling portfolio strategies and for forecasting future 

returns, and the properties of the 𝑆𝐾𝐸𝑊 index as an indicator of market greed, we believe that the results of the 

paper can be of importance for both investors and regulators. Investors could take advantage of the discrepancy 

between physical and risk-neutral skewness by creating skewness assets and use skewness in order to forecast 

future returns. Regulators could monitor the information embedded both in volatility and skewness indices. In 

particular, a large negative change in skewness indices, combined with an increasing implied volatility, may be 

regarded as an early warning of a strong fall in the stock market. 

This analysis may be extended in many directions. Further research is needed in order to assess the relationship 

among implied moments and the study of other asymmetry measures which, similarly to the portfolio strategies, 

are able to capture changes in the implied distribution coming from the different tails. Moreover, as the skewness 

coefficient is a normalized measure which is divided by variance, the study of non-normalized measures which 

react only to asymmetry, and not to both asymmetry and variance, will be useful to better understand the 

properties of the skewness indices.   

 

 

  



Appendix A. 

We provide in this section further details about the model-free formula proposed in Bakshi et al. (2003) in order 

to compute higher moments of the option implied return distribution. According to Bakshi et al. (2003) model-

free skewness is obtained from the following equation as:  

𝑆𝐾(t, 𝜏) ≡  
𝐸𝑡

𝑞
{(𝑅(t, 𝜏) − 𝐸𝑡

𝑞[𝑅(t, 𝜏)])3}

{𝐸𝑡
𝑞

(𝑅(t, 𝜏) − 𝐸𝑡
𝑞[𝑅(t, 𝜏)])2}

3/2
 

=   
𝑒𝑟𝜏𝑊(t, 𝜏) − 3𝑒𝑟𝜏𝜇(t, 𝜏)𝑉(t, 𝜏) + 2𝜇(t, 𝜏)3

[𝑒𝑟𝜏𝑉(t, 𝜏) −  𝜇(t, 𝜏)2]3/2
 

(A1) 

where 𝜇(𝑡, 𝜏), 𝑉(𝑡, 𝜏) , 𝑊(𝑡, 𝜏) and 𝑋(𝑡, 𝜏) are the prices of the contracts, at time 𝑡 with maturity 𝜏, based on first, 

second, third and fourth moment of the distribution, respectively; their value are computed as:  

𝜇(𝑡, 𝜏) ≡  𝐸𝑞 𝑙𝑛[𝑆(𝑡 +  𝜏) 𝑆(𝑡)⁄ ] =  𝑒𝑟𝜏 − 1 −
𝑒𝑟𝜏

2
𝑉(𝑡, 𝜏) −

𝑒𝑟𝜏

6
𝑊(𝑡, 𝜏) −

𝑒𝑟𝜏

24
𝑋(𝑡, 𝜏) (A2) 

𝑉(𝑡, 𝜏) = ∫
2(1 − 𝑙𝑛[𝐾 𝑆(𝑡)⁄ ])

𝐾2
 𝐶(𝑡, 𝜏;  𝐾) 𝑑𝐾 + ∫

2(1 + 𝑙𝑛 [𝑆(𝑡)/𝐾]

𝐾2
𝑃(𝑡, 𝜏;  𝐾)𝑑𝐾 

𝑆(𝑡)

0

 
∞

𝑆(𝑡)

 (A3) 

𝑊(𝑡, 𝜏) = ∫
6 𝑙𝑛[𝐾/𝑆(𝑡)] − 3 𝑙𝑛[𝐾/𝑆(𝑡)]2

𝐾2
𝐶(𝑡, 𝜏;  𝐾)𝑑𝐾

∞

𝑆(𝑡)

− ∫
6 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ + 3 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ 2

𝐾2
𝑃(𝑡, 𝜏;  𝐾)𝑑𝐾

𝑆(𝑡)

0

   

(A4) 

𝑋(𝑡, 𝜏) = ∫
12 𝑙𝑛[𝐾/𝑆(𝑡)]2 − 4 𝑙𝑛[𝐾/𝑆(𝑡)]3

𝐾2
𝐶(𝑡, 𝜏;  𝐾)𝑑𝐾

∞

𝑆(𝑡)

+  ∫
12 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ 2 + 4 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ 3

𝐾2
𝑃(𝑡, 𝜏;  𝐾)𝑑𝐾

𝑆(𝑡)

0

 

(A5) 



where 𝐶(𝑡, 𝜏;  𝐾) and 𝑃(𝑡, 𝜏;  𝐾) are the prices of a call and a put option at time 𝑡 with maturity 𝜏 and strike 𝐾, 

respectively, 𝑆(𝑡), is the underlying asset price at time 𝑡. 
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Table 1 – Descriptive statistics for the S&P500 market. 

 CBOE SKEW VIX R ∆VIX 
∆CBOE 

SKEW 

∆CBOE 

SKEW+ 

∆CBOE 

SKEW- 

Mean 123.68 17.63 0.00 -0.00 0.00 0.01 -0.01 

Median 122.88 15.95 0.00 -0.00 -0.00 0.00 -0.00 

Maximum 146.08 48.00 0.05 0.41 0.14 0.14 0.00 

Minimum 111.31 10.32 -0.07 -0.31 -0.13 0.00 -0.14 

Std. Dev. 6.19 6.16 0.01 0.07 0.03 0.02 0.02 

Skewness 0.67 2.05 -0.60 0.75 0.13 3.24 -3.18 

Kurtosis 3.06 7.32 8.79 6.43 7.95 18.49 17.95 

Jarque-Bera 74.39 1455.18 1431.07 573.87 1003.55 11544.41 10809.20 

p-value  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note: The table reports the descriptive statistics for the CBOE SKEW index, the VIX  index, S&P500 returns 

and daily changes in both the VIX and the CBOE SKEW indices. 𝑅 is the S&P500 daily return (continuously 

compounded); Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊+ and Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊− are the positive and negative changes in the 

𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index, respectively. Daily changes are defined in logarithmic terms as follows: ∆𝑥𝑡+1 =

ln(𝑥𝑡+1 𝑥𝑡⁄ ), where x is the series under investigation. The p-value refers to the Jarque-Bera test for 

normality.  

 

 

 

Table 2 – Correlation table for the S&P500 market. 

 CBOE SKEW VIX R ∆VIX 
∆CBOE 

SKEW 

∆CBOE 

SKEW+ 

∆CBOE 

SKEW- 

CBOE SKEW 1.000       

VIX -0.331
***

 1.000      

R 0.066
**

 -0.156
***

 1.000     

∆VIX -0.026 0.122
***

 -0.814
***

 1.000    

∆CBOE SKEW 0.257
***

 -0.029 0.187
***

 -0.173
***

 1.000   

∆CBOE SKEW+ 0.322
***

 -0.053 0.161
***

 -0.143
***

 0.819
***

 1.000  

∆CBOE SKEW- 0.090
***

 0.008 0.142
***

 -0.139
***

 0.803
***

 0.315
***

 1.000 

Note: The table reports the correlation coefficients between the measures used in the study of the S&P500 

market. For the definition of the measures see Table 1. Significance at the 1% level is denoted by ***, at the 

5% level by **, and at the 10% level by *. 



Table 3 – Descriptive statistics for the Italian market. 

 𝑆𝐾𝐸𝑊𝑃𝐻 
IT 

SKEW 
𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 𝐼𝑉 𝑅 Δ𝐼𝑉 

ΔIT 

SKEW 

ΔIT 

SKEW+ 

ΔIT 

SKEW- 

Δ 

𝑆𝐼𝑋𝑚𝑓0 

Δ 

𝑆𝐼𝑋𝑚𝑓𝑅 

Mean 100.13 103.78 103.11 101.44 33.83 0.00 0.00 0.00 0.01 -0.01 0.00 0.00 

Median 100.08 103.84 103.27 101.62 31.20 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 

Maximum 103.52 126.36 115.99 112.24 75.43 0.06 0.30 0.15 0.15 0.00 0.13 0.11 

Minimum 95.97 89.11 96.31 95.27 14.95 -0.07 -0.52 -0.20 0.00 -0.20 -0.10 -0.09 

Std. Dev. 1.11 4.56 2.03 1.77 9.73 0.02 0.08 0.03 0.02 0.02 0.02 0.02 

Skewness -0.00 0.39 0.65 0.49 1.28 -0.24 -0.81 0.31 3.13 -3.10 0.22 0.21 

Kurtosis 4.37 4.92 5.97 5.61 4.51 4.44 6.82 7.70 15.39 20.13 4.74 4.44 

Jarque-Bera 76.58 174.53 428.85 319.10 360.88 92.98 700.75 913.73 7833.07 13493.71 130.34 91.87 

p-value  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note: The table reports the descriptive statistics of physical and risk-neutral skewness indices, the model-free implied volatility, FTSE MIB returns 

and daily changes in volatility and skewness measures. We indicate as 𝑆𝐾𝐸𝑊𝑃𝐻 the index of subsequently realized skewness in the next 30 days, 

𝐼𝑇𝑆𝐾𝐸𝑊 is the index we compute using the CBOE method, 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅 refer to the 𝑆𝐼𝑋𝑚𝑓 indices computed as the ratio between upside 

and downside corridor implied volatilities with barriers equal to 0 and R, respectively, where R is the expected return, IV is the model-free implied 

volatility multiplied by 100 (VIX methodology), 𝑅 is the FTSE MIB daily return (continuously compounded); Δ 𝐼𝑇𝑆𝐾𝐸𝑊+ and Δ 𝐼𝑇𝑆𝐾𝐸𝑊− are 

the positive and negative changes in the 𝐼𝑇𝑆𝐾𝐸𝑊 index, respectively. The p-value refers to the Jarque-Bera test for normality. 

 

 

 

 



Table 4 – Correlation table for the Italian market. 

 𝑆𝐾𝐸𝑊𝑃𝐻 ITSKEW 𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 𝐼𝑉 𝑅 Δ𝐼𝑉 
ΔIT 

SKEW 

ΔIT 

SKEW+ 

ΔIT 

SKEW- 
Δ 𝑆𝐼𝑋𝑚𝑓0 

Δ 

𝑆𝐼𝑋𝑚𝑓𝑅 

𝑆𝐾𝐸𝑊𝑃𝐻 1.000            

ITSKEW 0.156
***

 1.000           

𝑆𝐼𝑋𝑚𝑓0 0.030 0.063
**

 
1.000 

 
         

𝑆𝐼𝑋𝑚𝑓𝑅 0.047 0.090
***

 0.991
***

 1.000         

𝐼𝑉 0.008 -0.284
***

 0.209
***

 0.142
***

 1.000        

𝑅 -0.017 0.208
***

 -0.038 -0.032 -0.117
***

 1.000       

Δ𝐼𝑉 0.057
*
 -0.145

***
 0.021 0.019 0.134

***
 -0.573

***
 1.000      

ΔIT 

SKEW 
0.003 0.354

***
 -0.083

**
 -0.073

**
 -0.059

*
 0.439

***
 -0.435

***
 1.000     

ΔIT 

SKEW+ 
-0.026 0.352

***
 -0.063

**
 -0.063

*
 -0.060

*
 0.286

***
 -0.432

***
 0.830

***
 1.000    

ΔIT 

SKEW- 
0.034 0.214

***
 -0.072

**
 -0.054

*
 -0.034 0.431

***
 -0.264

***
 0.788

***
 0.310

***
 1.000   

Δ 

𝑆𝐼𝑋𝑚𝑓0 
0.004 0.009 0.565

***
 0.565

***
 0.006 -0.026 0.031 -0.061

*
 -0.038 -0.062

*
 1.000  

Δ 

𝑆𝐼𝑋𝑚𝑓𝑅 
0.005 0.020 0.561

***
 0.564

***
 0.004 -0.015 0.023 -0.036 -0.0206 -0.039 0.997

***
 1.000 

Note: The table reports the correlation coefficients between the measures used in the study of the Italian market. For the definition of the measures see Table 

3. Significance at the 1% level is denoted by ***, at the 5% level by **, and at the 10% level by *. 

 

 

 



 

 

 

Table 6 - Regression output for the changes in the skewness measures and daily returns on the FTSE-MIB 

(equation (15)). 

 𝛼 𝛽 R2 

ΔITSKEWt 
-0.000 

(0.922) 

0.237 

(0.000) 
0.192 

Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
 

-0.000 

(0.986) 

-0.019 

(0.414) 
0.001 

Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
 

-0.000 

(0.987) 

-0.013 

(0.618) 
0.000 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 휀𝑡, where for 

Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 we use daily changes in ITSKEW index (ΔITSKEWt), 𝑆𝐼𝑋𝑚𝑓0 index (Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
) and 𝑆𝐼𝑋𝑚𝑓𝑅 

index (Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
); p-values in parentheses.  

 

 

 

 

Table 5- Regression output for the changes in the skewness measures and changes in model-free implied 

volatility in the Italian market (equation (14)). 

 𝛼 𝛽 R2 

ΔITSKEWt 
-0.000 

(0.766) 

-0.177 

(0.000) 
0.189 

Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
 

-0.000 

(0.976) 

0.009 

(0.351) 
0.003 

Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
 

-0.000 

(0.975) 

0.006 

(0.487) 
0.001 

Note: The table presents the estimated output of the regression: Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 = 𝛼 + 𝛽Δ𝐼𝑉𝑡 + 휀𝑡, where for 

Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 we use daily changes in ITSKEW index ( ΔITSKEWt ), 𝑆𝐼𝑋𝑚𝑓0 index (Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
) and 𝑆𝐼𝑋𝑚𝑓𝑅 

index (Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
);  Δ𝐼𝑉𝑡 are the daily changes in model-free implied volatility, p-values in parentheses.  

Table 7 - Regression output for positive and negative changes in the ITSKEW index and daily returns on the 

FTSE-MIB (equation (18)). 

 𝛼 𝛽1 𝛽2 R2 

 
-0.002 

(0.000) 

0.140 

(0.000) 

0.349 

(0.000) 
0.212 

Note: The table presents the estimated output of the regression: 

𝑅𝑡 = 𝛼 + 𝛽1Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡
+ + 𝛽2Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡

− + 휀𝑡; p-values in parentheses. 

 



 

Note: The table reports the estimation output (t-stat in parentheses) of the VAR model: 

𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡−𝑙 + ∑ 𝑏𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ𝐼𝑇𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝑢𝑡 

 

Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 + ∑ 𝑏𝑙Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝑢𝑡 

 

Significance at the 1% level is denoted by ***, at the 5% level by **, and at the 10% level by *. 

Table 8 - Regression output for the changes in the skewness measures, changes in model-free implied 

volatility and daily returns on the FTSE-MIB (equation (19)). 

 𝛼 𝛽1 𝛽2 R2 

Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡 
-0.000 

(0.944) 

0.126 

(0.000) 

-0.103 

(0.000) 
0.373 

Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
 

-0.000 

(0.886) 

-0.006 

(0.760) 

-0.126 

(0.000) 
0.328 

Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
 

-0.000 

(0.885) 

-0.002 

(0.925) 

-0.126 

(0.000) 
0.328 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽1Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 𝛽2Δ𝐼𝑉𝑡 + 휀𝑡, 

where  for Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 we use daily changes  ITSKEW index (ΔITSKEWt), 𝑆𝐼𝑋𝑚𝑓0 index (Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
) and 

𝑆𝐼𝑋𝑚𝑓𝑅 index (Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
); p-values in parentheses. 

 

Table 9 - VAR Estimation output for the Italian market. 

 𝑅𝑡 Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡 

𝑅𝑡−1   0.009831 

(0.27549) 

 0.182693*** 

 (2.86033) 

𝑅𝑡−2  -0.019276 

 (-0.53848) 

 0.066370 

 (1.03584) 

Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡−1 -0.042144** 

 (-2.11985) 

-0.306903*** 

 (-8.62454) 

Δ 𝐼𝑇𝑆𝐾𝐸𝑊𝑡−2  0.001620 

 (0.08129) 

-0.085880** 

 (-2.40804) 

c -2.93E-06 

 (-0.00544) 

-0.000221 

 (-0.22926) 

    



Note: The table reports the Granger causality test for the VAR model as defined in note to Table 9. 

Table 11 – Descriptive statistics of skewness measures in the bearish and bullish sub-periods. 

03/01/2011 – 25/07/2012: Bearish market 

 𝑆𝐾𝐸𝑊𝑃𝐻 ITSKEW 𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 

Maximum 103.09 114.77 115.99 112.24 

Minimum 97.95 93.68 96.31 95.27 

Mean 100.43 103.35 103.47 101.68 

Median 100.43 103.65 103.50 101.77 

Std. Dev. 0.93 3.70 2.41 2.08 

Skewness 0.25 -0.09 0.65 0.57 

Kurtosis 0.17 0.00 2.82 2.83 

26/07/2012 – 28/11/2014: Bullish market 

 𝑆𝐾𝐸𝑊𝑃𝐻 ITSKEW 𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 

Maximum 103.52 126.36 109.22 107.05 

Minimum 95.97 89.11 99.46 98.15 

Mean 99.93 104.16 102.86 101.28 

Median 99.82 104.10 103.12 101.57 

Std. Dev. 1.18 5.03 1.67 1.51 

Skewness 0.13 0.41 0.15 0.03 

Kurtosis 1.59 1.77 0.17 -0.01 

Note: for the definition of the measures see Table 3. 

 

 

Table 10 - Granger causality test between daily returns on the FTSE-MIB and daily changes in  ITSKEW index. 

Null Hp.  𝑋2 p-value 

Δ𝐼𝑇𝑆𝐾𝐸𝑊 does not Granger cause 𝑅  7.12 0.029 

𝑅 does not Granger cause Δ𝐼𝑇𝑆𝐾𝐸𝑊  8.68 0.013 



 

 

Table 13 - Regression output for the changes in the CBOE SKEW and daily returns on the S&P500. 

 𝛼 𝛽 R2 

Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 
0.000  

(0.074) 

0.073 

(0.000) 
0.034 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 + 휀𝑡; p-values in 

parentheses.  

 

 

 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽1Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 + 𝛽2Δ𝑉𝐼𝑋𝑡 + 휀𝑡; p-

values in parentheses. 

 

 

 

Table 12 - Regression output for the changes in the CBOE SKEW index and changes in the VIX index. 

 𝛼 𝛽 R2 

Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 
0.000 

(0.909) 

-0.061 

(0.000) 
0.029 

Note: The table presents the estimated output of the regression: Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 = 𝛼 + 𝛽Δ𝑉𝐼𝑋𝑡 + 휀𝑡; p-

values in parentheses.  

Table 14 - Regression output for positive and negative changes in the CBOE SKEW index and daily returns 

on the S&P500. 

 𝛼 𝛽1 𝛽2 R2 

 
0.000  

(0.301) 

0.080 

(0.000) 

0.065  

(0.018) 
0.033 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽1Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡
+ +

𝛽2Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡
− + 휀𝑡; p-values in parentheses. 

 

 

Table 15 - Regression output for the changes in the CBOE SKEW index, changes in VIX index, and daily 

returns on the S&P500. 

 𝛼 𝛽1 𝛽2 R2 

 
-0.000 

(0.007) 

0.019 

(0.025) 

-0.110 

(0.000) 
0.664 



Note: The table reports the estimation output (t-stat in parentheses) of the VAR model: 

𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡−𝑙 + ∑ 𝑏𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 +

𝐾

𝑙=1

𝑢𝑡 

 

Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 + ∑ 𝑏𝑙Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝑢𝑡 

 

Significance at the 1% level is denoted by ***, at the 5% level by **, and at the 10% level by *. 

 

Note: The table reports the Granger causality test for the VAR model as defined in note to Table 16. 

Table 16 - VAR Estimation output for the US market. 

 𝑅𝑡 Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 

𝑅𝑡−1  
-0.064059

**
 

(-1.97125) 

-0.058126 

(-0.72967) 

𝑅𝑡−2  
0.054833

*
 

( 1.68783) 

0.166732
**

 

( 2.09363) 

𝑅𝑡−3 
-0.092471

***
 

(-2.84256) 

0.128214 

( 1.60781) 

Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡−1 
-0.001543 

(-0.11679) 

-0.314535
***

 

(-9.71138) 

Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡−2 
0.004750 

( 0.34820) 

-0.185152*** 

(-5.53668) 

Δ 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡−3 
-0.001265  

(-0.09461)  

-0.138401***  

(-4.22250)  

c 
0.000545  

( 1.74901)  

0.0000413  

( 0.05415)  

Table 17 - Granger causality test between daily returns on the S&P500 and daily changes in  CBOE SKEW index. 

Null Hp.  𝑋2 p-value 

Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡 does not Granger cause 𝑅  0.29 0.963 

𝑅 does not Granger cause Δ𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊𝑡  7.76 0.051 



Table 18 - Skewness assets returns for the entire sample period. 

 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 

Cumulative return 56.43% 49.16% 10.64% 

Average daily return 0.05% 0.04% 0.01% 

t-statistic 5.49 4.05 0.95 

p-value 0.000 0.000 0.343 

Average ann. return 11.44% 10.28% 2.73% 

Annualized volatility 4.14% 5.03% 5.70% 

Note: The table reports the descriptive statistics for the Skewness assets returns used in the study in order to 

disentangle the contribution to the profitability of differences between the physical and the risk-neutral 

distribution in the left (𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡) or in the right (𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡) parts of the distribution or in both 

(𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡) . 

 



Figure 1 - Graphical comparison of skewness indices for the Italian market. 

 

 

 

 

We indicate as 𝑆𝐾𝐸𝑊𝑃𝐻 the index of subsequently realized skewness in the next 30 days, ITSKEW is the index 

we compute using the CBOE method, 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅 refer to the 𝑆𝐼𝑋𝑚𝑓 indices computed as the ratio 

between upside and downside corridor implied volatilities with barriers equal to 0 and R, respectively, where R 

is the expected return. 
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Figure 2 – Comparison between the FTSE MIB index, the ITSKEW index and the 𝑆𝐼𝑋𝑚𝑓0.  

 

 

 

Note: The Figure reports the closing values of the Italian market index FTSE MIB and the skewness indices 

(𝐼𝑇𝑆𝐾𝐸𝑊 and 𝑆𝐼𝑋𝑚𝑓0) 

 

 



Figure 3 – Comparison between FTSE MIB index, model-free implied volatility and ITSKEW index 

 

Note: FTSE MIB index refers to the values on the left, while implied volatility and ITSKEW index refer to the 

values on the right. Implied volatility values are obtained as the model-free implied volatility multiplied by 100 

(VIX methodology).  

 

 



Figure 4 – Skewness assets returns in the Italian market (notional 1 m. Euro investment). 

 

 

 


