AUTHOR QUERY FORM

JOURNAL NAME: NRL

ARTICLE NO: NRL_12_176

QUERIES AND / OR REMARKS

<table>
<thead>
<tr>
<th>QUERY NO.</th>
<th>Details Required</th>
<th>Author’s Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please confirm whether the insertion of conflict of interest statement as per journal style is OK; else, provide a suitable statement.</td>
<td>☐</td>
</tr>
<tr>
<td>Q2</td>
<td>Please provide the expansion of “HAV, HBV, HCV, EBV, CMV” in text.</td>
<td>☐</td>
</tr>
<tr>
<td>Q3</td>
<td>Figure 1 was not cited in the text. An attempt has been made to insert the figure into a relevant point in the text; please check that this is OK. If not, please provide clear guidance on where it should be cited in the text.</td>
<td>☐</td>
</tr>
<tr>
<td>Q4</td>
<td>Please provide the last page no. in Refs. [10, 11].</td>
<td>☐</td>
</tr>
</tbody>
</table>
Methylprednisolone-induced Toxic Hepatitis After Intravenous Pulsed Therapy for Multiple Sclerosis Relapses

Diana Ferraro, MD,* Vincenzo G. Mirante, MD,† Luisa Losi, MD,‡ Erica Villa, MD,§ Anna M. Simone, MD,* Francesca Vitetta, MD,* Lucia Federzoni, MD,* Paolo F. Nichelli, MD, PhD,* and Patrizia Sola, MD, PhD*

Abstract: High-dose, intravenous methylprednisolone (MP) is the only recommended first-line treatment for multiple sclerosis relapses. However, there are increasing reports on liver toxicity induced by this treatment regimen. We report 4 multiple sclerosis patients with no history of viral/metabolic liver disorders or alcohol/hepatotoxic drug intake, who developed hypertransaminasemia following intravenous MP. In 2 of the patients, liver biopsy showed periporal fibrosis, piecemeal necrosis, and inflammatory cell infiltrates. A rechallenge test confirmed a causal association in 1 case. MP-induced liver toxicity may be more frequent than commonly thought and it is important to report this adverse reaction, which is potentially lethal, and to raise awareness on the potential hepatotoxicity of corticosteroid pulses.

Key Words: liver toxicity, steroid pulses, multiple sclerosis, relapse

CASE REPORTS

Case 1 (50-y-Old Female, History of Arterial Hypertension)

Transaminases started increasing on day 4, peaked on day 8 [aspartate aminotransferase (AST): 136 U/L, alanine aminotransferase (ALT): 355 U/L, and γ-glutamyl transpeptidase (γGT): 346 U/L], and normalized by day 24.

Case 2 (30-y-Old Female)

Transaminases started increasing on day 3, reached a peak level on day 6 (AST: 157 U/L, ALT: 627 U/L), and returned to normal within 2 weeks.

Case 3 (38-y-Old Woman With Autoimmune Thyroiditis)

Transaminases peaked after 2 months (AST: 109 U/L, ALT: 260 U/L, γGT: 54 U/L) and normalized within another month. The diagnostic work-up revealed positive ANA (1:640) and ASMA (1:80).

Case 4 (24-y-Old Woman)

IVMP was administered in February (followed by a 1-mo oral taper), in July, and in September 2008. Transaminases were dosed before treatment in July (AST: 211 U/L, ALT: 494 U/L) and in September (AST: 315 U/L, ALT: 671 U/L, γGT: 89 U/L). Abdominal ultrasound showed liver steatosis. Liver enzymes gradually returned to normal by November, but newly transiently increased in December (AST: 37 U/L, ALT: 104 U/L), over the period of 1 week, following a rechallenge with IVMP for another MS relapse.

Liver biopsy was performed in cases 3 and 4 and showed, in both the cases, inflammatory infiltrates, focal piecemeal necrosis, periporal fibrosis, and numerous ceroid-laden macrophages.

DISCUSSION

Drug-induced liver injury is mediated by either an intrinsic, dose-dependent, and predictable mechanism, or by an idiosyncratic, dose-independent, and unpredictable mechanism. The clinical expression of drug-induced disease is highly variable, including minimal and asymptomatic liver enzyme elevations, acute or chronic hepatitis, cholestatic liver disease, and acute liver insufficiency. Criteria favorable to a diagnosis include exclusion of alternative causes of liver damage, demonstration of clinical and serological improvement after dechallenge, and the reappearance of alterations after rechallenge.5

The conjunction of clinical, laboratory, and histologic data; the exclusion of other causes of hepatic profile changes; and the rechallenge in 1 patient, suggest that hepatitis in our patients was probably related to an idiosyncratic reaction to IVMP treatment except maybe in patient 3. Patient 3 had a positivity for ANA and ASMA and we cannot rule out an autoimmune hepatitis (AIH), although the liver biopsy did not suggest this diagnosis, as there have been reports of AIH developing after methylprednisolone...
(MP) treatment, the hypothesis being that of a rebound phenomenon after discontinuation of immunosuppressive regimens.

High-dose MP is the only recommended first-line treatment of MS exacerbations. Plasma exchange may be considered for patients who have not responded to MP, although only about one third of patients are likely to respond, and there is insufficient data to support the use of intravenous immunoglobulins as monotherapy for MS relapses. As a consequence, treatment of MS relapses becomes challenging if IV steroids are not a safe choice. Further studies on current second-line and third-line treatments such as plasma exchange and intravenous immunoglobulins and on possible alternative treatment regimens are needed.

Glucocorticoid-induced liver toxicity is probably more frequent than it may appear and it is a known entity among hepatologists. However, neurologists and other specialists who are faced with exacerbations of autoimmune diseases may not be aware of the risk of high-dose corticosteroid therapy. Considering the widespread use of short-term high-dose regimens of corticosteroids, it is important to highlight the importance of this possible, potentially lethal, adverse reaction

REFERENCES