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Abstract

Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT)
have specific effects at transcriptional levels. We recently reported that Top1cc increase
antisense transcript (aRNAs) levels at divergent CpG-island promoters and, transiently,
DNA/RNA hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116
cells. However, the relationship between R-loops and aRNAs was not established. Here,
we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions,
and that promoter-associated R-loops are somewhat increased and extended in length
immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority
of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-
loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer
HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal
cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a
dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed
that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover
rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent
Top1ccs also determine an accumulation of sense transcripts at 5’-end gene regions sug-
gesting an increased occurrence of truncated transcripts. Taken together, the results indi-
cate that Top1 may regulate transcription initiation by modulating RNA polymerase-
generated negative supercoils, which can in turn favor R-loop formation at promoters, and
that transcript accumulation at TSS is a response to persistent transcriptional stress by
Top1 poisoning.
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Introduction

Topoisomerase I (Topl) is a fundamental nuclear enzyme regulating DNA superhelicity, and
its activity is required for a proper progression of transcription and replication machineries in
mammalian cells. Enzyme catalysis can essentially be divided into four steps: substrate binding,
DNA cleavage, controlled strand rotation, and DNA resealing. Anticancer Top1 poisons, such
as camptothecin (CPT), inhibit the last step by binding at the interface of Top1-DNA com-
plexes (Toplcc) at the DNA cleavage site and leaving the enzyme covalently bound to DNA
[1]. Toplcc is intrinsically reversible, however it can lead to irreversible double-stranded DNA
breaks when a collision occurs with replication forks or elongating RNA polymerases (RNA
Pol)[2,3]. The replication-dependent irreversible DNA damage is commonly considered the
molecular basis of CPT cytotoxicity and antitumor activity, as it can act as a potent inducer of
cancer cell apoptosis[4].

In addition to cell killing activity, Top1 poisons have specific effects at transcriptional levels
that may impact gene expression profiles of normal and/or cancer cells contributing to drug
therapeutic outcomes|[2,5,6,7,8,9]. Recently, treatments with Top1 poisons have been shown to
de-repress the paternal Ube3A allele in an Angelman disease murine model[10]providing an
interesting case in which CPT derivatives can permanently change the expression of a specific
gene in mammalian cells. Thus, understanding the mechanisms of Top1 regulation of gene
expression and the interference of Top1 inhibitors with them can provide significant insights
to discover new anticancer therapeutics.

Topl is a very active enzyme at transcribed regions[11,12,13]. A main role has been sug-
gested to be the regulation of DNA superhelicity at intermediately-active genes as its inhibition
by CPT increased local negative supercoils at corresponding promoters[14]. Interestingly, we
have demonstrated that CPT impacts transcription regulation with characteristic and specific
effects on RNA Pol II recruitment and pausing, nucleosome density and promoter-associated
antisense RNA levels [2,5,15]. In particular, a genome-wide analysis revealed that CPT
increases antisense transcripts levels at active divergent CpG-island promoters (CGI) in a man-
ner dependent on Toplcc formation [6]. Whether the increase in negative DNA supercoils at
promoters is mechanistically linked to the specific effects on RNAPolII and antisense tran-
scripts was left to be defined.

Topl silencing is known to increase non-B DNA structures, such as R-loops, that are prone
to DNA damage and genome instability[16,17,18]. R-loops are three-strand structures consti-
tuted by a DNA-RNA hybrid duplex and a displaced DNA strand. Stable R-loops exist in living
prokaryotic and eukaryotic cells at origin of replication where they have a role in the regulation
of replication initiation[19,20,21]. R-loops also constitute a necessary step of the immunoglob-
ulin recombination mechanism as they form at IgG class switch regions where they can extend
over a kilobase[22,23]. Moreover, differential stabilization of R-loops could influence gene
expression in many organisms. For instance, R-loop structures allow the presence of the sub-
strate for a single-strand DNA binding protein that represses the expression of COOLAIR
ncRNA in Arabidopsis [24]. In addition, R-loops can be enriched over human CGI and
involved in maintaining their hypomethylated state [25]. Gene mutations affecting nucleic acid
degradation have recently been shown to cause global DNA hypomethylation and R-loop accu-
mulation in fibroblasts of patients with autoimmune disorders [26]. Interestingly, Top1 poi-
soning by CPT can induce specific double-stranded DNA cleavage in post-mitotic cells that
can be suppressed by the overexpression of RNaseH1, suggesting the involvement of transcrip-
tionally-linked R-loops in CPT induction of DNA damage[27]. Increased R-loop levels by CPT
have been shown at specific loci such as Angelman imprinting locus and Fragile X syndrome
site [28,29]. With a time course analysis in human colon cancer cells by confocal cell
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microscopy, we showed that CPT effects on R-loops are highly dynamic as it triggers a tran-
sient increase of global R-loops in the nuclear and mitochondrial genomes [6]. However, the
genomic location of such dynamic R-loop structures and their relationships with aRNA have
not been established yet.

Therefore, we have here asked whether CPT-increased aRNAs can form R-loops at specific
divergent promoters. Our findings show that R-loops form at divergent promoters and Topl
inhibition by CPT can dynamically modulate their formation. In addition, antisense transcripts
are likely increased by persistent Toplccs due to the inhibition of their degradation, with a
simultaneous accumulation of truncated sense transcripts at active promoters.

Materials and Methods
Cell lines

The cancer cell lines HCT116 and N-Tera-2 cl.D1 were purchased from ATCC (LGC Stan-
dards S.r.1, Milan, Italy) and were grown in DMEM medium with 10% fetal bovine serum
(Carlo Erba, Milan, Italy). Cells were maintained at 37°C in a humidified incubator containing
20% O, and 5% CO,. Cell line identity was certified with Cell ID System (Promega) by BMR
Genomics Srl (Padova, Italy). Immortalized WI-38 human embryonic fibroblasts (WI-
38hTERT) were obtained from Carl Mann (CEA, Gif-sur-Yvette, France) and Estelle Nicolas
(Université de Toulouse, Toulouse, France) [30]. WI-38hTERT cells were cultured in modified
Eagle's medium (MEM) supplemented with 10% fetal bovine serum, 1 mM sodium pyruvate, 2
mM L-glutamine and 0.1 mM MEM non-essential amino acids (Life Technologies). For quies-
cence induction, cells were washed twice with serum-free medium and grown in MEM with
0.2% serum for 72 h.

Drugs and cell treatments

CPT and flavopiridol were purchased from Sigma-Aldrich. ATM inhibitor (KU55933) and
DNA-PK inhibitor (NU7441) were obtained from Calbiochem and Tocris respectively. Serum-
starved or exponentially growing cells were exposed to 10uM CPT for the indicated time at
37°C, unless specified otherwise. In case of co-treatments, cells were previously incubated with
various inhibitors for 1 h before the addition of CPT to the medium for further 4 hours.

RNA extraction and cDNA preparation

Total cellular RNA was purified with the acid phenol method[15,31]and quantified by UV
absorbance. After verifying its quality on a 1% agarose gel, 1 pg of total RNA was used to pre-
pare cDNA using SuperScript III (Invitrogen) following the manufacturer’s instruction. Ran-
dom (N6) and poly(T) primers were used for total RNA retrotranscription. Reactions included
a 25°C pre-annealing step for 5 min, and then retrotranscription was performed at 50°C for 50
min.

Quantitative real-time PCR

Real-time PCR were performed using Applied Biosystems StepOne and SYBR Select Master
Mix for CFX (Applied Biosystems). Quantification and melting curve analyses were performed
using StepOne Software v2.2.3 as indicated by the supplier. Specificity of PCR products was
routinely controlled by melting curve analysis and agarose gel electrophoresis.
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Expression and purification of MBP-RNase H1 (D145N)

Protocol was obtained from Ginno et al 2012 [25]and the plasmid expressing a mutated and
inactive RNaseH1 was kindly provided by F. Chedin (University of California, DAVIS). In par-
ticular,transformed Rosetta 2(DE3) cells of E. coli were inoculated in LB medium supple-
mented with 2 g/L of glucose, 100 pg/mL of ampicillin, and 30 pug/mL of chloramphenicol.
After induction for 4 hours with IPTG, cells were pelletted and lysed using for 80 ml of cell cul-
ture, 1.2 ml of lysis buffer [200 mM NaCl; 20 mM Tris-HCI (pH 7.5); 1 mM EDTA; 10 mM
DTT; Aprotinin 2pug/ml; Leupeptin 1ug/ml; Pepstatin 1ug/ml; PMSF 1 mM and Lysozym
200pg/ml]. Lysate was sonicated for 10 min with 30 sec on/off cycles and finally centrifuged at
4°C, 14000g for 20’. The isolation of MBP-fusion protein was performed with Amylose Mag-
netic Beads (New England Biolabs). In particular 100 pl of beads suspension were equilibrated
twice with 500 pl of MBP column buffer [200 mM NaCl; 20 mM Tris-HCI (pH 7.4); 1 mM
EDTA and 1 mM DTT] thus incubated with 500 pl of cell culture supernatant at 4°C with agi-
tation for 1 hour. Supernatant was discarded and beads washed three times with 500 ul of MBP
column buffer. The purified MBP-RNase H1 (D145N)waseluted from the beads twice with

50 pl of MBP column buffer containing 10 mM maltose for 10 minutes at 4°C with agitation.
Alternatively MBP-RNase H1 (D145N) was purified using Amylose Resin (New England Bio-
labs). In particular, 1 ml resin was poured in a column and washed with 5 column volumes of
MBP column buffer. Crude extract was loaded after 1:1 dilution with MBP column buffer and
the resin was washed with 12 column volumes of MBP column buffer. Elution of the fusion
protein was performed with 5 volumes MBP column buffer containing 10 mM maltose. Puri-
fied protein was concentrated with a centrifugal filter unit (Millipore).

DRIVE (DNA:RNA In Vitro Enrichment)

The procedure was performed as in Ginno et al[25]. In particular, lysis of ~4x106 NTera-2 cl.
D1 cells was performed with 1.6 ml TE-SDS Lysis Buffer [10 mM Tris-HCI (pH 8.0); 1 mM
EDTA; 0.5% SDS] at 37°C for 5 min. Proteinase K was then added (125 ng/pl) and samples
incubated for 5 h at 37°C. An equal volume of phenol (pH 8.0) was added and the samples
were mixed gently, thus centrifuged at 3000g for 2 min. The upper phase was collected and an
equal volume of chloroform/isoamylic alcohol (24:1) was added to it, then mixed gently and
centrifuged again at 3000g for 2 min. Genomic DNA was precipitated with 2.5 volumes of etha-
nol 100% and 1/10 volume of NaOAc 3M (pH 5.2), in presence of glycogen. Using a hooked
glass rod, DNA were spooled out and washed several times with 70% EtOH. Genomic DNA
was resuspended in 500 pl of TE buffer [10 mM Tris-HCI (pH 8.0); 1 mM EDTA] avoiding
vortexing to preserve RNA/DNA hybrids. Genomic DNA was then digested O/N at 37°C in
TANGO BUFFER 2X with 2 mM Spermidine and a cocktail of restriction enzymes: 20 U
EcoRI; 20 U Xbal; 20 U Hind IIT; 20 U Sspl and 20 U BsrG1 (ThermoFisherScientific). Each
sample was then splitted in three: 1,5 ug were used as input, 1,5 pug were incubated for 2 hours
at 37°C with 10U of RNase H1 and 1,5 pg were incubated for 2 hours at 37°C without RNase
H1 (Life Technologies). Samples incubated with or without RNaseH]1 were added of 50 pl of
Binding Buffer 10x [100 mM Na,PO, (pH 7.0); 1.4 M NaCl; 0.5% Triton X-100], MBP-RNase
H1 D145N (w/w ratio according titration) and TE buffer (pH 7.4) to final volume of 500 pl.
RNase H1 D145N was allowed to bind specifically for 2 hours at 4°C on agitation. 50 ul/sample
Amylose Magnetic Beads (New England Biolabs) were equilibrated twice with 500 pl of MBP
column buffer [200 mM NaCl; 20 mM Tris-HCI (pH 7.4); 1 mM EDTA and 1 mM DTT], then
incubated with 500 ul of reaction mix at 4°C with agitation for 75 min. Supernatant was dis-
carded and beads washed three times with 500 pl of MBP column buffer. The purified
MBP-RNase H1 (D145N) bound to RNA/DNA hybrid waseluted from the beads twice with
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100 pl of MBP column buffer containing 10 mM maltose for 10 minutes at 4°C with agitation.
TE (pH 7.4) and SDS (final concentration 0.5%) were added to a final volume of 250 pl. 140 ug
of Proteinase K were added and samples incubated at 55°C for 45 min. Samples, included
inputs, were thus brought to 300 pl final volume with BDW and phenol/chloroform extraction
was performed. To allow precipitation 2,5 volumes of ethanol 100%, 1/10 volume of NaOAc
3M (pH 5.2) and glycogen were added and samples were incubated O/N at -20°C. For data
analysis, RNA/DNA hybrid enrichment of each sample is calculated as “% of Input” after sub-
tracting the background signal, as determined by the same sample treated with RNaseH]1
before DRIVE precipitation. Then the enrichment value is normalized against the 2-min CPT
sample of the RPL13A amplicon of the same experiment.

Overexpression of wt and mutated RNase H1

Twenty-four hours after seeding (300,000 cells in each well of a 12-wells plate), HCT116 cells
were transfected with plasmids overexpressing wt (pRH1) or mutated RNaseH1
(pRH1-D145N), gently furnished by F. Chedin (University of California, DAVIS), using Lipo-
fectamine 2000 (Life Technologies) following manufacturer’s instruction. Twenty-four hours
after transfection, the medium was replaced with fresh one and, after additional 24 hours, the
drug treatment was started. Finally cells were lysed either for protein extraction and western
blot analysis or for RNA extraction and antisense level quantification.

Bioinformatics analysis

Due to update versions of specific softwares for RNA-Seq analysis, we re-align raw data of pre-
vious published experiments[6] to improve previous results. Then, we checked the quality of
each sequenced sample using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/).Low-quality sequenced bases were filtered out using Trimmomaticv0.33[32]. The
bisulfite-treated paired reads were then mapped twice to the hgl9 human genome assembly in
which all the cytosines were mutated in thymines (CT-hg19) or all the guanine in adenine
(GA-hg19) to identify the strand originating the sequence fragment. Sequences coming from
positive strand transcripts align to the CT-hg19, whereas negative strand transcripts align to
the GA-hg19. The read alignment was carried out with Bowtie2 v2.2.0[33] and TopHat v2.0.10
[34,35] to identify known transcripts. For each of the four experiments, reads that aligned to
both CT-hg19 and GA-hg19 were discarded. Cufflinks package v2.2.0 [36] was used to assem-
ble and identify novel transcripts, using modified reference genomes (CT-hgl19 and GA-hgl19).
Gene expression levels were estimated in FPKM units (expected number of Fragments Per
Kilobase of transcript sequence per Millions of sequenced nucleotides) using Cufflinks. Sense
tags distribution, along non-overlapping Refseq genes, were analyzed in a region from 2000
bases upstream the TSS (Transcription Start Site) to 2000 bases downstream the TES using
NGSplot software v2.41[37].

Results
Promoter-associated aRNAs form R-loops in untreated cells

Both immunofluorescence imaging and RNaseH1 overexpression experiments have demon-
strated previously that CPT-trapped Toplccs induce a significant increase of R-loop structures
that can likely mediate drug-induced genome instability [6,27]. However, the genomic sites of
such R-loops are not known. Here, we used the DRIVE technique [25,38]to determine whether
or not R-loops form at divergent promoters selected on the basis of previous observations of
increased aRNAs by camptothecin[6]in human N-TERA-2 cells. To measure the R-loop-
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specific signal, each sample was split into two parts, one of which was treated with RNase H1
before DRIVE precipitation. Then we calculated the R-loop-specific DNA enrichment of each
sample after subtracting the enrichment value of the sample treated with RNase H1 to the not
treated (see representative enrichments for untreated and RNase H1-treated samples in Fig A
in S1 File). We analyzed R-loop positive and negative loci [25] to check the DRIVE method.
Fig 1A (white bars) shows that we could clearly discriminate between regions known to form
(RPL13A, BTBD19 and MYADM) and those depleted of (SNRPN and a-Sat) R-loops as a sig-
nificant recovery is shown at the former but not at the latter loci. Moreover, we determined R-
loop levels at the D-loop region of mitochondrial genome (mtDNA), where a well-known and
stable R-loop is implicated in replication priming of mtDNA[39]. Of the three selected regions
(Fig 1B), the RB31-R3 amplicon corresponds exactly to the R-loop-forming site while 1A-1B
and 4A-4B correspond to a D-loop and a more distant regions, respectively. The two non R-
loop-forming regions show a recovery significantly lower as compared with RB31-R3 (Fig 1B).
Thus, the data showed that we could accurately detect R-loops in mitochondrial and nuclear
genomes.

Next, we asked whether R-loops may form upstream to the Transcription Start Site (TSS) of
divergent promoters under physiological conditions of cell growth. To that purpose, promoters
were selected on the basis of their ability to show an increase of aRNAs after Top1 inhibition
by CPT in HCT116 cells [6] and in N-TERA2 cells (Fig 1C). Of the studied promoters, 8
(TAF4, POLR2K, SP2, GPC1, MDM2, PCIF1, ATF1, SMARCA4) showed an increase of aRNA
and 1 (TNIK) did not (Fig 1C)[6]. We could readily determine R-loops at all positive promot-
ers, though at different levels, whereas no signal was present at the TNIK promoter (Fig 1A).
Even though R-loop levels at the studied divergent promoters are lower than mtDNA sites and
other positive controls (RPL13A, BTBD19 and MYADM), they are consistently higher than
negative controls (SNRPN, a-Sat and TNIK). In addition, the studiedsites correspond topro-
moter regions upstream to the TSS, wheretranscription rates are markedly lower than mRNA
regions[6], whereasRPL13A, BTBD19 and MYADM regions correspond to thefirst intron of
the corresponding pre-mRNA. As these R-loops are likely associated with transcription [25],
the results suggest that R-loop formation upstream to TSS reflects the lower aRNA transcrip-
tion levels as compared with mRNA levels. Thus, taken together, the results show that aRNAs
of the studied divergent promoters are able to form R-loopsin untreated cells that are likely in
the opposite orientation as comparedwith mRNAs transcription. Promoter-associated anti-
sense R-loops can be transiently stabilized by CPT and then markedly reduced with longer
treatment times

Next, we have investigated whether Top1 inhibition by CPT increases R-loop levels at the
studied promoters and control regions. We found that the R-loop signal is maintained up to 4
hours of CPT treatment at the mitochondrial replication origin (Fig 2A). Even mitochondrial
non-R-loop-forming regions show recoveries unchanged by CPT and significantly lower than
the R-loop-forming region. The observed missing effect could be due to the fact that CPT does
not target efficiently mitochondrial Top1, due to the limited permeability of mitochondria to
non-cationic molecules and because the drug is readily inactivated at alkaline pH [40].

A dynamic pattern was instead observed for R-loops at the transcribed RPL13A, BTBD19
and MYADM nuclear loci. Here, R-loops are slightly increased after short times (2 and 10 min-
utes), whereas they are markedly reduced after longer time of treatment (4 hours) (Fig 2A).
Similarly, antisense R-loops at the studieddivergent promoters show to be somewhat increased
atshort treatment times whereas they are completely lost after 4 hours of treatment, with the
exception of TAF4 promoter (Fig 2A). Thus, Top1 inhibition by CPT can stabilize antisense
and sense R-loops at active divergent promoters but only for a short time.
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Fig 1. R-loop formation at the studied genomic and mitochondrial regions in untreated control
N-TERA-2 cells. DNA enrichment of each sample is subtracted of the enrichment value of the same sample
treated with RNase H1 before DRIVE precipitation. Then the enrichment value is normalized against the
2-min CPT sample (see Fig 2) of the RPL13A amplicon of the same experiment. Values are means +SEM of
two to four independent experiments. The data show a higher SEM than commonly published as we report
median values of several experiments and not a single representative one. (A) DRIVE assay was performed
to determine R-loop levels downstream TSS (white bars) and upstream TSS (black bars). Three negative loci
for R-loop formation are also reported (SNRPN, a-SAT, TNIK). (B) Mitochondrial DNA was analyzed with
DRIVE assay. Three regions of interest were selected: red for the r-loop forming region (RB31-R3), green for
the D-loop region (1A-1B) and blue for the non-D-loop region (4A-4B). Map on the right of the panel shows
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the heavy (H) and the light (L) strands of mitochondrial DNA, with the three Conserved Sequence Blocks
(CSB) and the studied regions (in red, green and blue respectively). (C) Antisense transcription after CPT
treatment in N-TERA-2 cells. Promoter-associated antisense transcripts were evaluated by nqPCR after 4
hours CPT treatment at 10 uM. PCR determinations were normalized to cytochrome b mRNA and to
untreated cells (dotted line). Values are means +/— SEM of two determinations from at least two independent
experiments.

doi:10.1371/journal.pone.0147053.g001
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Fig 2. R-loops are transiently stabilized and extended by Top1 inhibition by CPT. R-loop levels as determined by DRIVE at selected genomic regions
and active promoters. DNA enrichment of each sample is subtracted of the enrichment value of the same sample treated with RNaseH1 before DRIVE
precipitation. Then the enrichment value is normalized against the maximum enrichment value (2-min CPT sample of the RPL13A amplicon) obtained in the
same experiment. Values are means +SEM of two to four independent experiments. (A) R-loop levels at active promoters (on the left) and mitochondrial
regions (on the right) after 2 min, 10 min and 4 hours of treatment with 10uM CPT. Control cells are as reported in Fig 1A and 1B to better appreciate variation
after drug treatment. (B) R-loop formation at sites close to transcription start site of TAF4 and PCIF1 genes in a time course experiment of CPT treatments.
Genome browser views show the genomic localization of the analyzed regions (right panel). DNA digestion with a cocktail of restriction enzymes guarantee
the studied regions are properly separated. One representative experiment for each locus is here reported.

doi:10.1371/journal.pone.0147053.9002
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Thus, it was of interest to determine whether CPT treatment could also affect the length of
the DNA-RNA hybrid. Then, we investigated close regions at two of the studied promoters:
TAF4 and PCIF1(Fig 2B). These two promoters were chosen as theypresent GC skew seg-
mentsthat can be prone to R-loop formation[38]. Interestingly, at short times of treatment,
CPT determines an extension of R-loops or formation of new R-loops, as after 2 minutes the
R-loop signal was also detected in TAF4 4y and PCIF1,) amplicons (Fig 2B). As after CPT
treatment R-loop signal is detected in regions where it was not detected before treatment, the
findings show that Toplccs can likely extend and modulate the length of DNA-RNA hybrids at
these active promoters.

Taken together, our findings show that following a short time of treatments, CPT can
increase R-loops while at longer times the drug almost fully abolishes R-loops at the studied
active promoters. The results also showthat after 4 hours of CPT treatment, the accumulated
aRNAs are not involved in R-loop structures. As CPT interferes with Top1 activity, the findings
clearly show that Topl can modulate R-loop formation likely by controlling the levels of nega-
tive supercoils at promoter regions[14].

As CPT inhibits transcription elongation with high efficacy and R-loops are formed by
newly synthesized RNAs, the marked reduction of R-loops at active regions is likely due to per-
sistent inhibition of transcription by CPT. Interestingly, our data show exceptions to that as R-
loops can persist for long times of CPT treatment at certain genomic loci (TAF4).

To additionally confirm data obtained by DRIVE at long treatment time, i.e. that antisense
RNAs are not stably employed in R-loop tertiary structures, we transfected HCT116 cells with
a wt and a mutated not catalytically active RNaseH1, the enzyme that specifically catalyzes the
cleavage of RNA in a RNA:DNA duplex, and we successively evaluated if the level of those
transcripts were modified by overexpression. Fig 3 shows that neither the expression of a wt
form of RNaseH]1 nor that of a mutated form, significantly modify the level of antisense RNAs
after 4 hours of CPT treatment.

The results therefore support the above data obtained by DRIVE and further show that per-
sistent Toplccs accumulate aRNAs in the cells without forming stable R-loops.

Antisense transcripts are increased by CPT in human resting normal
WI38 cells and are dependent on ongoing transcription

To further characterize aRNAs, we asked if their induction was dependent on transcription or
replication. Thus, we have first investigated CPT effects in the presence of flavopiridol (FLV), a
specific inhibitor of Cdk9 and RNA Pollltranscription. Moreover, we extended the investiga-
tion to human fibroblast-like embryonic cells (WI38) at genomic loci selected based on previ-
ous findings [6]. Treatments with 10 pM CPT in replicating WI38 cells stimulate antisense
accumulation in four out of seven of the selected loci (Fig 4), showing that CPT stimulates anti-
sense transcription in non-cancer cells as well. However, the CPT effects are lower in WI38
than HCT116 cells and the promoter pattern of antisense accumulation is different between
the two cell lines.

To evaluate the role of replication on drug effects, we studied the CPT response in serum-
starved quiescent WI38 cells (Fig 4, quiescent WI38). Among the studied loci, ATF1 gene pro-
moter accumulates antisense transcripts at the highest levels in both proliferating and resting
cells. As in resting cells the enhancement of antisense transcript levels was still present and not
significantly different from cycling cells, we suggest that the CPT effect may be independent
from DNA replication. The slight reduction between replicating and quiescent cells could be
due to a lower transcription rate in the latter. In serum-starved quiescent WI38 cells, we per-
formed a drug dose-response after 1 and 4 hours of treatment (Fig B in S1 File) showing some
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Fig 3. Antisense transcript levels in HCT116 cells overexpressing wt or mutated RNaseH1. Promoter-
associated antisense transcripts were evaluated by rtqPCR after 4 hours CPT treatment at 10uM in cells
overexpressing a wt or a mutated RNaseH1. PCR determinations were normalized to cytochrome b mRNA
and to untreated cells (dotted line). Values are means +/- SEM of two determinations from at least two
independent experiments.
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Fig 4. Antisense transcript levels induced by CPT in replicating HCT116 and WI38, and in quiescent WI38 cells. Promoter-associated antisense
transcripts were determined by rtqPCR after 4 hours of CPT treatment at 10 uM. PCR determinations were normalized to cytochrome b mRNA and to
untreated cells (dotted line). Values are means +/— SEM of two determinations from at least two independent experiments (* P <0.05).

doi:10.1371/journal.pone.0147053.9004
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increase over time. To determine the role of transcription on CPT effects, we then pretreated
for 1 hour quiescent W138 cells with FLV. Under these conditions, no increase of antisense
transcript could be detected at the selected loci (Fig C in S1 File), showing that the drug effect
is highly dependent on active transcription in resting human cells.

Next, we wondered whether increase of aRNAs was dependent on the cellular response to
double-stranded DNA break (DSB) induced by CPT. As transcription-blocking Toplccs pro-
duce DSBs in quiescent WI38 cells in a manner dependent on ATM and DNA-PK[27,41,42],
we investigated if the accumulation of aRNAs could be due to DSB-activated kinases, DNA-PK
and ATM, after Toplcc stabilization by CPT. Cells were first exposed to ATM or DNA-PK
inhibitor for 1 hour, and then CPT was added to the medium for additional 4 hours, in both
HCT116 and WI38 cell lines. In all the tested conditions, inhibition of the studied DDR kinases
did not significantly alter CPT effects on antisense accumulation (Fig D in S1 File). Therefore,
the data suggest that ATM or DNA-PK activation by DSB [41]is not apparently required for
CPT effects on aRNAs.

However, as the above findings do not exclude that CPT-induced aRNA accumulation is
part of the cellular response to Toplccs, we wondered whether CPT could actively modify the
turnover of aRNA. Therefore, we treated HCT116 cell with CPT for 4 hours, and then deter-
mined the levels of the studied transcripts at different times to evaluate their degradation rates.
The experiments were performed adding FLV at the end of a 4 hour period of CPT treatment
to block transcription. Under these conditions, the degradation rates of TDG, TAF4, SP2 and
GPCl antisense transcripts (Fig 5 and Fig E in S1 File) are lower in the presence of CPT (com-
pare green vs blue lines) and the transcripts are lost faster in drug-free medium (compare black
vs red lines) (Fig 5 and Fig E in S1 File). Thus, the data clearly show that CPT seems to stabilize
antisense RNAs, likely preventing their fast removal and degradation.

CPT determines the accumulation of truncated sense transcripts at 5
repre repre repo CPT (time 0). Successivel

The above findings show that persistent Top1 inhibition by CPT promotes the stabilization of
antisense transcripts upstream to the TSS and a general reduction ofantisense R-loops at those
loci after long treatment time. As R-loops have been shown to form also downstream the TSS
[25,38] (see also Fig 1A), we have then investigated whether CPT induced the accumulation of
sense transcripts at the 5’-end of genes as well. We have then mapped paired sequence tags
obtained from total cellular RNA depleted of ribosomal RNAs and treated with bisulfite to
maintain the information of strand direction [6]. Non overlapping genes were grouped
depending on their FPKM in four categories from low to high expression levels, and we focused
on gene regions from -2000 bases upstream the TSS to +2000 bases downstream the TES (tran-
scription end site) in both CPT-treated and control HCT116 cells. Then we plotted the distri-
bution of the sense reads along these genes.

Sense tag levels of all non-overlapping genes were clearly dependent on gene expression lev-
els, however they were similar among expressed gene sets (Fig 6). Tag distribution of control
cells almost overlapped with that of CPT-treated cells with the exception of the region immedi-
ately downstream to the TSS in HCT116 cells (Fig 6). In particular, sense tags were increased at
the 5’-end of genes of the two intermediate expression categories following CPT treatment (Fig
6).

Thus, as the intermediately active genes show such a drug effect, we selected genes showing
an increase of sense reads within the first 1000 bases downstream the TSS as well as reduced or
equal levels of sense reads 1000 bases upstream the TES (Fig 7). For these genes we observed a
marked and specific increase of sense tagsin the two gene sets that was clearly dependent on
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doi:10.1371/journal.pone.0147053.9g005

Topl (compare HCT116 and HCT116-shRNATopl1 cells) (Fig 7), indicating that it was depen-
dent on the cellular level of Top1 in response to CPT (Fig 7). The specific accumulation of
sense tags at 5°-end regions was then confirmed at specific loci by rtqPCR(Figs F and G in S1
File). Gene ontology analyses of the two gene sets did not reveal any significant gene attribute
enriched in the studied groups suggesting a lack of common functional or structural
characteristic.

Discussion

A fine regulation of Topl1 activity at active genes is essential to maintain a proper transcription
process as Topl-deficient yeast cells show impaired transcriptional processes and accumulate
abortive transcripts by RNA PolI[16]. We have previously demonstrated that Topl inhibition
by CPT leads to unbalanced sense/antisense transcript levels at bidirectional CpG-island pro-
moters [6]. The newly-identified antisense transcripts, with a median size of about 800 bases,
are accumulated during drug treatment in a Topl-dependent manner mainly at promoters of
intermediate activity. In the present work, we aimed to better characterize these aBRNA and to
establish a relationship between them and R-loop formation at divergent promoters. Our data
show a dynamical response to Top1 inhibition by CPT: aRNAs can form antisense R-loops at
promoters in unperturbed N-TERA-2 cells, and immediately following Top1 inhibition by
CPT, promoter-associated R-loops can be further stabilized and extended in length at active
TSS. This effect is likely due to the formation of Toplccs close to R-loops structures at promot-
ers, as we showed that Toplccs are transiently stabilized by CPT at promoter regions [6]. In
contrast, persistent CPT inhibition of Topl markedly reduces R-loop structures and accumu-
lates truncated sense transcripts at 5” ends of intermediately active genes. Thus, the findings
indicate that Topl may regulate transcription initiation by regulating RNA Pol II-generated
negative supercoils, which in turn can favor R-loop formation at promoters, and that transcript
accumulation at TSS is a transcriptional response to persistent Top1 poisoning and transcrip-
tion inhibition. The proposed role of Top1 at promoters is in agreement with previous findings
on the effects of Top1 deletion [14,16].

As R-loops can either trigger genome instability or mediate transcription regulation
[20,25,43], we have defined whether or not transcriptional stress induced by Top1 inhibition
could be mediated by formation of R-loops at active regions. The results show that R-loop can
likely form in the antisense orientation at the studied divergent CGI promoters in untreated
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Fig 6. CPT interferes with sense transcription at 5’-end of genes. Sense tags distribution along non-overlapping Refseq genes of HCT116 and
HCT116-shRNATop1 cells, were analyzed in a region from 2000 bases upstream the TSS to 2000 bases downstream the TES using NGSplot software. Here
are reported genes whose FPKM value is below 0,3 up to 500 divided in four groups. Control reads are reported in black lines and CPT reads in red lines.

doi:10.1371/journal.pone.0147053.g006

cells. Interestingly, CPT perturbs R-loops immediately upon addition to the growth medium as
short CPT treatments (2-10 minutes) extend or generate new R-loops at the studied promoters
whereas the Topl poison completely abolishes R-loops at most of the studied promoters fol-

lowing longer treatment times. Therefore, it is likely that Top1 inhibition has a direct and rapid
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Fig 7. CPT modulates sense transcription in a particular subset of genes. Sense tags distribution along non-overlapping Refseq genes of HCT116 cells
and HCT116-shRNATop1 cells, were analyzed in a region from 2000 bases upstream the TSS to 2000 bases downstream the TES using NGSplot software.
Here, genes have been divided in two groups based on their FPKM. These genes have been selected for an accumulation of sense reads in the 5’ region
(CPT-reads minus Control-reads: 10 > 100) and a reduction of sense reads at the 3’ region (CPT-reads minus Control-reads: < 5). Furthermore, genes
selected have a fold change above 2 and a minimum number of sense reads above 5 in the 5’ region of CPT treated sample. Reads were normalized to the
length of each region (1000 bp). Control reads are reported in gray dotted line and CPT reads in black line. Black arrows indicate an accumulation or not of
reads at 5’ level after CPT treatment (10 uM for 4 hours).

doi:10.1371/journal.pone.0147053.9g007

effect on R-loop formation favored by excess negative supercoils behind elongating RNA Pol
I1, which has not be relieved by Topl. This increase is indeed transient as other homeostatic
control of DNA superhelicity (for instance, by other DNA topoisomerases) can likely restore
default levels of template supercoils. This is in agreement with a recent paper[14] showing that
Topl is most efficiently recruited at promoters of intermediate activity and that a short CPT
treatment determines increased negative supercoils upstream and immediately adjacent to the
TSS. Such an increase of negative supercoiling of the DNA template would likely favor both
stabilization and extention of R-loop structures at active promoters.

Our findings also show that when Topl is persistently inhibited by CPT then R-loop forma-
tion is also reduced at promoters of active genes. As R-loop levels are dependent on active tran-
scription, then persistent CPT treatments, which are known to strongly inhibit transcription
elongation[44], may preclude the formation of R-loops. Nevertheless, CPT may have more
dynamic effects on R-loops in relation to their genomic location, as we observed that R-loops
persist even after 4 hour of CPT treatment at TAF4 promoter. In postmitotic neurons,
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persistent CPT treatments have been shown to affect cell viability [45]and induce transcrip-
tional DSBs in an R-loop-dependent manner[27]. Thus, it can be speculated that R-loops
formed at specific genomic location may be stabilized by CPT leading to irreversible double-
strand breakage and apoptosis. Here, we have attempted to evaluate if the increase of antisense
RNAs at promoters is downstream to DDR pathway activated by CPT, and our findings show
that antisense transcript increase is not simply related to either ATM or DNA-PK activation in
HCT116 and WI38 human cells. However, it remains to be established whether DSBs them-
selves or other DDR proteins or a combination of both may be implicated in aRNA induction
in response to CPT.

The increase of antisense and sense transcripts may in principle be originated by an
enhanced synthesis and/or a reduced degradation of them. We previously reported that CPT
still determines a similar increase rate of promoter-associated transcripts when transcription
was inhibited by DRB as compared with the absence of DRB [6], suggesting that an enhanced
synthesis of antisense RNA is unlikely even if we cannot rule out completely this possibility. In
agreement with these data, the present findings show that CPT impairs degradation of anti-
sense transcripts. As exosome silencing has been shown to increase the levels of cryptic anti-
sense RNA at promoters [46], our findings suggest that exosome activity may be somewhat
reduced in cells treated with CPT.

The present findings have established that aRNAs can form antisense R-loops at the studied
divergent promoters, in agreement with recent published data [47]. In addition, our findings
show that Top1 inhibition by CPT have dynamic and site-specific effects on R-loop structures.
In particular, immediately upon addition, CPT can favor R-loop formation whereas, at longer
time of treatment, CPT markedly reduces R-loop levels. Interestingly, R-loops persist at certain
active promoters and other genomic loci along with a more general induction of truncated
sense and antisense RNAs at active TSS. The findings define new aspects of the specific CPT
effects at transcriptional levels in human cancer and normal cells.

Supporting Information

S1 File. Fig A, Representative experiment of DRIVE Assay in RNaseH1 pretreated (black bars)
and not pretreated (white bars) samples. (Panel A) Three positive (RPL13A, BTBD19,
MYADM) and two negative (SNRPN, a-SAT) loci for R-loop formation as previously reported
in Ginno et al. 2012 [25]. (Panel B) Eight divergent promoters selected on the basis of their
ability to show increase of antisense transcripts after Topl inhibition by CPT. TNIK here is a
negative control. Fig B, Promoter-associated antisense transcripts were evaluated by rtqPCR
after 1 and 4 hours of CPT treatment at different doses (2, 5 and 10 pM). PCR determinations
were normalized to cytochrome b mRNA and to untreated cells (dotted line). Values are
means +/— SEM of at two determinations of at least two independent experiments. Fig C, Pro-
moter-associated antisense transcripts were evaluated by rtqPCR after 4 hours of CPT treat-
ment (10 uM) in presence of FLV (gray bars). PCR determinations were normalized to
cytochrome b mRNA and to untreated cells (dotted line). Values are means +/— SEM of at two
determinations of at least two independent experiments. Fig D, Promoter-associated antisense
transcripts were evaluated by rtqPCR after 4 hours of CPT treatment (10 uM) in presence of
ATM (gray bars) and DNA-PK (white bars) inhibitors. PCR determinations were normalized
to cytochrome b mRNA and to untreated cells (dotted line). Values are means +/— SEM of at
two determinations of at least two independent experiments. Fig E, Cells where firstly stimu-
lated for antisense accumulation by a 4 hours treatment with CPT (time 0). Successively CPT
was removed (black lines) or maintained (red lines) in the medium. In addition, FLV was
added to block transcription in absence (green lines) and in presence (blue lines) of CPT, and
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antisense transcript levels determined by rtqPCR after additional 20, 40 and 60 minutes. PCR
determinations were normalized to B-actine mRNA and to aRNAs levels at time 0. Here is
reported a representative experiment different from the one reported in Fig 5. Fig F, The accu-
mulation of sense transcripts in the 5’ region and the reduction of sense transcripts in 3’ region
of selected genes were determined by rtPCR in the HCT116 cells and were evaluated after treat-
ment of the indicated cell lines with CPT 10 uM for 4h. The selected genes showed a CPT-
increased in the 5’ region and a reduction in the 3’ region tag clusters as determined with
RNA-seq data, with the exception of KLHL22 gene that had a sense transcript reduced by CPT.
PCR determinations were normalized to cytochrome b mRNA and to untreated cells (dotted
line). Values are means + SEM of at least four determinations of six independent experiments
for each panel. Fig G, The accumulation of sense transcripts in the 5’ region and the reduction
of sense transcripts in 3’ region of selected genes were determined by rtPCR in the
HCT116-shRNATop1 cells and were evaluated after treatment of the indicated cell line with
CPT 10 puM for 4h. The selected genes showed a lower CPT-increased in the 5’ region and a
lower reduction in the 3’ region tag clusters as determined with RNA-seq data, with the excep-
tion of AEN gene that had a higher sense transcript increased by CPT, taking into account the
HCT116 cells line. PCR determinations were normalized to cytochrome b mRNA and to
untreated cells (dotted line). Values are means + SEM of at least four determinations of two
independent experiments.
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