18th European Congress of Endocrinology
28–31 May 2016

EDITORS

The abstracts were marked by the Abstract marking Panel selected by the programme Organising Committee

Programme Organising Committee (POC)
Ipo Haltilainen (Finland/UK) Chair, Programme
Robin Peeters (The Netherlands) Co-chair, Programme Organising Committee (POC)
Iwa Raupart-de Meyts (Denmark) Co-chair, Programme Organising Committee (POC)
Günter Stalla (Germany)

Local Organising Committee (LOC)
Günter Stalla (Germany)
Christophe Baeriswyl (Germany)
Felix Beuschlein (Germany)
Michael Buchhölder (Germany)
Helmut Günther-Dör (Germany)

Abstract Marking Panel

J Achermann UK
M Alevizaki Greece
G Avault France
S Aylin UK
S Babujko France
K Baberschop Germany
D Basset UK
F Beauvin France
A Becker Belgium
P Beck-Pecco Italy
J Bertherat France
P Beauchetin Germany
B Bilitska Poland
M Blüher Germany
K Bloukaert UK
A Boelen Belgium
P Bournozou Belgium
G Brabant Germany
M L Brandi Italy
B Bresolin France
G Brunetti Italy
C Buchmann Italy
S Cattano Italy
J Cap Czech Republic
J Barrett UK
J Castano Spain
P Chantiotis France
K Chattarjee UK
J Chaudini Italy
J Choveti Spain
T Celli UK
D Cuthbertson Scotland
K Dahman-Wright Sweden
C Donziet UK
M Dattani UK
C Dayan UK
W de Herder Netherlands
E de Koninck The Netherlands
B Demenest France
M Dente Italy
W DiLeo Italy
G Di Dalmati Germany
E Elhammandi-Karadakis Greece
F Dotta Italy
J Droitui Canada
L Dutnian Greece
G Eisenhofer Germany
F Fallis Italy
P Fanti Italy
S Farrokh UK
M Fassnacht Germany
R Feekers The Netherlands
U Feldt-Rasmussen Denmark
F Flamant France
E Flinders The Netherlands
C Fluck Germany
C Follin Sweden
W Fraser UK
J Frystyk Denmark
A Gerner Germany
R Gauthier France
C Giannitsa Greek
T Gommers-Ambrosi Spain
J Goodall Germany
R Gramatica Italy
J Gromoll Germany
A Grossman UK
S Halter Germany
J Hampel Czech republic
M Heikkinen Finland
L Herzer Germany
M Hewson UK
M Hewson UK
A Hoehlich Germany
C Högst Sweden
L Holland Netherlands
W Hogler UK
J Holmniemi UK
P Iqbal Hungary
E Iroha Socio Greece
M-L Jaffrain-Rea Italy
J Jauzet Portugal
C Jauchwitz Poland
D Jezova Slovakia
A Juel Denmark
A Kalsbeek Netherlands
G Kaltrait Greece
C Kanaka-Gantenbein Germany
M Keal USA
F Keketshirm Turkey
R Kjerwall USA
M Korobnikits USA
N Kroune UK
M Krzak Czech Rep
H Krudt Germany
M Latini Germany
M Latini Switzerland
P Lakatos Hungary
E Lalli
J Lavren The Netherlands
G Lavery
S Lebourelleaux France
J Leger France
T Linka The Netherlands
S Lihahna UK
A Luquet Austria
RM Luque Spain
M Lueter Germany
M Maggi Italy
M Mannelli Italy
F Mantiero Italy
G Mastrokutros Greece
E Matthesen Denmark
C McCabe EE
R Mitchell UK
J Mittag Germany
M Morin-Furin Sweden
L Morin-Papunen Finland
N Morton UK
A Muekerjee UK
E Nagy Hungary
J Neuw-Priatke UK
D O'Halloran Ireland
U Pagotto Italy
J J Palveini Finland
S Papapoliosis Netherlands
S Pearce UK
R Peeters The Netherlands
L Persani Italy
M Pfeifer Slovenia
T Pieber Austria
N Pitteloud Swiss
C Piacentini Switzerland
G Pozzani Finland
D Power Portugal
V Prevot France
S Radjian UK
N Rahman Finland
B Rainey USA
T Raitio Finland
E Raipert-De Meyts Denmark
G Ravenot France
M Reinecke Germany
S Rice UK
I Robert UK
M Robledo Spain
P Rodier France
G Roman Romania
H Romijn The Netherlands
C Ronchi Italy
R Ross UK

K Raivio Finland
E Rapiro Italy
H Rasmussen Denmark
C Rapley France
S Rice UK
I Robert UK
M Robledo Spain
P Rodier France
G Roman Romania
H Romijn The Netherlands
C Ronchi Italy
R Ross UK

28–31 May 2016

Endocrine Abstracts

Volume 41

May 2016
SPONSORS
The ESE would like to thank its Corporate Members and the ECE 2016 sponsors

ECE Corporate Members
- Chiasma
- Eli Lilly
- Ipsen
- Laboratoire HRA Pharma
- Merck Serono
- Novartis Pharmaceuticals
- Novo Nordisk
- Pfizer
- Sandoz International Gmbh
- Shire Services BVBA
- Strongbridge Biopharma

Gold Sponsors
Ipsen
Novartis

Bronze Sponsors
Pfizer

ESE Office
Euro House
22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK
Contact: Andrea Davis
Tel: +44 (0)1454 642247
Fax: +44 (0)1454 642222
E-mail: info@euro-endo.org
Web site: www.ese-hormones.org

ECE 2016 Secretariat
Bioscientifica Ltd
Euro House, 22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK
Contact: Niki Cripps
Tel: +44 (0)1454 640467
Fax: +44 (0)1454 642222
E-mail: ece2016@bioscientifica.com
Website: http://www.bioscientifica.com
CONTENTS

18th European Congress of Endocrinology 2016

PRIZE LECTURES AND BIOGRAPHICAL NOTES

- The European Journal of Endocrinology Prize Lecture ... EJE1
- The Geoffrey Harris Prize Lecture .. GH1
- Clinical Endocrinology Trust Award & Lecture ... CETL1

PLENARY LECTURES

- PRRT, NETTER-1, and the new Era .. PL1
- Endocrine disruptors and the thyroid (*Endorsed by Endocrine Connections*) PL2
- Testosterone trials .. PL3
- Gut microbiota, inflammation and metabolism (*Endorsed by Endocrine Connections*) PL4
- Insulin signalling and action ... PL5
- Bionic pancreas ... PL6

SYMPOSIA

- Thyroid and Pregnancy .. S1.1–S1.3
- Mixtures, medicines and diet, where now for endocrine disrupting compounds?
 (*Endorsed by Endocrine Connections*) .. S2.1–S2.3
- Senescence and plasticity in the anterior pituitary ... S3.1–S3.3
- How to diagnose endocrine disease in obese patients? (*Endorsed by the European Journal of Endocrinology*) ... S4.1–S4.3
- Adrenal incidentaloma guidelines ... S5.1–S5.7
- Characterization and treatment of thyroid cancer ... S6.1–S6.3
- The chronic syndromes of patients with cured pituitary diseases
 (*Endorsed by the European Journal of Endocrinology*) .. S7.1–S7.3
- Primary aldosteronism .. S8.1–S8.3
- Bone marrow adipose tissue - A "novel" functionally active fat depot
 S9.1–S9.3
- Late Breaking News Session ... S10.1–S10.3
- New Developments in subclinical thyroid disease ... S11.1–S11.3
- Novel insights of disorders in pubertal timing .. S12.1–S12.3
- Management of Cushing’s syndrome ... S13.1–S13.3
- Hot topics on vitamin D ... S14.1–S14.3
- In the rhythm of EYES: Let’s dance! ... S15.1–S15.3
- Thyroid nodules .. S16.1–S16.3
- Genetics and epigenetics of testicular failure .. S17.1–S17.3
- Neuroendocrine tumours: new findings, classification and targeted management S18.1–S18.3
- Brown adipose tissue - a burning issue (*Endorsed by Endocrine Connections*) S19.1–S19.3
- Hitchhiker’s guide to the microsmos of GPCRs ... S20.1–S20.3
- An update on hyperparathyroidism .. S21.1–S21.3
- New mechanisms to induce and protect from ovarian insufficiency
 ... S22.1–S22.3
- Indications of incretin based therapies ... S23.1–S23.3
- Endocrine neoplasias: new associations (*Endorsed by the European Journal of Endocrinology*) ... S24.1–S24.3
- What’s new and exciting in nuclear receptor action? .. S25.1–S25.3
- Why do we gain weight; homeostasis and rewards of ingestive behaviour S27.1–S27.3
- Adrenal Insufficiency: Causes and management ... S28.1–S28.3
- New insights into the pathogenesis of PCOS ... S29.1–S29.3
- Disorders of development and function of neurohypophysis S30.1–S30.3
NEW SCIENTIFIC APPROACHES ... NSA1–NSA5

DEBATE
The use of NSAIDs in endocrine cancers: the case of Celecoxib ... D1.1–D1.3
Should we treat subclinical Cushing’s syndrome? ... D2.1–D2.2
Strengths and weaknesses of hormone immunoassays and mass spectrometry: what the clinician should know D3.1–D3.2
Are we ready for pharmacological therapy of obesity? ... D4.1–D4.2

MEET THE EXPERT SESSIONS ... MTE1–MTE10

ORAL COMMUNICATIONS
Adrenal - Basic & Clinical ... OC1.1–OC1.5
Receptors & Signalling ... OC2.1–OC2.5
Diabetes prediction & complications ... OC3.1–OC3.5
Thyroid - Clinical ... OC4.1–OC4.5
Neuroendocrinology ... OC5.1–OC5.5
Diabetes therapy & complications ... OC6.1–OC6.5
Cardiovascular endocrinology .. OC7.1–OC7.5
Thyroid - Translational .. OC8.1–OC8.5
Endocrine Tumours .. OC9.1–OC9.5
Reproduction & Endocrine Disruption .. OC10.1–OC10.5
Bone & Calcium Homeostasis .. OC11.1–OC11.5
Obesity ... OC12.1–OC12.5
Pituitary Clinical .. OC13.1–OC13.5
Thyroid Cancer .. OC14.1–OC14.5

GUIDED POSTERS
Adrenal .. GP1–GP10
Adrenal .. GP11–GP20
Adrenal .. GP21–GP30
Bone & Calcium Homeostasis .. GP31–GP40
Bone & Calcium Homeostasis .. GP41–GP50
Cardiovascular endocrinology .. GP51–GP59
Clinical Case Reports .. GP60–GP69
Diabetes .. GP70–GP79
Diabetes .. GP80–GP89
Diabetes .. GP90–GP99
Endocrine Nursing .. GP100–GP108
Endocrine Tumours .. GP109–GP118
Neuroendocrinology .. GP119–GP128
Obesity .. GP129–GP138
Paediatric Endocrinology & Development .. GP139–GP148
Pituitary - Clinical .. GP149–GP158
Pituitary - Clinical .. GP159–GP168
Receptors & Signalling .. GP169–GP178
Reproduction & Endocrine Disruption .. GP179–GP188
Thyroid - Basic ... GP189–GP198
Thyroid - Translational & Clinical .. GP199–GP208
Thyroid - Translational & Clinical .. GP209–GP218
Thyroid Cancer .. GP219–GP228
Thyroid Cancer .. GP229–GP238

EPOSTER PRESENTATIONS
Adrenal cortex (to include Cushing’s) .. EP1–EP83
Adrenal medulla .. EP84–EP96
Bone & Osteoporosis .. EP97–EP134
Calcium and Vitamin D metabolism .. EP135–EP194
Clinical case reports - Pituitary/Adrenal .. EP246–EP326

Endocrine Abstracts (2016) Vol 41
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical case reports - Thyroid/Others</td>
<td>EP327–EP396</td>
</tr>
<tr>
<td>Developmental endocrinology</td>
<td>EP397–EP400</td>
</tr>
<tr>
<td>Diabetes (to include epidemiology, pathophysiology)</td>
<td>EP401–EP483</td>
</tr>
<tr>
<td>Diabetes complications</td>
<td>EP484–EP537</td>
</tr>
<tr>
<td>Endocrine Disruptors</td>
<td>EP582–EP587</td>
</tr>
<tr>
<td>Endocrine Nursing</td>
<td>EP588</td>
</tr>
<tr>
<td>Endocrine tumours and neoplasia</td>
<td>EP589–EP656</td>
</tr>
<tr>
<td>Growth hormone IGF axis - basic</td>
<td>EP699–EP709</td>
</tr>
<tr>
<td>Nuclear receptors and Signal transduction</td>
<td>EP771–EP776</td>
</tr>
<tr>
<td>Thyroid (non-cancer)</td>
<td>EP966–EP1085</td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td>EP1086–EP1166</td>
</tr>
</tbody>
</table>

INDEX OF AUTHORS
Eposter Presentations
EP145
Bone mineral density measurement in newly diagnosed primary hyperparathyroidism patients
Bahar Tekin1, M. Melin Uygu2, F. Bukez Bayram3 & Dilek Gogas Yavuz2
1Department of Internal Medicine, Marmara University Hospital, Marmara University School of Medicine, Istanbul, Turkey; 2Department of Internal Medicine, Section of Endocrinology and Metabolism, Marmara University Hospital, Marmara University School of Medicine, Istanbul, Turkey.

Aim
Clinical presentation of primary hyperparathyroidism (PHPT) differs between populations. In this study, we aimed to examine bone mineral density (BMD) and bone metabolism parameters in newly diagnosed and untreated PHPT patients in a single endocrine center in Istanbul, Turkey.

Methods
Consecutive 256 PHPT patients (50.7 ± 14 years, F/M:205/51) and 89 healthy controls (38.8 ± 10 years, F/M:67/22) were included in the study. Serum calcium, phosphorus, parathyroid hormone (PTH), 25(OH) vitamin D, creatinine, 24-h urinary calcium were measured. DEXA method was used for bone mineral density (BMD) measurement.

Results
Twenty percent of PHPT patients were symptomatic and nephrolithiasis was shown in 20.3% of the patients. Serum calcium levels were 11.2 ± 1.3 mg/dl and 9.6 ± 0.3 mg/dl (P < 0.0001), serum PTH levels were 273.4 ± 374 pg/ml and 61.3 ± 28 pg/ml (P < 0.0001) and serum 25OH D levels were 21.9 ± 20.1 ng/ml and 10.4 ± 7.1 ng/ml (P < 0.0001) for PHPT and control groups respectively. 24-h urinary calcium levels were 294.4 ± 213.9 mg/day in PHPT group and 137 ± 69.2 mg/day in healthy control group (P < 0.0001). Femur neck BMD were 0.82 ± 0.15 g/cm2 and 0.98 ± 0.14 g/cm2 (P < 0.0001) for PHPT and control groups respectively. Femur neck and lumen BMDS, T and Z scores were observed significantly lower in PHPT group compared to healthy controls (P < 0.0001). Femur neck and lumen BMDs showed negative correlation with PTH in PHPT patients (r = −0.37, P < 0.0001). There were osteoporosis in 13.4 percent (n=34) and osteopenia in 9.9 percent (n=25) of PHPT patients.

Conclusion
In our group of patients osteoporosis was diagnosed lower than expected but BMD measurements were lower in PHPT group. The results of this study show that bone turnover is increased and bone mineral density is decreased in PHPT patients, as stated in previous studies.

DOI: 10.1530/endoabs.41.EP145

EP146
Serum calcium to phosphorous ratio (Ca/P) as a simple, inexpensive screening tool in the diagnosis of primary hyperparathyroidism (PHPT)
Bruno Mador1, Elda Kar1, Katta Cioni1, Silvia Vezzani1, Manuela Simoni1,2 & Vincenzo Rochira1,2
1Unit of Endocrinology, Azienda USL of Modena, Modena, Italy; 2Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Background
PHPT is often overlooked/underdiagnosed. Several strategies (biochemical markers alone or combined in complex algorithms) have been investigated to easily diagnose/screen PHPT, but PHPT diagnosis remains challenging at present, especially in asymptomatic patients. As serum calcium (Ca) and phosphorous (P) are inversely related in PHPT, the Ca/P ratio could be a good candidate tool for PHPT diagnosis. Surprisingly, no literature data on Ca/P ratio are available, despite they are very simple biochemical measurements largely available in any clinical lab setting.

Aim
To investigate the Ca/P ratio diagnostic value in the diagnosis of PHPT.

Methods
Data retrospectively obtained from review charts of 97 patients with documented PHPT (69 females; 28 males) (16.17% with severe hypercalcemia (>12 mg/dl); 44 (45%) mild hypercalcemia, 36 (38%) normalcalcemic PHPT (NCHPT)) were compared with those of 96 controls (C) (44 females; 52 males). Exclusion criteria: age <18 years, severe chronic diseases, cancer, bone metabolic diseases, use of medications affecting serum Ca. Biochemical measurements: PTH, Vitamin D, serum Ca, P, albumin, and creatinine. Normal ranges: PTH (15–88 pg/ml), Ca (8.5–11 mg/dl), P (2.5–5.1 mg/dl). SPSS 19.0 and SigmaPlot 11.0 were used for statistics (group comparisons, ROC curves, cutoffs performance).

Results

Ca and PTH were significantly higher in PHPT (Ca median:11; min-max:9.4–15.5; [PTH 135.2; 57.6–1748]) than in C (Ca 9.4; 8.3–10.2; [PTH 32.1; 14–106.1] (P < 0.0001). P was significantly lower in PHPT (2.4; 1.4–3.9) than in C (3.5; 2.1–4.5) (P < 0.0001). Ca/P ratio was significantly higher in PHPT than in C. ROC curves analyses identified a cutoff of 3.5 for both Ca/P ratio and Ca/P ratio obtained by using albumin corrected-Ca. The sensitivity and specificity were 86 and 87%, respectively for Ca/P ratio and 89% and 93%, respectively for corrected Ca/P ratio (P < 0.0001). The diagnostic value of Ca/P ratio performed better than PTH and Ca used alone or in combination.

Conclusions
Ca/P ratio is a valuable highly sensitive, highly specific tool for the diagnosis of PHPT. Since Ca/P is simple to obtain, easily accessible in every clinical and lab setting worldwide, and inexpensive even when used in large sample size of patients, this diagnostic tool could be useful for screening PHPT, especially in patients accessing emergency rooms or in the general practitioner setting.

DOI: 10.1530/endoabs.41.EP146

EP147
Vitamin D status in infants during the first 9 months of age and its effect on growth and other biochemical markers: a prospective cohort study
Mayesh Ghur1, Uday Mandal2 & Sukriti Kumar3
1King George Medical College, Lucknow, India; 2LLRM Medical College, Meerut, India.

Background
We aimed this prospective cohort study in term newborn babies, with the objective to determine the incidence of vitamin D deficiency in infancy and to determine the level of vitamin D which triggers the physiological PTH axis of the body so as to differentiate truly deficient from sufficient vitamin D status.

Methods
96 participants at birth were enrolled and followed up till 9 months of age. Serum 25OH D was estimated in cord blood at birth and at 14 ± 1 weeks of life. 77 participants were followed up at 9 months for estimation of serum 25OH D, PTH, Alkaline phosphatase (ALP), calcium and phosphorous. Vitamin D deficiency was defined as serum 25OH D levels below 20 ng/ml. Results

Serum 25OH D levels at 9 months of age (15.78 ± 9.97 ng/ml) were significantly increased in comparison to the level of 3 months of age (14.04 ± 7.10 ng/ml) and at birth (8.94 ± 2.24 ng/ml). At birth all the participants (77) were deficient in 25OH D levels. It was found that 16/04 (17%) and 19/77 (24%) participants at 3 and 9 months of age respectively became vitamin D sufficient without any vitamin D supplementation. There was a significant inverse correlation between serum 25OH D and PTH concentration (r = 0.522, P < 0.001) serum 25OH D and ALP(r = 0.501, P < 0.001). It was found that reduction in serum vitamin D level to below 10.25 ng/ml results in surge of serum PTH.

Conclusion
Vitamin D deficiency is common from birth to 9 months of age but incidence decreases spontaneously even without supplementation. Also large number of babies may be falsely labelled as vitamin D deficient with currently followed cutoffs. So a new cutoff for vitamin D deficiency needs to be established for neonates and infants.

DOI: 10.1530/endoabs.41.EP147
Author Index

Aalaa, M GP104 & GP106
Aas, C OC8.4
Abad, A EP1118
Abaza, D EP515
Abbasoglu, O EP646
Abdelrahman, I EP523
Abdel Salaam, M GP80
Abdelsalam, MM EP1004
Abdul Salam Ahmed, M EP759
Abella, P EP1010 & EP1011
Aberg, D EP732
Aberer, F EP546
Abid, A EP531
Abid, M EP1007
Abrosimov, A EP1130
Abs, R EP700
Abuin Fernandez, J EP474
Abubakar, H EP431
Abubshady, MM EP1004
Acen, C EP14
Achenbach, H GP14
Acikalin, M EP310
Acosta-Calero, C EP225
Adamczewski, Z EP1023
Adams, JE GP33
Adamska, A EP683 & GP183
Adamski, J GP29
Adatepe, T OC3.5
Adaway, J GP178
Adibi, H GP104
Adolf, C EP5
Adorini, L EP201 & GP56
Adorno, A EP1144
Affam, D EP187
Affif, ED EP854 & OC5.1
Afonso, EP334
Afzal, N EP228
Agapito, A EP643 & EP925
Agarwal, A EP1044 & EP1112
Agarwal, G EP1044 & EP1112
Agarwal, S EP84
Aggarwal, A EP343
Aghaie, M EP488
Aghajanova, Y EP549 & EP848
Aglonys, M GP148
Agudo-Macazaga, M GP199
Aguiar, R MPM EP392
Aguilar, M EP415 & EP861
Aguiar-Diosdado, M EP190
Akkas, N EP105
Akhtar, A EP1111
Akkus, G EP18
Akh, AY EP1090
Akle Ayob, M OC10.2
Akkas, N EP1128
Alkoy, O EP178
Al-Emaid, B EP647
Al-Hindi, M EP647
Al-Zaydi, M EP513
Alaaarg, A EP195
Alacid, CM EP69
Alagöz, E EP1087 & EP380
Alam, MM EP311
Al-Amin, A EP84
Aldí, T EP587
Albani, A EP736
Albert, L EP799 & GP13
Albu, SE EP134
Alcaine, A EP803 & EP823
Alcator, V EP1118
Al-Jabri, T EP656
Almeida, L EP793
Almeida, R GP31
Almeida, RC EP346
Alexandre, S EP1126
Alexander, S EP11.1
Alexandru Niculescu, D EP1066
Alexeev, D EP451
Alexescu, T EP828
Alexiou, A EP1129
Alexiou, J EP436 & EP442
Alfredo Martinez, J OC12.3
Al-Hammar, M EP753
Al-Hammar-Exposito, M EP757
Al-Hashimi, A EP1128
Alhusuny, A EP513 & EP839
Ali, O EP523
Aliu, S EP1128
Al-Jabri, T EP656
Al-Kasifoglu, M GP83
Alioglu, B EP524
Alkaabi, FM EP100 & EP166
Alkan, A EP1099 & GP209
Alkan, A EP496
Alkebro, C GP167
Allende, F EP148
Allendorf, I GP40
Aller, J EP1118
Allo, L EP1047 & EP319
Alexandre, N EP268
Alexandru Niculescu, D EP1066
Alexeev, D EP451
Alexescu, T EP828
Alexiou, A EP1129
Alexiou, J EP436 & EP442
Alfredo Martinez, J OC12.3
Alhammar Exposito, MR EP753
Al-Hammar-Exposito, M EP757
Al-Hashimi, A EP1128
Alhusuny, A EP513 & EP839
Ali Acar, E EP66
Ali Kasifoglu, M GP83
Ali, O EP523
Al-Lavín Gómez, B EP799 & GP11
Alioglu, B EP524
Alissa, E EP242
Alkaabi, FM EP100 & EP166
Alkan, A EP1099 & GP209
Alkan, A EP496
Alkebro, C GP167
Alla, L EP237
Allelein, S OC14.5
Allende, F EP148
Allendorf, I GP40
Aller, J EP1118
Allo, G EP107 & EP319
Alloiso, A GP111
Allolio, B GP116
Almaden, Y EP144
Almasri, MS EP1004
Almazrouei, RA EP100 & EP166
Almeida, L EP793
Almeida, R EP31
Almeida, RC EP346