The abstracts were marked by the Abstract marking Panel selected by the programme Organising Committee.

Abstract Marking Panel

- Helmuth Gu (Germany)
- Christoph Auernhammer (Germany)
- Gunter Stalla (Germany)
- Ilpo Huhtaniemi (Finland/UK) Chair, Programme
- Programme Organising Committee (POC)

The abstracts were marked by the Abstract marking Panel selected by the programme Organising Committee.
SPONSORS
The ESE would like to thank its Corporate Members and the ECE 2016 sponsors

ECE Corporate Members
- Chiasma
- Eli Lilly
- Ipsen
- Laboratoire HRA Pharma
- Merck Serono
- Novartis Pharmaceuticals
- Novo Nordisk
- Pfizer
- Sandoz International Gmbh
- Shire Services BVBA
- Strongbridge Biopharma

Gold Sponsors
Ipsen
Novartis

Bronze Sponsors
Pfizer
CONTENTS

18th European Congress of Endocrinology 2016

PRIZE LECTURES AND BIOGRAPHICAL NOTES
The European Journal of Endocrinology Prize Lecture ... EJE1
The Geoffrey Harris Prize Lecture ... GH1
Clinical Endocrinology Trust Award & Lecture ... CETL1

PLENARY LECTURES
PRRT, NETTER-1, and the new Era ... PL1
Endocrine disruptors and the thyroid (Endorsed by Endocrine Connections) PL2
Testosterone trials ... PL3
Gut microbiota, inflammation and metabolism (Endorsed by Endocrine Connections) PL4
Insulin signalling and action ... PL5
Bionic pancreas ... PL6

SYMPOSIA
Thyroid and Pregnancy ... S1.1–S1.3
Mixtures, medicines and diet, where now for endocrine disrupting compounds? (Endorsed by Endocrine Connections) S2.1–S2.3
Senescence and plasticity in the anterior pituitary ... S3.1–S3.3
How to diagnose endocrine disease in obese patients? (Endorsed by the European Journal of Endocrinology) S4.1–S4.3
Adrenal incidentaloma guidelines .. S5.1–S5.7
Characterization and treatment of thyroid cancer ... S6.1–S6.3
The chronic syndromes of patients with cured pituitary diseases (Endorsed by the European Journal of Endocrinology) S7.1–S7.3
Primary aldosteronism ... S8.1–S8.3
Bone marrow adipose tissue - A "novel" functionally active fat depot S9.1–S9.3
Late Breaking News Session .. S10.1–S10.3
New Developments in subclinical thyroid disease .. S11.1–S11.3
Novel insights of disorders in pubertal timing .. S12.1–S12.3
Management of Cushing’s syndrome ... S13.1–S13.3
Hot topics on vitamin D .. S14.1–S14.3
In the rhythm of EYES: Let’s dance! ... S15.1–S15.3
Thyroid nodules ... S16.1–S16.3
Genetics and epigenetics of testicular failure .. S17.1–S17.3
Neuroendocrine tumours: new findings, classification and targeted management S18.1–S18.3
Brown adipose tissue - a burning issue (Endorsed by Endocrine Connections) S19.1–S19.3
Hitchhiker’s guide to the microsmos of GPCRs ... S20.1–S20.3
An update on hyperparathyroidism ... S21.1–S21.3
New mechanisms to induce and protect from ovarian insufficiency S22.1–S22.3
Indications of incretin based therapies .. S23.1–S23.3
Endocrine neoplasias: new associations (Endorsed by the European Journal of Endocrinology) S24.1–S24.3
What’s new and exciting in nuclear receptor action? .. S25.1–S25.3
An update on bone homeostasis and osteoporosis (Endorsed by the European Journal of Endocrinology) S26.1–S26.3
Why do we gain weight; homeostasis and rewards of ingestive behaviour S27.1–S27.3
Adrenal Insufficiency: Causes and management .. S28.1–S28.3
New insights into the pathogenesis of PCOS .. S29.1–S29.3
Disorders of development and function of neurohypophysis S30.1–S30.3
NEW SCIENTIFIC APPROACHES

DEBATE
The use of NSAIDs in endocrine cancers: the case of Celecoxib
Should we treat subclinical Cushing’s syndrome?
Strengths and weaknesses of hormone immunoassays and mass spectrometry: what the clinician should know
Are we ready for pharmacological therapy of obesity?

MEET THE EXPERT SESSIONS

ORAL COMMUNICATIONS

Guided Posters

EPOSTER PRESENTATIONS

Endocrine Abstracts (2016) Vol 41
INDEX OF AUTHORS
Eposter Presentations
of cardio-metabolic diseases. The aim of this study was to search for any difference of the oxidative stress parameters between in patients with hypogonadism and healthy controls.

Materials and Methods

Thirty eight male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age 21.7±1.6 years) and 44 body mass index (BMI) matched healthy male subjects (mean age 22.3±1.4 years) were enrolled. The demographic parameters, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and malondialdehyde (MDA) were measured in patients and healthy controls.

Results

When compared to the healthy controls, triglycerides (p=0.02), insulin, HOMA-IR, catalase and MDA levels (P=0.001 for all) were significantly higher, and the HDL cholesterol (P=0.04), total testosterone, FSH, LH and GPx levels (P=0.001 for all) were significantly lower in patients with CHH. There were significant correlations between the total testosterone levels and catalase (r=−0.33 P=0.01), GPx (r=0.36 P=0.007) and MDA (r=−0.47 P<0.001).

Conclusions

The results of this study show that young and treatment naive patients with hypogonadism have increased oxidative stress related parameters such as serum catalase and MDA levels. There is significant correlation between oxidative stress parameters and testosterone levels. Prospective, randomized, controlled studies are needed to prove the relationship between oxidative stress and increased cardio-metabolic risk in hypogonadism.

DOI: 10.1530/endoabs.41.EP716

EP717

Delay in the onset of male puberty: role of mutations in luteinizing hormone-beta gene

Ghazala Shaheen, Maleeha Akram, Quasar Mansoor, Muhammad Ismail, Osama Ishtiaq, Sarwar Jahan, Afzaal Ahmed Naseem, Mazhar Qayyum & Syed Shakeel Raza Rizvi

1Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan; 2Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan; 3Department of Endocrinology, Shifa International Hospital, Islamabad, Pakistan; 4Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan.

The reawakening of hypothalamo-pituitary-gonadal axis at puberty is influenced by a number of hormonal and genetic factors along with certain environmental cues. In boys, puberty is initiated at around 9 years of age as plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone (T) begin to rise leading to development of secondary sex characteristics. The absence of signs of sexual maturation at the age of 14/15 years is regarded as delayed puberty. One of the main causes of delay in puberty is hypogonadotropic hypogonadism (HH), characterized by low LH, FSH and T secretion, resulting in absent or impaired sexual development. This study examined the endocrine and genetic basis of pubertal delay in boys. Blood samples were obtained from 30 boys of delayed pubertal development and 30 age matched controls. The plasma concentration of growth hormone (GH), LH, FSH and T were determined using ELISA. Based on low plasma concentrations of GH, LH, FSH and T, genetic analysis was performed for determining possible mutations in TACR3 and LH-β genes. TACR3 is expressed in the hypothalamus, whereas LH-β is synthesized by pituitary gonadotropes. One mutation, H148L, of TACR3 and two mutations, G56D and G122S, of LH-β were screened. DNA was extracted from blood samples of both groups by organic method, primers of exons of TACR3 and LH-β splice sites were designed and PCR-RFLP method was employed for analysis. The mutations H148L of TACR3 and G56D of LH-β were not found in any group, whereas the PCR product of LH-β digested by enzyme EcoR1 was validated by bands of 3 different genotypes in HH boys, GG (93.33%), GA (3.33%) and AA (3.33%). Thus, one heterozygous G122S mutation in one and one homozygous G122S mutation in another patient were identified. In conclusion, homozygous G122S mutation may cause pubertal delay in our local population.

DOI: 10.1530/endoabs.41.EP717

EP718

Is Testosterone (T) treatment safe and effective in men with HIV infection? A meta-analysis

Daniele Santì, Giovanni Guaraldi, Giovanni Corona & Vincenzo Rochira

1Unit of Endocrinology, Department of Biomedical, Metabolic and Neonatal Sciences, University of Modena and Reggio Emilia and Azienda USL of Modena, Modena, Italy; 2Endocrinology Unit, Medical Department, Azienda USL of Bologna, Maggiore-Bellaria Hospital, Bologna, Italy; 3Metabolic Clinic, Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences for Adults and Children, Clinic of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy.

Background: Prevalence of hypogonadism is high (30%) in men with HIV. In these patients T treatment (TT) is currently used mainly to counteract wasting syndrome and/or HIV-related lipodystrophy, irrespective of patients’ serum T. However, its effect and safety in HIV-infected men is still not completely known.

Aim

To investigate both beneficial and adverse effects related to TT in HIV-infected men using a meta-analytic approach.

Methods

An extensive MEDLINE search was performed using the following key-words: ‘HIV’ and ‘hypogonadism’, ‘TT’, ‘T’, ‘androgens’ or ‘sex steroids’ from 1946 to April 2015. Meta-analysis included 19 placebo-controlled-clinical trials evaluating TT in HIV patients and was conducted according to PRISMA statement using RevMan.

Results

All 19 trials evaluated the effect of TT on body weight on a total of 952 subjects (TT group: 557; placebo group: 395). Patients’ gonadal status was often not reported and most of patients were presumably eugonadal. All data are shown as standardized mean and Confidence Interval (CI). TT significantly improved total lean body mass (1.44 [0.82–2.07], P<0.001), total body weight (0.99 [0.95–1.25], P=0.008) and fat free mass (1.48 [0.85–2.12], P<0.001). This improvement is characterized by higher heterogeneity (I²=84%, 88%, and 60%, respectively).

Conversely, no beneficial effects were seen on total fat mass (−0.17 [−1.58–1.25], P=0.820). TT was associated with an increased incidence of minor adverse events (OR=1.50 [1.11–2.01], P=0.008) and increased mean serum PSA (0.10 ng/mL, [0.03–0.17], P=0.007). No change in hemoglobin (0.39 g/dL, [−0.29–1.07], P=0.260) was seen.

Conclusions

Our study suggests that TT in HIV-infected men is effective in improving body composition (increase in lean body mass), although the incidence of general adverse effects is higher than in the placebo group. However, studies show a highest variability and the real benefits of TT in HIV-infected men remains still to be established.

DOI: 10.1530/endoabs.41.EP718

EP719

Aluminium oxide nanoparticles-induced spermatoxicity, oxidative stress and changes in reproductive hormones and testes histopathology in male rats: Possible protective effect of glutathione

Mohkhtar Ibrahim Yousef, Thanaa I. Shalaby & Adil A. Kareem

1Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby 21526, P.O. Box 832, Alexandria, Egypt; 2Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt.

There is a rising use of Aluminium oxide nanoparticles (Al₂O₃ NPs) in many branches of industry and personal care products. Because of these uses, their impact on the environment must be considered and investigated. Almost nothing is known about the effects of Al₂O₃ NPs on semen quality and reproductive hormones. Possible mechanisms for the cytotoxicity of Al₂O₃ NPs are still being discussed, but oxidative stress may be responsible for their effect. Therefore, the objective of this study was thus to know the capability of glutathione as antioxidant agent against the effects of Al₂O₃ NPs on sperm parameters, testosterone, FSH, LH, steroid enzymes, histological changes, lipid peroxidation and antioxidant enzymes in male rats. Animals were divided into four groups, group 1 was used as control, group 2 was treated orally with glutathione (100 mg/kg BW), group 3 was treated intraperitoneally (IP) with aluminum oxide nanoparticles (70 mg/kg BW; <50 nm), group 4 was treated with aluminum oxide nanoparticles plus glutathione. Rats were administered their respective doses every day for 77 day. Results showed that Al₂O₃ NPs decreased final body weight, body weight gain, relative testes and epididymis weights, sperm count,
Author Index

Aalaa, M GP104 & GP106
Aas, C OC8.4
Abad, A EP1118
Abaza, D EP515
Abbasoglu, O EP646
Abdalrahman, J EP523
AbdelRaof, Y EP190
Abdelsalam, M GP80
Abdelsalam, MM EP1004
AbdelWahab, E EP190
Abdul Salam Ahmed, M
Abdulrahman, I EP523
Abdallah, NB EP1042,
Abbasoglu, O EP646
Achenbach, H GP14
Abushady, MM EP1004
Acerini, C EP14
Achenbach, H GP14
A‘ckalin, M EP310
Acosta-Calero, C EP225 & EP696
Acikalin, M EP310
Adab, A EP932
Abid, A EP531
Abid, A EP1007
Abibol, J GP28
Abraham, P EP932
Abrosimov, A EP1130
Abs, R EP700
Abuin Fernandez, J EP474
Abusahmin, H EP431
Abushady, MM EP1004
Acerini, C EP14
Achenbach, H GP14
A‘ckalin, M EP310
Acosta-Calero, C EP225 & EP696
Acikalin, M EP310
Adab, A EP932
Abid, A EP531
Abid, A EP1007
Abibol, J GP28
Abraham, P EP932
Abrosimov, A EP1130
Abs, R EP700
Abuin Fernandez, J EP474
Abusahmin, H EP431
Abushady, MM EP1004
Acerini, C EP14
Achenbach, H GP14
A‘ckalin, M EP310
Acosta-Calero, C EP225 & EP696
Acikalin, M EP310
Adab, A EP932
Abid, A EP531
Abid, A EP1007
Abibol, J GP28
Abraham, P EP932
Abrosimov, A EP1130
Abs, R EP700
Abuin Fernandez, J EP474
Abusahmin, H EP431
Abushady, MM EP1004
Acerini, C EP14
Achenbach, H GP14
A‘ckalin, M EP310
Acosta-Calero, C EP225 & EP696
Acikalin, M EP310
Adab, A EP932
Abid, A EP531
Abid, A EP1007
Abibol, J GP28
Abraham, P EP932
Abrosimov, A EP1130
Abs, R EP700
Abuin Fernandez, J EP474
Abusahmin, H EP431
Abushady, MM EP1004
Acerini, C EP14
Achenbach, H GP14
A‘ckalin, M EP310
Acosta-Calero, C EP225 & EP696
Acikalin, M EP310
Adab, A EP932
Abid, A EP531
Abid, A EP1007
Abibol, J GP28
Abraham, P EP932
Abrosimov, A EP1130
Abs, R EP700
Abuin Fernandez, J EP474
Abusahmin, H EP431
Abushady, MM EP1004
Acerini, C EP14
Achenbach, H GP14