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Abstract. In the Heisenberg group Hn, n ≥ 1, we prove quantitative isoperimetric

inequalities for Pansu’s spheres, that are known to be isoperimetric under various

assumptions. The inequalities are shown for suitably restricted classes of competing

sets and the proof relies on the construction of sub-calibrations.

1. Introduction

Quantitative isoperimetric inequalities in the Euclidean space and in Riemannian

manifolds have been an object of intensive studies in recent years. The sharp quan-

titative isoperimetric inequality in the Euclidean space Rn states that there exists

a constant Cn > 0 depending only on the dimension n, such that for any Borel set

F ⊂ Rn with L n(F ) = L n(B1), the Lebesgue measure of a unit ball B1, one has the

following estimate for the difference of perimeters

P (F )− P (B1) ≥ Cn inf
x∈Rn

L n(F∆(x+B1))2.

This inequality is established in its full generality in [13], and proved by different

methods in [10, 7]. Several generalization have been recently obtained in Riemannian

manifolds (with density), like the Gauss space [2, 6], the n-dimensional sphere [3],

and the n-dimensional hyperbolic space [4]. A recurrent technique used in the proofs

is based on the regularity theory for perimeter quasiminimizers combined with a

penalization trick and a Fuglede-type argument, which essentially exploits the strict

positivity of the second variation of the area with respect to non-trivial volume-

preserving perturbations (see [7, 1]). With similar arguments, quantitative stability

results for global area-minimizing smooth hypersurfaces are obtained in [8], together

with more specific results for a subfamily of singular area-minimizing Lawson cones.

In this case, due to the presence of a singular point at the vertex of the cone, the

proof of the sharp quantitative stability follows a different strategy, that is based on

the construction of suitable sub-calibrations (see also [9]).

On the other hand, in the context of subriemannian geometry, and in particular

in Carnot groups, very few is known about the optimal constant in the isoperimetric

inequality (except for the fact that isoperimetric sets exist and have at least some

very weak regularity properties [15]). With the only exception of the Grushin plane

[19] (see also [11]), isoperimetric sets have been only partially characterized in the
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subriemannian Heisenberg group Hn (see below) and are not known at all in more

general Carnot groups.

The main result of this paper is Theorem 1.1, where we prove the validity of a

parameterized family of quantitative isoperimetric inequalities in the subriemannian

Heisenberg group Hn.

Before stating the result, we recall some basic definitions. The 2n+ 1-dimensional

Heisenberg group is the manifold Hn = Cn × R, n ∈ N, endowed with the group

product

(z, t) ∗ (ζ, τ) =
(
z + ζ, t+ τ + 2 Im〈z, ζ̄〉

)
,

where t, τ ∈ R, z, ζ ∈ Cn and 〈z, ζ̄〉 = z1ζ̄1 + . . . + znζ̄n. The bundle of horizontal

left-invariant vector fields in Hn is spanned by the vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t

with zj = xj + iyj and j = 1, . . . , n.

The Haar measure of Hn is the Lebesgue measure L 2n+1. The H-perimeter of a

L 2n+1-measurable set E ⊂ Hn in an open set A ⊂ Hn is

PH(E,A) = sup

{∫
E

divHV dzdt : V ∈ C1
c (A;R2n), ‖V ‖∞ ≤ 1

}
,

where the horizontal divergence of the vector field V : A→ R2n is

divHV =
n∑
j=1

XjVj + YjVn+j.

We use the notation µE(A) = PH(E,A) and PH(E) = PH(E,Hn). If PH(E) < ∞
then the open sets mapping A 7→ µE(A) extends to a Radon measure µE on Hn.

Moreover, there exists a µE-measurable function νE : Hn → R2n such that |νE| = 1

µE-a.e. and the Gauss-Green integration by parts formula∫
Hn
〈V, νE〉 dµE = −

∫
Hn

divHV dzdt (1.1)

holds for any V ∈ C1
c (Hn;R2n). Here and hereafter, 〈·, ·〉 denotes the standard scalar

product in R2n.

The isoperimetric problem in the Heisenberg group consists in minimizing H-

perimeter of sets with a given fixed volume. By homogeneity with respect to the

dilations (z, t) 7→ (λz, λ2, t) for λ > 0, this is equivalent to prove existence, unique-

ness, and classify the minimizers of the minimum problem

inf

{
PH(E,Hn)

L 2n+1(E)
2n+1
2n+2

: E ⊂ Hn measurable set with 0 < L 2n+1(E) <∞

}
. (1.2)

A set realizing the infimum is called isoperimetric set. The existence of isoperimetric

sets is established in [15].
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In 1983 P. Pansu [21] conjectured that, up to left translation and dilation, the

isoperimetric set is

Eisop =
{

(z, t) ∈ Hn : |t| < arccos(|z|) + |z|
√

1− |z|2, |z| < 1
}
. (1.3)

The conjecture was made for dimension n = 1. The boundary of set Eisop ⊂ H1

can be obtained taking one geodesic for the Carnot-Carathéodory metric joining the

south pole (0,−π/2) ∈ ∂Eisop to the north pole (0, π/2) ∈ ∂Eisop and letting it rotate

around the t-axis.

In H1, Pansu’s conjecture is proved assuming either the C2 regularity of the mini-

mizer [23] or its convexity [20]. In Hn with n ≥ 1, the conjecture is proved assuming

the axial symmetry of the minimizer [17] or assuming a suitable cylindrical structure

[22]. Some observations on the problem can be found in [16] and [14]. See also the

book [5] and the lecture notes [18].

By refining the calibration argument of [22] via a sub-calibration, we prove two

quantitative versions of the Heisenberg isoperimetric inequality for competitors of

Eisop in half-cylinders.

For any 0 ≤ ε < 1 we define the half-cylinder

Cε =
{

(z, t) ∈ Hn : |z| < 1 and t > tε
}
,

where tε = ϕ(1 − ε) with ϕ(r) = arccos(r) + r
√

1− r2. The proof provides an

inequality with a variable structure, according to whether ε = 0 or ε > 0. A similar

construction could be used also in the Euclidean setting for Dido’s problem (i.e., for

the relative isoperimetric problem in a half-space), and in this case it would provide

analogous quantitative estimates for the same classes of competitors. Our main result

is the following

Theorem 1.1. Let F ⊂ Hn, n ≥ 1, be any measurable set with L 2n+1(F ) =

L 2n+1(Eisop).

i) If F∆Eisop ⊂⊂ C0 then

PH(F )− PH(Eisop) ≥ n

240ω2
2n

L 2n+1(F∆Eisop)3. (1.4)

ii) If F∆Eisop ⊂⊂ Cε for 0 < ε < 1, then

PH(F )− PH(Eisop) ≥ n
√
ε

16ω2n

L 2n+1(F∆Eisop)2. (1.5)

Above, ω2n denotes the Lebesgue measure of the Euclidean unit ball in R2n.

In (1.4), the asymmetry index L 2n+1(F∆Eisop) appears with the power 3. In

(1.5), the power is 2 but there is a constant that vanishes with ε. The quantitative

isoperimetric inequality in Rn [13] shows that the optimal power is 2.

The sub-calibration is constructed in the following way. The set Eisop ∩ Cε can be

foliated by a family of hypersurfaces with constant H-mean curvature that decreases

from 1, the H-curvature of ∂Eisop, to 0, the curvature of the surface {t = tε}. The
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velocity of the decrease depends on the parameter ε. The horizontal unit normal to

the leaves gives the sub-calibration.

The H-mean curvature is defined in the following way. Let Σ ⊂ Hn be a hypersur-

face that is locally given by the zero set of a function u ∈ C1 such that |∇Hu| 6= 0 on

Σ, where

∇Hu =
(
X1u, . . . , Xnu, Y1u, . . . , Ynu

)
(1.6)

is the horizontal gradient of u. Then we define the H-mean curvature of Σ at the

point (z, t) ∈ Σ as

HΣ(z, t) =
1

2n
divH

( ∇Hu(z, t)

|∇Hu(z, t)|

)
. (1.7)

The definition depends on a choice of sign. We shall work with orientable embedded

hypersurfaces and so we can choose the positive sign, H(z, t) ≥ 0. Then, the boundary

of Eisop has constant H-mean curvature 1. For a set E = {(z, t) ∈ Hn : u(z, t) > 0}
the horizontal normal νE in the Gauss-Green formula (1.1) is given on ∂E by the

vector

νE =
∇Hu
|∇Hu|

.

The proof of Theorem 1.1 relies on the construction described in the following

result.

Theorem 1.2. Let 0 ≤ ε < 1. There exists a continuous function u : Cε → R with

level sets Σs =
{

(z, t) ∈ Cε : u(z, t) = s
}

, s ∈ R, such that:

i) u ∈ C1(Cε ∩Eisop)∩C1(Cε \Eisop) and ∇Hu/|∇Hu| is continuously defined on

Cε \ {z = 0};
ii)
⋃
s>1 Σs = Cε ∩ Eisop and

⋃
s≤1 Σs = Cε \ Eisop;

iii) Σs is a hypersurface of class C2 with constant H-mean curvature HΣs = 1/s

for s > 1 and HΣs = 1 for s ≤ 1;

iv) For any point (z, ϕ(|z|)− t) ∈ Σs with s > 1 we have

1−HΣs(z, ϕ(|z|)− t) ≥ 1

20
t2 when ε = 0. (1.8)

and

1−HΣs(z, ϕ(|z|)− t) ≥
√
ε

4
t when 0 < ε < 1, (1.9)

The estimates (1.8) and (1.9) are the basis of the two inequalities (1.4) and (1.5),

respectively.

2. Proof of Theorem 1.2

In Cε \Eisop, the leaves Σs are vertical translations of the top part of the boundary

∂Eisop. In Cε ∩ Eisop, the leaves Σs are constructed in the following way: the surface

∂Eisop is first dilated by a factor larger than 1, and then it is translated downwards

in such a way that, after the two operations, the sphere {(z, t) ∈ ∂Eisop : t = tε} with

tε = ϕ(1− ε) remains fixed.
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The profile function of the set Eisop is the function ϕ : [0, 1]→ R

ϕ(r) = arccos(r) + r
√

1− r2 0 ≤ r ≤ 1. (2.1)

Its first and second order derivatives are

ϕ′(r) =
−2r2

√
1− r2

and ϕ′′(r) =
2r(r2 − 2)

(1− r2)3/2
, 0 ≤ r < 1. (2.2)

Notice that ϕ′′′(0) = −4. We also need the function ψ : [0, 1)→ R

ψ(r) = 2ϕ(r)− rϕ′(r) = 2

(
r√

1− r2
+ arccos(r)

)
. (2.3)

Its derivative is

ψ′(r) = ϕ′(r)− rϕ′′(r) =
2r2

(1− r2)3/2
. (2.4)

We start the construction of the function u. On the set Cε \ Eisop we let

u(z, t) = ϕ(|z|)− t+ 1, (z, t) ∈ Cε \ Eisop. (2.5)

Notice that u(z, ϕ(|z|)) = 1 for all |z| < 1. We define the function u in the set

Dε = Cε ∩ Eisop =
{

(z, t) ∈ Eisop : |z| < 1− ε, tε < t < ϕ(|z|)
}
.

We use the short notation r = |z| and rε = 1 − ε. Let Fε : Dε × (1,∞) → R be the

function

Fε(z, t, s) = s2
(
ϕ(r/s)− ϕ(rε/s)

)
+ tε − t.

We claim that for any point (z, t) ∈ Dε there exists a unique s > 1 such that

Fε(z, t, s) = 0. In this case, we can define the function u(z, t) : Dε → R letting

Fε(z, t, s) = 0 if and only if s = u(z, t). (2.6)

We prove the claim. For any (z, t) ∈ Dε we have

lim
s→1+

Fε(z, t, s) = ϕ(r)− t > 0.

Moreover, with a second order Taylor expansion of ϕ based on (2.2) we see that

lim
s→∞

Fε(z, t, s) = tε − t < 0.

Since s 7→ Fε(z, t, s) is continuous, this proves the existence of a solution of Fε(z, t, s) =

0. By (2.3), the derivative in s of Fε is

∂sFε(z, t, s) = s
(
ψ(r/s)− ψ(rε/s)

)
, (2.7)

and thus by (2.4) we deduce that ∂sFε(z, t, s) < 0. This proves the uniqueness.

We prove claim iii). Namely, we prove that for any point (z, t) ∈ Σs with s > 1

and z 6= 0, the H-mean curvature of Σs at (z, t) is

HΣs(z, t) = − 1

2n
divH

( ∇Hu
|∇Hu|

)
=

1

s
. (2.8)

We are using definition (1.6) with a minus sign in order to have a positive curvature.

The claim when s ≤ 1 is analogous because Σs is a vertical translation of the top part

of ∂Eisop.
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By the implicit function theorem, the derivatives of u can be computed from the

partial derivatives of Fε. Using ∂xir = xi/r and ∂yir = yi/r, with i = 1, . . . , n and

z = (x1 + iy1, . . . , xn + iyn), we find

∂xiFε(z, t, s) =
sxi
r
ϕ′(r/s) and ∂yiFε(z, t, s) =

syi
r
ϕ′(r/s). (2.9)

Letting s = u(z, t), thanks to (2.6), (2.7), (2.9), and (2.2) we obtain

∂xiu(z, t) = −∂xiFε(z, t, s)
∂sFε(z, t, s)

=
2rxi

s
√
s2 − r2

(
ψ(r/s)− ψ(rε/s)

) , (2.10)

∂yiu(z, t) = −∂xiFε(z, t, s)
∂sFε(z, t, s)

=
2ryi

s
√
s2 − r2

(
ψ(r/s)− ψ(rε/s)

) , (2.11)

∂tu(z, t) = −∂tFε(z, t, s)
∂sFε(z, t, s)

=
1

s
(
ψ(r/s)− ψ(rε/s)

) , (2.12)

and thus

∂xiu = 2xi
r√

s2 − r2
∂tu and ∂yiu = 2yi

r√
s2 − r2

∂tu. (2.13)

It is then immediate to compute

Xiu = ∂xiu+ 2yi∂tu =
2rxi + 2yi

√
s2 − r2

s
√
s2 − r2

(
ψ(r/s)− ψ(rε/s)

) ,
Yiu = ∂yiu− 2xi∂tu =

2ryi − 2xi
√
s2 − r2

s
√
s2 − r2

(
ψ(r/s)− ψ(rε/s)

) ,
and the squared length of the horizontal gradient of u in Dε is

|∇Hu|2 =
n∑
i=1

(Xiu)2 + (Yiu)2

=
n∑
i=1

4r2(x2
i + y2

i ) + 4(x2
i + y2

i )(s
2 − r2)

s2(s2 − r2)
(
ψ(r/s)− ψ(rε/s)

)2

=
4r2

(s2 − r2)
(
ψ(r/s)− ψ(rε/s)

)2 .

Note that |∇Hu(z, t)| = 0 if and only if z = 0. So for any (z, t) ∈ Dε with z 6= 0 we

have

ai(z, t) = − Xiu

|∇Hu|
=
rxi + yi

√
s2 − r2

rs
=
xi
s

+ yi

√
s2 − r2

rs
(2.14)

and

bi(z, t) = − Yiu

|∇Hu|
=
ryi − xi

√
s2 − r2

rs
=
yi
s
− xi
√
s2 − r2

rs
. (2.15)

If (z, t) ∈ Eisop tends to (z̄, t̄) ∈ ∂Eisop with t̄ > 0 and z̄ 6= 0, then s = u(z, t)

converges to 1, and from (2.14) and (2.15) we see that

lim
(z,t)→(z̄,t̄)

∇Hu(z, t)

|∇Hu(z, t)|
= −

(
x̄+ ȳ

√
1− |z̄|2
|z̄|

, ȳ − x̄
√

1− |z̄|2
|z̄|

)
=
∇Hu(z̄, t̄)

|∇Hu(z̄, t̄)|
,
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where the right hand side is computed using the definition (2.5) of u. This ends the

proof of claim i).

Claim ii) is clear. We prove claim iii). The auxiliary function w(r, s) =
√
s2 − r2/rs

satisfies

∂xiw =
xi
r
∂rw + ∂xiu ∂sw, ∂yiw =

yi
r
∂rw + ∂yiu ∂sw, ∂sw =

r

s2
√
s2 − r2

. (2.16)

By (2.14), (2.15), (2.13), and (2.16) we obtain

Xiai + Yibi = ∂xiai + 2yi∂tai + ∂yibi − 2xi∂tbi

=
1

s
− xi
s2
∂xiu+ yi

(xi
r
∂rw + ∂xiu ∂sw

)
+ 2yi

(
− xi
s2
∂tu+ yi∂sw ∂tu

)
+

1

s
− yi
s2
∂yiu− xi

(yi
r
∂rw + ∂yiu ∂sw

)
− 2xi

(
− yi
s2
∂tu− xi∂sw ∂tu

)
=

2

s
− xi∂xiu+ yi∂yiu

s2
+ 2(x2

i + y2
i )∂sw ∂tu

=
2

s
− xi∂xiu+ yi∂yiu

s2
+

2r(x2
i + y2

i )∂tu

s2
√
s2 − r2

=
2

s
.

Summing over i = 1, . . . , n and dividing by 2n, we obtain (2.8).

We prove claim iv). We fix a point z with |z| < 1 − ε and for 0 ≤ t < ϕ(|z|) − tε
we define the function

fz(t) = u(z, ϕ(|z|)− t) = s =
1

HΣs

, (2.17)

where s ≥ 1 is uniquely determined by (z, ϕ(|z|)− t) ∈ Σs. The function t 7→ fz(t) is

increasing and fz(0) = 1

By (2.12), the function fz solves the differential equation

f ′z(t) = −∂tu(z, ϕ(|z|)− t) =
1

fz(t)
(
ψ(rε/fz(t))− ψ(r/fz(t))

)
for all 0 < t < ϕ(|z|) − tε, and since, by (2.4), ψ is strictly increasing, fz solves the

differential inequality

f ′z(t) ≥
1

fz(t)
(
ψ(rε/fz(t))− π

) .
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On the other hand, for any s > 1 we have

s
(
ψ(rε/s)− π

)
= s

∫ rε/s

0

ψ′(r) dr

= s

∫ rε/s

0

2r2

(1− r2)3/2
dr

≤ rε

∫ rε/s

0

2r

(1− r2)3/2
dr

= 2rε

(
(1− (rε/s)

2)−1/2 − 1
)

≤ 2√
s− rε

.

(2.18)

In the case ε = 0 we have rε = 1 and inequality (2.18) reads

s
(
ψ(1/s)− π

)
≤ 2√

s− 1
.

Hence, the function fz satisfies the differential inequality

f ′z(t) ≥
1

2

√
fz(t)− 1, t > 0.

An integration with fz(0) = 1 gives fz(t) ≥ 1 + t2/16, and thus by the relation (2.17)

and by the bound t < π/2 we find

1−HΣs(z, ϕ(|z|)− t) = 1− 1

fz(t)
≥ t2

16 + t2
≥ 1

20
t2.

This is claim (1.8).

When 0 < ε < 1, inequality (2.18) implies

s
(
ψ(rε/s)− π

)
≤ 2√

ε
,

and thus f ′z(t) ≥
√
ε/2, that gives fz(t) ≥ 1 + t

√
ε/2. In this case, we find

1−HΣs(z, ϕ(|z|)− t) = 1− 1

fz(t)
≥ 2
√
εt

4 + π
≥
√
ε

4
t.

This is claim (1.9). This finishes the proof of Theorem 1.2.

3. Proof of Theorem 1.1

In this section, we prove the quantitative isoperimetric estimates (1.4) and (1.5).

Let u : Cε → R, 0 ≤ ε < 1, be the function given by Theorem 1.2 and let

Σs = {(z, t) ∈ Cε : u(z, t) = s} be the leaves of the foliation, s ∈ R. On Cε \{|z| = 0}
we define the vector field X : Cε \ {|z| = 0} → R2n by

X = − ∇Hu
|∇Hu|

.

Both u and X depend on ε. In particular, X satisfies the following properties:
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i) |X| = 1;

ii) for (z, t) ∈ ∂Eisop ∩ Cε we have X(z, t) = −νEisop
(z, t), the horizontal unit

normal to ∂Eisop.

iii) For any point (z, t) ∈ Σs, s ∈ R, we have,

1

2n
divHX(z, t) = HΣs(z, t) ≤ HΣ0 = 1. (3.1)

We start the proof. Let F ⊂ Hn be a set with finite H-perimeter such that

L 2n+1(F ) = L 2n+1(Eisop) and F∆Eisop ⊂⊂ Cε. By Theorem 2.5 in [12], we can

without loss of generality assume that ∂F is of class C∞. For δ > 0, let Eδ
isop =

{(z, t) ∈ Eisop : |z| > δ}. By (3.1) and by the Gauss-Green formula (1.1), we have

L 2n+1(Eδ
isop \ F ) =

∫
Eδisop\F

1 dzdt ≥
∫
Eδisop\F

divHX

2n
dzdt

=
1

2n

{∫
∂F∩Eδisop

〈X, νF 〉dµF −
∫

(∂Eδisop)\F
〈X, νEδisop〉dµEδisop

}
.

Observe that µEδisop = µEisop
{|z| > δ} + µ{|z|>δ} Eisop and µ{|z|>δ}(Eisop) ≤ Cδ2n−1.

Letting δ → 0+ and using the Cauchy-Schwarz inequality, we obtain

L 2n+1(Eisop \ F ) ≥ 1

2n

{∫
∂F∩Eisop

〈X, νF 〉dµF −
∫

(∂Eisop)\F
〈X, νEisop

〉dµEisop

}

≥ 1

2n

{
µEisop

(Cε \ F )− µF (Eisop)
}

=
1

2n
{PH(Eisop, Cε \ F )− PH(F,Eisop)}.

(3.2)

By a similar computation we also have

L 2n+1(F \ Eisop) =

∫
F\Eisop

1 dzdt =

∫
F\Eisop

divHX

2n
dzdt (3.3)

=
1

2n

{∫
∂Eisop∩F

〈X, νEisop
〉dµEisop

−
∫

(∂F )\Eisop

〈X, νF 〉dµF

}

≤ 1

2n

{
µF (Cε \ Eisop)− µEisop

(F )
}

=
1

2n
{PH(F,Cε \ Eisop)− PH(Eisop, F )}. (3.4)

On the other hand,∫
Eisop\F

divHX

2n
dzdt =

∫
Eisop\F

(
1 +

(divHX

2n
− 1
))

dzdt

= L 2n+1(E \ F )−
∫
Eisop\F

(
1− divHX

2n

)
dzdt

= L 2n+1(Eisop \ F )− G (Eisop \ F ),
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where

G (Eisop \ F ) =

∫
Eisop\F

(
1− divHX

2n

)
dzdt.

From (3.2) and (3.3), we obtain

1

2n
{PH(Eisop, Cε \ F )− PH(F,Eisop)} ≤

∫
Eisop\F

divHX

2n
dzdt

= L 2n+1(Eisop \ F )− G (Eisop \ F )

= L 2n+1(F \ Eisop)− G (Eisop \ F )

≤ 1

2n
{PH(F,Cε \ Eisop)− PH(Eisop, F )} − G (Eisop \ F ),

that is equivalent to

PH(F )− PH(Eisop) ≥ 2nG (Eisop \ F ). (3.5)

For any z with |z| < 1− ε, we define the vertical sections Ez
isop = {t ∈ R : (z, t) ∈

Eisop} and F z = {t ∈ R : (z, t) ∈ F}. By Fubini-Tonelli theorem, we have

G (Eisop \ F ) =

∫
Eisop\F

(
1− divHX

2n

)
dzdt

=

∫
{|z|<1}

∫
Ezisop\F z

(
1− divHX(z, t)

2n

)
dt dz.

The function t 7→ divHX(z, t) is increasing, and thus letting m(z) = L 1(Ez
isop \ F z),

by monotonicity we obtain

G (Eisop \ F ) ≥
∫
{|z|<1}

∫ ϕ(|z|)

ϕ(|z|)−m(z)

(
1− divHX(z, t)

2n

)
dt dz

=

∫
{|z|<1}

∫ m(z)

0

(
1− 1

fz(t)

)
dt dz,

where fz(t) = u(z, ϕ(|z|)− t) is the function introduced in (2.17).

By (1.8), when ε = 0 the function fz satisfies the estimate 1− 1/fz(t) ≥ t2/20, and

by Hölder inequality we find

G (Eisop \ F ) ≥ 1

20

∫
{|z|<1}

∫ m(z)

0

t2dt dz

=
1

60

∫
{|z|<1}

m(z)3 dz

≥ 1

60ω2
2n

(∫
{|z|<1}

m(z) dz
)3

=
1

480ω2
2n

L 2n+1(Eisop∆F )3.

(3.6)

From (3.6) and (3.5) we obtain (1.4).
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By (1.9), when 0 < ε < 1 the function fz satisfies the estimate 1−1/fz(t) ≥
√
εt/4

and we find

G (Eisop \ F ) ≥
√
ε

4

∫
{|z|<1}

∫ m(z)

0

t dt dz

=

√
ε

8

∫
{|z|<1}

m(z)2 dz

≥
√
ε

8ω2n

(∫
{|z|<1}

m(z) dz
)2

=

√
ε

32ω2n

L 2n+1(Eisop∆F )2.

(3.7)

From (3.7) and (3.5) we obtain claim (1.5).

References

[1] E. Acerbi, N. Fusco, M. Morini, Minimality via second variation for a nonlocal isoperimetric

problem. Comm. Math. Phys., (2013) 322(2), 515–557.

[2] M. Barchiesi, A. Brancolini, V. Julin, Sharp dimension free quantitative estimates for

the Gaussian isoperimetric inequality. Preprint (2014).
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