From Naive to Scientific Understanding of Motion and its Causes

Alessandro Ascari¹, Federico Corni¹, Gabriele Ceroni², Hans U. Fuchs³
¹ University of Modena and Reggio Emilia, Italy
² University of Bologna, Italy
³ Zurich University of Applied Sciences at Winterthur, Switzerland

Abstract
The difference in the descriptions of motion phenomena made by pupils in the first grades of secondary school and physicists is quite evident. Conceptual metaphors hidden in language suggest that there is continuity between the conceptual structure involved in the description and the interpretation of motion of experts and laypersons. In this paper the presence of such a continuity is shown through a metaphor analysis of linguistic expressions from both kind of people.

Keywords
physics education; language; conceptual metaphor; continuity

1. Introduction
We know from literature (DiSessa, 1993; McCloskey, Caramazza, & Green, 1980) that students face difficulties in studying motion and its causes. We argue that if we want to address this problems, we have to investigate the conceptualization of motion.

We are going to investigate the conceptual structure involved in the description of motion of laypersons, i.e. the students, and of experts, i.e. teachers, scientists, physicists. We argue that some kind of continuity should be present between these two kinds of conceptualization and that physics education should be built on it.

In the first part of this article we are going to illustrate how it is possible to understand how the concept of motion is constructed in human mind. A theory that relates mind and language is presented starting from the works of Lakoff, Johnson, Turner and Fauconnier.

In the second part we will show the analyses carried on two different sources of language, the first representing the scientific conceptualization, the second the lay one.

In the last part the evidences and the results of the analyses are presented and discussed.

2. A theory of mind
In cognitive linguistic, conceptual metaphor is defined as understanding one conceptual domain (target domain) in terms of another conceptual domain (source domain). Lakoff, Johnson and Turner underline the deep and strong connection between language and mind. According to these authors, the nature of the conceptual structure that we use to think, speak and act is figurative. As a consequence of this, conceptual metaphors play an important role in structuring knowledge. They are systematic in that there is a fixed correspondence between the structure of the domain to be understood (e.g., death) and the structure of the domain in terms of which we are understanding it (e.g., departure). We usually understand them in terms of common experiences. They are largely unconscious, though attention may be drawn to them. Their operation in cognition is almost automatic. And they are widely conventionalized in language, that is, there are a great number of words and idiomatic expressions in our language whose meanings depend upon those conceptual metaphors (Lakoff & Turner, 1989).

Metaphor is no longer seen as a mere linguistic and aesthetic feature: the cognitive role of metaphor emerges in the process of structuring and acquiring new knowledge. In synthesis, a concept is constituted by the metaphor (Lakoff & Johnson, 1980).

Moreover, according to Fauconnier and Turner, in human mind there are entire network of projections between conceptual spaces leading to what have been known as conceptual integration networks (Fauconnier & Turner, 1998, 2002; Fauconnier, 1994, 1997).

As a consequence of this, we can understand the way we think, our conceptualization of motion, looking at the way we speak, in particular at the conceptual metaphors implied in the language we use to talk and to describe motion.
We have to make a distinction between metaphor and metaphoric linguistic expressions: the latter is what we hear or read when somebody uses a metaphor, the former is a figure of the mind, we might say the actual concept. We will show an example in order to evidence the difference.

Heat flows through the walls of the building

is the metaphorical expression of the metaphor:

Heat IS A FLUID SUBSTANCE

We will use this convention in order to differentiate the conceptual metaphors from the metaphorical expressions.

3. Language analyses

In order to compare the two forms of conceptualization of motion we selected two sources of sentences about motion: the first volume of “The Feynman lectures on Physics” (Feynman, 1965) as a source of scientific language and recordings of college students enrolled in physics courses collected in the paper “Common sense concepts about motion” by Halloun and Hestenes as a source of lay language (Halloun & Hestenes, 1985).

We looked for the sentences containing the word “force” and we tried to see the underlying conceptual metaphor. We constructed the categories of conceptual metaphors in a recursive way in order to have the more general and encompassing ones. We developed the conceptual metaphors categorization starting from the Force Dynamic Gestalt theory (Fuchs, 2007), image schemas (Johnson, 1990) and event structures (Lakoff & Johnson, 1999).

Here we present the list of metaphors involved in the description of the word “force”.

5. FORCE IS A SUBSTANCE-LIKE QUANTITY
 1. FORCE IS A PRODUCT
 2. FORCE IS A QUANTITY
 3. FORCE IS A POSSESSION

6. FORCE IS AN AGENT
 1. FORCE IS A COMPULSION
 2. FORCE IS A RESISTANCE

7. FORCE IS A MEDIUM
8. FORCE IS A PATH
 1. FORCE IS A LINE
 2. FORCE IS A CONNECTION

9. FORCE IS A SCALE
10. FORCE IS BALANCE

The complete list of categorized sentences is presented in the following tables (1-6). The first observation is that sentences coming from both expert and lay language are metaphorical expressions contained in all these categories.

Besides that, we also found some differences in the metaphorical expressions coming from the two sources.

<table>
<thead>
<tr>
<th>Conceptual metaphor sub-category</th>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCE IS A PRODUCT</td>
<td>This potentiality for producing a force is called an electric field.</td>
<td>The speed creates a force.</td>
</tr>
<tr>
<td></td>
<td>A source of the force.</td>
<td>The force behind it... coming from the throw.</td>
</tr>
</tbody>
</table>
FORCE IS A QUANTITY

How much force would there be?
More or less force is required.
There is very little force at any appreciable distance.

As it goes down, the force of gravity increases...and that's why the speed increases until [gravity] equals this amount of force.
It provides the ball with more and more force as it goes down.

FORCE IS A POSSESSION

A spinning top has the same weight as a still one.
The weight of the atom.
These forces are within the nuclei of atoms.

If the mass of block X is greater than the force [of pull] of Y, block X stays in place...it could not be moved.
[The moving body] has still got some force inside.

FORCE IS A PRODUCT

Conceptual metaphor (Table 1) tells us that force could be “produced”. The possible “producers” in Feynman expressions are the basic interactions between objects, i.e. electrical and gravitational, while in students expressions the “producers” are speed and aspects of motion.

In FORCE IS A QUANTITY metaphorical expressions (Table 1), Feynman only speaks about the intensity of force, while in students' language we find expressions that are related to the concept of momentum or energy of a moving object.

Finally, the metaphorical expressions of FORCE IS A POSSESSION (Table 1) in Feynman are only about weight, while in laypersons we have expressions involving moving objects, devices that produce movement (i.e. a cannon), and more abstract concepts as power, inertia and velocity.

Table 2. FORCE IS AN AGENT expressions

<table>
<thead>
<tr>
<th>Conceptual metaphor sub-category</th>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(unsorted)</td>
<td>The first charge will feel a certain reaction force.</td>
<td>There is not a force [acting on] on the ball.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravity means the same force pulls on different objects.</td>
</tr>
<tr>
<td>FORCE IS A COMPULSION</td>
<td>Because of the action of a force, the velocity changes.</td>
<td>A force only starts the motion.</td>
</tr>
<tr>
<td></td>
<td>The force which controls, let us say, Jupiter in going around the sun.</td>
<td>A force is just changing the direction of motion.</td>
</tr>
<tr>
<td>FORCE IS A RESISTANCE</td>
<td>It is a question of electrical forces against which we are working.</td>
<td>A force has nothing to do with the speed, it only has to keep the ball moving.</td>
</tr>
<tr>
<td></td>
<td>No tangential force is needed to keep a planet in its orbit.</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. FORCE IS MEDIUM expressions

<table>
<thead>
<tr>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>We shall have to hold the piston down by a certain force.</td>
<td>That maximum speed is always equal to the force you apply.</td>
</tr>
<tr>
<td>The gas exerts a jittery force.</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. FORCE IS A PATH expressions

<table>
<thead>
<tr>
<th>Conceptual metaphor sub-category</th>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
</table>
The force in the vertical direction due to gravity.

The force is directed along the line joining the planet to the sun.

The true nature of the forces between the atoms.

<table>
<thead>
<tr>
<th>FORCE IS A LINE</th>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The force goes out in the direction of the resultant of the forces.</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORCE IS A CONNECTION</th>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5. FORCE IS A SCALE expressions</td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>The force weakens as we go higher.</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>The more massive a thing is, the stronger the force required to produce a given acceleration.</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Force IS BALANCE expressions</th>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the force between them were not balanced.</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Talk only about excess forces.</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>All the internal forces will balance out.</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

Some metaphorical expressions found in Feynman are not present in students expressions, but we think this could be due to the set of data chosen for this purpose. We are almost sure that similar sentences could be found in students expressions if only we could have a larger collection.

The metaphorical sentences in lay language often involved the terms “speed” or “velocity”. In order to deepen our investigations we repeated the same analysis for the sentences containing these two words. The conceptual metaphors we found are listed below.

- **SPEED IS A SUBSTANCE**
 - SPEED IS A POSSESSION
 - SPEED IS A QUANTITY
- **SPEED IS A LOCATION**
 - SPEED IS A LEVEL
 - SPEED IS A SCALE
- **SPEED IS AN AGENT**
 - SPEED IS A FORCE
 - SPEED IS A MAKER

Table 7 collects the categorization of the metaphorical sentences found in both set of data.
Table 7. Speed and Velocity metaphors and metaphorical expressions

<table>
<thead>
<tr>
<th>Conceptual metaphor category</th>
<th>Conceptual metaphor sub-category</th>
<th>Feynman expressions</th>
<th>Students expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED IS A SUBSTANCE</td>
<td>POSSESSION</td>
<td>Motion of a body.</td>
<td>Its speed remains constant.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If she kept going with the same speed.</td>
<td>Their speed gets greater and greater.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The velocity of the falling ball.</td>
<td>Both should have the same speed.</td>
</tr>
<tr>
<td>SPEED IS A QUANTITY</td>
<td></td>
<td>[...] if we increase the speed of the atoms.</td>
<td>Its velocity keeps increasing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The speed is smaller.</td>
<td>The speed is smaller.</td>
</tr>
<tr>
<td>SPEED IS A LOCATION</td>
<td>LEVEL</td>
<td>At what speed is the radius increasing?</td>
<td>A new speed bigger than the one it had before.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>She is going at that speed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Some car can get from rest to 60 miles an hour.</td>
<td></td>
</tr>
<tr>
<td>SPEED IS A SCALE</td>
<td></td>
<td>It speeds up.</td>
<td>It speeds up for a short while.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The car was slowing down.</td>
<td>It slows down.</td>
</tr>
<tr>
<td>SPEED IS AN AGENT</td>
<td>FORCE</td>
<td>none</td>
<td>The force due to the air overcomes the initial velocity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The force of velocity.</td>
<td></td>
</tr>
<tr>
<td>SPEED IS A MAKER</td>
<td></td>
<td>none</td>
<td>The speed creates a force.</td>
</tr>
</tbody>
</table>

All the expressions belonging from the two sources fitted all these categories with only one exception. Metaphorical expressions belonging to SPEED IS AN AGENT can only be found in students language.

4. Results and conclusions

This metaphor analysis is a powerful and sensible tool that allows us to investigate the conceptual structure that both scientists and students use to understand and to explain phenomena. The first important result is that the metaphorical expressions coming from both lay and expert language share the majority of the metaphors. This allows us to claim that there is continuity between the two kind of language.

We also revealed a metaphorical and conceptual mismatch involving velocity and speed. In the analysis we discovered that SPEED IS AN AGENT is a conceptual metaphor only present in lay language (students). Therefore we could say that speed (and velocity) is perceived and conceptualized as an agent only by laypersons (students), while this is not true for scientists and experts (Feynman).

Another important result is that some aspects coming from the Force Dynamic Gestalt theory, such as quantity, quality, intensity (Fuchs, 2007) are present in the metaphorical expressions. Moreover they are not completely differentiated in lay language.

The presence of continuity tells us that it is possible to teach starting from the knowledge pupils have already developed during their previous experiences: we could use conceptual metaphor as a basis for developing a physics curriculum.

Physics teachers should be aware of the conceptual metaphors and how they relates and overlap in order to create comprehension (i.e. conceptual integration networks). In this sense we could say that an education based on conceptual metaphors could help students to be aware of them in order to understand and relate the aspects involved in the interpretation of motion and its causes.

In order to do so further analysis should be done in order to reveal the logical connections and the dependencies between concepts involved in the description of motion (momentum, energy). A refined analysis should be done taking different language sources, both oral and written.
References

Affiliation and address information
Alessandro Ascarì
Doctoral School in Humanities
Department of Communication and Economics
University of Modena and Reggio Emilia
viale Antonio Allegri, 9
42121 Reggio Emilia
Italy
e-mail: alessandro.ascari@unimore.it

Federico Corni
Department of Education and Humanities
University of Modena and Reggio Emilia
viale Antonio Allegri, 9
42121 Reggio Emilia
Italy
e-mail: federico.corni@unimore.it

Gabriele Ceroni
CIS - International Centre for the History of Universities and Science
Department of Philosophy and Communication
University of Bologna
via Zamboni, 38
40126 Bologna
Italy
e-mail: gabriele.ceroni@studio.unibo.it

Hans U. Fuchs
IAMP - Institute of Applied Mathematics and Physics
School of Engineering
Zurich University of Applied Sciences
8401 Winterthur
Switzerland
email: hans.fuchs@zhaw.ch
Teaching/Learning Physics: Integrating Research into Practice

PROCEEDINGS OF THE GIREP - MPTL 2014 INTERNATIONAL CONFERENCE

EDITORS
C. Fazio and R.M. Sperandeo Mineo
TEACHING/LEARNING PHYSICS: INTEGRATING RESEARCH INTO PRACTICE

EDITORS

Claudio Fazio and Rosa Maria Sperandeo Mineo
Teaching/Learning Physics: Integrating Research into Practice
Proceedings of the GIREP-MPTL 2014 International Conference held in Palermo, Italy, July 7 - 12, 2014

Organized by:
Groupe Internationale sur l’Enseignement de la Physique (GIREP)
Multimedia in Physics Teaching and Learning (MPTL)

With the support of:
International Union for Pure and Applied Physics (IUPAP)
European Physical Society - Physics Education Division

The papers included in this volume are a selection of the contribution presented at the Conference. Each paper was reviewed by at least two anonymous referees expert in the field of Physics Education and/or History, Philosophy of Science, Multimedia and ICTs in Physics Education.

© Copyright Università degli Studi di Palermo
First edition: 30th June 2015
Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo (Italy)
ISBN: 978-88-907460-7-9
Scientific Advisory Committee
Rosa Maria Sperandeo-Mineo, Università di Palermo, Italy
Luisa Cifarelli, Vice-President of EPS (European Physical Society) and President of SIF (Società Italiana di Fisica)
Costas P. Constantinou, University of Cyprus, Cyprus
Wolfgang Christian, Davidson College, USA
Leos Dvorak, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
Ton Ellermeijer, The Foundation Centre for Microcomputer Applications (CMA), Amsterdam, The Netherlands
Francisco Esquembre, Universidad de Murcia, Spain
Claudio Fazio, Università di Palermo, Italy
Raimund Girwidz, University of Ludwigsburg, Germany
Tomasz Greczyo, University of Wroclaw, Poland
Claudia Haagen-Schuetzenhoefer, Austrian Educational Competence Centre, University of Vienna, Austria
Robert Lambourne, The Open University, UK
Ian Lawrence, Institute of Physics, United Kingdom
Bruce Mason, University of Oklahoma, USA
Marisa Michelini, Università di Udine, Italy
Eduardo Montero, Escuela Superior Politécnica del Litoral, (Ecuador)
Cesar Eduardo Mora Ley, Instituto Politécnico Nacional, Mexico
Hideo Nitta, Tokyo Gakugei University, JAPAN
Wim Peeters, DKO vzw (work) and PONToN vzw (ceo), Belgium
Mauricio Pietrocola, School of Education, University of São Paulo, Brazil
Gorazd Planinsic, University of Ljubljana, Slovenia
Mehmet Fatih Taşar, Gazi Üniversitesi, Turkey
Dean Zollmann, Kansas State University, USA

Program Committee
Francisco Esquembre, President of MPTL;
Marisa Michelini, President of GIREP.
Rosa Maria Sperandeo Mineo, Chair of the Conference, Università di Palermo, Italy
Claudio Fazio, Chair of the Local Organizing Committee, Università di Palermo, Italy

Local Organizing Committee
Claudio Fazio, Università di Palermo, Italy
Rosa Maria Sperandeo-Mineo, Università di Palermo, Italy
Benedetto di Paola, Università di Palermo, Italy
Onofrio Rosario Battaglia, Università di Palermo, Italy
Nicola Pizzolato, Università di Palermo, Italy
Giovanni Tarantino, Miur, Italy
Antonia Giangalanti, Miur, Italy
Table of contents

Preface ... 1
Rosa Maria Sperandeo-Mineo and Claudio Fazio

1. General Talk Papers

CONSIDERING PHYSICS KNOWLEDGE AS A CULTURE. AN APPROACH TO PHYSICS 5
Igal Galili

CURRICULUM MATCHING INTERESTS AND NEEDS OF CONTEMPORARY LEARNERS 19
Olivia Levrini

HOW CAN THE LEARNING OF PHYSICS SUPPORT THE CONSTRUCTION OF STUDENTS' PERSONAL IDENTITIES?
Olivia Levrini

RESEARCH-BASED INTERACTIVE SIMULATIONS TO SUPPORT QUANTUM MECHANICS 29
Antje Kohnle

SUPPORTING TEACHERS USE AND ASSESSMENT OF INQUIRY BASED SCIENCE EDUCATION 41
Eilish Mcloughlin, Odilla Finlayson

POTENTIALLY MEANINGFUL TEACHING UNITS (PMTUS) IN PHYSICS EDUCATION 47
Marco Antonio Moreira

THINKING THE CONTENT FOR PHYSICS EDUCATION RESEARCH AND PRACTICE 61
Laurence Viennot

2. Physics Teaching/Learning at Primary Level and Teacher Education

TEACHING ABOUT ENERGY USING COOPERATIVE LEARNING: AN IMPLEMENTATION 83
Andantza Rico

EARLY CHILDHOOD SCIENCE EDUCATION IN AN INFORMAL LEARNING ENVIRONMENT 91
Enrica Giordano, Sabrina Rossi

USING VIDEOS AND VIDEO EDITING SOFTWARE WITH PRE-SERVICE TEACHERS 99
Maeve Liston

METHODS BASED ON NON-FORMAL-LEARNING AND EMOTION-BASED LEARNING 109
Silvia Merlino, Rosaria Evangelista, Carlo Mantovani

Abdeljalil Métioui, Louis Trudel

THE ROLE OF SCIENTIFIC MUSEUMS IN PHYSICS AND ASTRONOMY EDUCATION COURSES 129
Ornella Pantano, Sofia Talas, Valeria Zanini

THE EDUCATION OF PRE-SERVICE PRIMARY SCHOOL TEACHERS FOR TEACHING PHYSICS 137
Jerneja Pavlin, Mojca Čepič

3. Physics Teaching and Learning at Secondary Level

PROBABILITY AND AMOUNT OF DATA ... 149
Corrado E. Agnes

FROM NAÏVE TO SCIENTIFIC UNDERSTANDING OF MOTION AND ITS CAUSES 157
Alessandro Ascari, Federico Corni, Gabriele Ceroni, Hans U. Fuchs

HIGH SCHOOL STUDENTS FACE THE MAGNETIC VECTOR POTENTIAL: SOME RELAPSES 165
Sara R. Barbieri, Marco Giliberti

RESPONSIBLE RESEARCH AND INNOVATION IN SCIENCE EDUCATION: THE IRRESISTIBLE 175
Eugenio Bertozzi, Claudio Fazio, Michele Antonio Floriano, Olivia Levini, Roberta Maniaci, Barbara Pecori, Margherita Venturi, Jan Apotheker
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching/Learning Physics: Integrating Research into Practice</td>
<td>iii</td>
</tr>
<tr>
<td>Maria Rita Otero, Marcelo Arlego, Fabiana Prodanoff</td>
<td></td>
</tr>
<tr>
<td>TEACHERS’ VIEWS ABOUT THE IMPLEMENTATION OF AN INTEGRATED SCIENCE</td>
<td>367</td>
</tr>
<tr>
<td>CURRICULUM</td>
<td></td>
</tr>
<tr>
<td>Valeria Poggii, Italo Testa, Cristina Miceli</td>
<td></td>
</tr>
<tr>
<td>VACUUM: ITS MEANING AND ITS EFFECTS THROUGHOUT EXPERIMENTAL ACTIVITIES</td>
<td>373</td>
</tr>
<tr>
<td>Marta Rinaudo, Daniela Marocchi, Antonio Amoroso</td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF THE EARTH RADIUS BY MEASURING THE ANGULAR HEIGHT</td>
<td>379</td>
</tr>
<tr>
<td>OF THE SUN ABOVE HORIZON</td>
<td></td>
</tr>
<tr>
<td>Alexander Kaplinsky, Konstantin Rogozin, Alexey Sorokin, Darya Shakhvorostova, Alexander Wolf</td>
<td></td>
</tr>
<tr>
<td>IMPLEMENTATION OF PEER INSTRUCTION IN CZECH SCHOOLS</td>
<td>383</td>
</tr>
<tr>
<td>Jana Šestáková</td>
<td></td>
</tr>
<tr>
<td>HOW DOES EPISTEMOLOGICAL KNOWLEDGE ON MODELLING INFLUENCE STUDENTS’</td>
<td>387</td>
</tr>
<tr>
<td>ENGAGEMENT IN THE ISSUE OF CLIMATE CHANGE?</td>
<td></td>
</tr>
<tr>
<td>Giulia Tasquier</td>
<td></td>
</tr>
<tr>
<td>AN OPEN INQUIRY RESEARCH-BASED TEACHING-LEARNING SEQUENCE ABOUT THE CAUSE</td>
<td>399</td>
</tr>
<tr>
<td>OF SEASONS</td>
<td></td>
</tr>
<tr>
<td>Italo Testa, Gianni Busarello, Silvio Lecca, Emanuella Puddu, Arturo Colantonio</td>
<td></td>
</tr>
<tr>
<td>IMPACT OF A DISCUSSION METHOD ON HIGH SCHOOL STUDENTS’ UNDERSTANDING</td>
<td>407</td>
</tr>
<tr>
<td>OF KINEMATICAL CONCEPTS</td>
<td></td>
</tr>
<tr>
<td>Louis Trudel, Abdeljalil Métioui</td>
<td></td>
</tr>
<tr>
<td>4. Physics Teaching and Learning at University Level</td>
<td></td>
</tr>
<tr>
<td>THE BRACED STRING, DISPERSION AND POLARIZATION</td>
<td>421</td>
</tr>
<tr>
<td>Sergej Faletić</td>
<td></td>
</tr>
<tr>
<td>HOW CLOSE CAN WE GET WAVES TO WAVEFUNCTIONS, INCLUDING POTENTIAL?</td>
<td>429</td>
</tr>
<tr>
<td>Sergej Faletić</td>
<td></td>
</tr>
<tr>
<td>HOW CAN FUTURE EUROPEAN PHYSICS STUDIES LEAD TO INNOVATIVE COMPETENCES</td>
<td>437</td>
</tr>
<tr>
<td>AND STIMULATE ENTREPRENEURIAL BEHAVIOUR?</td>
<td></td>
</tr>
<tr>
<td>Hendrik Ferdinand</td>
<td></td>
</tr>
<tr>
<td>INVESTIGATING PHYSICS TEACHING AND LEARNING AT UNIVERSITY</td>
<td>443</td>
</tr>
<tr>
<td>Jenaro Guisasola, Micke De Cock, Stephen Kanim, Lana Ivanjek, Kristina Zuza, Laurens Bollen, Paul Van Kampen</td>
<td></td>
</tr>
<tr>
<td>VIDEO ANALYSIS BASED TASKS IN PHYSICS</td>
<td>453</td>
</tr>
<tr>
<td>Peter Hockicko, Katarina Paźická</td>
<td></td>
</tr>
<tr>
<td>IMPROVING STUDENTS’ UNDERSTANDING BY USING ONGOING EDUCATION RESEARCH</td>
<td>461</td>
</tr>
<tr>
<td>TO REFINE ACTIVE LEARNING ACTIVITIES IN A FIRST-YEAR ELECTRONICS COURSE</td>
<td></td>
</tr>
<tr>
<td>Alexander P. Mazzolini, Scott A. Daniel</td>
<td></td>
</tr>
<tr>
<td>TEACHING ELECTROSTATICS THROUGH PROJECT-BASED LEARNING</td>
<td>469</td>
</tr>
<tr>
<td>Carlos Collazos, Cesar Mora, Ricardo Otero, Jaime Isaza</td>
<td></td>
</tr>
<tr>
<td>MULTIPLE Bounces OF DIFFERENT MATERIAL BALLS IN FREE FALL</td>
<td>477</td>
</tr>
<tr>
<td>Armando C. Perez Guerrero Noyola, Fernando Yañez Barona</td>
<td></td>
</tr>
<tr>
<td>AN INQUIRY-BASED APPROACH TO THE FRANCK-HERTZ EXPERIMENT</td>
<td>485</td>
</tr>
<tr>
<td>Dominique Persano Adorno, Nicola Pizzolato</td>
<td></td>
</tr>
<tr>
<td>PHYSICAL MODELLING: A DIFFERENT APPROACH TO TEACH NON-PHYSICS MAJORS</td>
<td>493</td>
</tr>
<tr>
<td>Estela M. Puente Leos, Marcos Ley Koo</td>
<td></td>
</tr>
<tr>
<td>THE NATURE OF STUDENTS’ REASONING PROCESSES IN TASKS INVOLVING THE CONCEPT</td>
<td>499</td>
</tr>
<tr>
<td>OF ANGULAR ACCELERATION</td>
<td></td>
</tr>
<tr>
<td>Graham Rankin</td>
<td></td>
</tr>
<tr>
<td>ACTIVE LEARNING IN OPTICS: A WORKSHOP</td>
<td>503</td>
</tr>
<tr>
<td>David R. Sokoloff</td>
<td></td>
</tr>
<tr>
<td>EVALUATION FOR UNDERGRADUATE PROGRAMS: THE CASE OF THE BS APPLIED PHYSICS</td>
<td>515</td>
</tr>
<tr>
<td>IN THE UNIVERSITY OF SAN CARLOS</td>
<td></td>
</tr>
<tr>
<td>Cherile Obate- Yap, Enriqueta D. Reston</td>
<td></td>
</tr>
<tr>
<td>INVESTIGATING STUDENT IDEAS ON THE CONNECTION BETWEEN FORMAL STRUCTURES</td>
<td>523</td>
</tr>
<tr>
<td>AND CONCEPTUAL ASPECTS IN QUANTUM MECHANICS</td>
<td></td>
</tr>
<tr>
<td>Giacomo Zuccarini, Marisa Michelini</td>
<td></td>
</tr>
<tr>
<td>5. ICT and Multi-Media in Physics Education</td>
<td></td>
</tr>
<tr>
<td>OPERATING SYSTEM INDEPENDENT PHYSICS SIMULATIONS</td>
<td>533</td>
</tr>
<tr>
<td>Osvaldo Aquines, Hector Gonzalez, Pablo Perez</td>
<td></td>
</tr>
</tbody>
</table>
INTERACTIVE WHITEBOARD (IWB) AND CLASSROOM RESPONSE SYSTEM (CRS): 539
HOW CAN TEACHERS USE THESE RESOURCES?
Assunta Bonanno, Giacomo Bozzo, Federica Napoli, Peppino Sapio

THE USES OF INTERACTIVE WHITEBOARD IN A SCIENCE LABORATORY 551
Giacomo Bozzo, Carme Grimail-Alvaro, Victor L•pez

PREPARING PRE-SERVICE TEACHERS TO INTEGRATE TECHNOLOGY INTO INQUIRY-BASED 559
SCIENCE EDUCATION: THREE CASE STUDIES IN THE NETHERLANDS
Trinh-Ba Tran, Ed van den Berg, Tom Ellermeijer, Jos Beishuizen

LEARNING ASSESSMENT ABOUT THE MOON’S SYNCHRONOUS ROTATION MEDIATED 575
COMPUTATIONAL RESOURCE
Adriano L. Fagundes, Tatiana da Silva,Marta Feijó Barroso

USING TECHNOLOGY TO PROVIDE AN INTERACTIVE LEARNING EXPERIENCE 583
Kyle Forinash, Raymond Wisman

USE YOUR HEAD - IN FOOTBALL AND IN PHYSICS EDUCATION .. 591
Angela Fösel, Leopold Mathelitsch, Sigrid Thaller, Jens Wagner

FORMATION OF KEY COMPETENCIES THROUGH INFORMATION AND COMMUNICATION 601
TECHNOLOGY
Tomasz Grechylo, Ewa Dębowska

COMPARING METHODS OF MEASUREMENT OF FRICTION WITH SIMPLE EQUIPMENT 609
AND WITH DATA-LOGGERS
Kamila Hrabovská, Libor Koní•ek, Libuše Švecová, Karla Bar•ová

IMPLEMENTATION OF AN IN-SERVICE COURSE ON INTEGRATION OF ICT INTO INQUIRY 617
BASED SCIENCE EDUCATION: A CASE STUDY IN SLOVAKIA
Zuzana Je•ková, Trinh-Ba Tran, Marián Kireš and Ton Ellermeijer

iMOBILE PHYSICS: A RESEARCH AND DEVELOPMENT PROJECT FOR TEACHING AND 629
LEARNING WITH SMARTPHONES AND TABLET PCS AS MOBILE EXPERIMENTAL TOOLS
Pascal Klein, Jochen Kuhn, Andreas Müller

WHAT IS LIGHT? FROM OPTICS TO QUANTUM PHYSICS THROUGH THE SUM OVER 639
PATHS APPROACH
Massimiliano Malgieri, Pasquale Onorato, Anna De Ambrosis

REPORT AND RECOMMENDATIONS ON MULTIMEDIA MATERIALS FOR TEACHING 647
AND LEARNING QUANTUM PHYSICS
Bruce Mason, Ewa Dębowska, Tanwa Arpornthip, Raimund Girwidz, Tomasz Grechylo, Antje Kohnle, Trevor Melder, Marisa Michelini, Lorenzo Santi, Jorge Silva

CHAOTIC BEHAVIOUR OF ZEEMAN MACHINES AT INTRODUCTORY COURSE OF MECHANICS 657
Péter Nagy, Péter Tasnádi

ASSESSMENT OF STUDENT CONSTRUCTED MODELS ON TOPICS RELEVANT TO HEAT 667
AND TEMPERATURE SYSTEMS
Christiania Th. Nicolaiou, Bert Bredeweg, Constantinou P., Constantinou, Jochem Liem

ROLLING MOTION: EXPERIMENTS AND SIMULATIONS FOCUSING ON SLIDING FRICTION 675
FORCES
Pasquale Onorato, Massimiliano Malgieri, Anna De Ambrosis

TEACHING OPTICS WITH A VIRTUAL MACH-ZEHNDER INTERFEROMETER: AN ANALYSIS 683
OF A COLLABORATIVE LEARNING ACTIVITY
Alexsandro Pereira de Pereira, Fernanda Ostermann

USING LEARNING MANAGEMENT SYSTEM TO INTEGRATE PHYSICS COURSES WITH 691
ONLINE ACTIVITIES: A CASE STUDY
Edlira Prenjasi, Shpresa Ahmetaga

DESIGN, TRAINING EXERCISES AND FEEDBACK IN AN ONLINE LEARNING ENVIRONMENT 697
ABOUT ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS
Stefan Richtberg, Raimund Girwidz

REMOTE AND VIRTUAL LABORATORIES AS PART OF ONLINE COURSES 705
Konstantin Rogozin, František Lustig, Sergey Kuznetsov, Denis Yanyshhev, Pavel Brom, Maxim Kiryasov, Alexey Ovcharov

ON-LINE COURSEWORK FOR STUDENTS OF OPTICS ... 711
Konstantin Rogozin, Sergey Kuznetsov, Irina Rogozina, Denis Yanyshhev, Vesselina Dimitrova, Nadezhda Isaeva, Ekaterina Sorokina

DESIGNING AN EDUCATIONAL METHODOLOGY TO TEACHING THERMAL EQUILIBRIUM 719
USING ICT
Rubén Sánchez Sánchez
6. In-service and Pre-service Teacher Education

PROJECT BASED LEARNING FOR TEACHER EDUCATION IN BRAZIL’S STATE WITH THE 753
LOWEST LITERACY RATE
Marcos H. Abreu de Oliveira, Mara F. Parisoto, Robert Fischer

THE EUROPEAN TEMI PROJECT INVOLVES ITALIAN TEACHERS: FIRST OUTCOMES 759
Sara R. Barbieri, Marina Carpineti, Marco Giliberti

INTERACTIVE METHODOLOGIES IN PHYSICS TEACHER TRAINING OF IN A CONTEXT 767
OF CURRICULUM INNOVATION: THE PEER INSTRUCTION METHOD
Marcelo A. Barros and Marina V. Barros

HOW EXPERIMENTAL RESOURCES IN PHYSICS TEACHING FACILITATE CONCEPTUAL 775
LEARNING?
Carlos Buitrago, Maria M. Andrés

INERTIAL AND NON-INERTIAL FRAMES: WITH PIECES OF PAPER AND IN AN ACTIVE WAY 783
Leos Dvorak

“ELIXIR FOR SCHOOLS” – A NEW INITIATIVE SUPPORTING CZECH PHYSICS TEACHERS 791
Irena Dvorakova, Leos Dvorak

EFFECTS OF GENDER AND TEACHING PRACTICE IN AN OUT-OF-SCHOOL LEARNING LAB 795
ON ACADEMIC SELF-CONCEPT OF PRE-SERVICE PHYSICS TEACHERS
Markus Elsholz, Susan Fried, Thomas Trefzger

REVISITING DERIVATIVES IN PHYSICS WITH PRE-SERVICE PHYSICS TEACHERS IN K-12 803
CLASSES
Olga Gioka

IN-SERVICE AND PRE-SERVICE TEACHER EDUCATION IN IBSE – THE ESTABLISH APPROACH 811
Zuzana Ješková, Marián Kireš, Eilish McLoughlin, Odilla Finlayson, Christina Ottander, Margareta Ekborg

THE INFLUENCE OF MATHEMATICAL REPRESENTATIONS ON STUDENTS’ 819
CONCEPTUALIZATIONS OF THE ELECTROSTATIC FIELD
Ricardo Karam, Terhi Mäntylä

UNDERSTANDING AND EXPLAINING EQUATIONS FOR PHYSICS TEACHING 827
Ricardo Karam, Olaf Krey

INVESTIGATION OF A REFLECTIVE PEDAGOGY TO ENCOURAGE PRE-SERVICE PHYSICS 835
TEACHERS TO EXPLORE ARGUMENTATION AS AN AID TO CONCEPTUAL UNDERSTANDING
Greg Lancaster, Rebecca Cooper

TOWARDS A PCK OF PHYSICS AND MATHEMATICS INTERPLAY 843
Yaron Lehavi, Esther Bagno, Bat-Sheva Eylon, Roni Mualem, Gesche Pospiech, Ulrike Böhm, Olaf Krey, Ricardo Karam

RESEARCH BASED ACTIVITIES IN TEACHER PROFESSIONAL DEVELOPMENT ON OPTICS 853
Marisa Michelini, Alberto Stefanel

EXPLORING SLIDING FRICTION: AN INQUIRY-BASED EXPERIENCE FOR PRE-SERVICE 863
SCIENCE TEACHERS
Vera Montalbano

WAVE-PARTICLE COMPLEMENTARITY: TEACHING QUANTUM PHYSICS WITH A VIRTUAL 871
MACH-ZEHNDER INTERFEROMETER
Jader da Silva Neto, Cláudio José H. Cavalcanti, Fernanda Ostermann

THE PROFILES APPROACH TO TEACHING AND LEARNING PHYSICS IN SLOVENIA 879
Jernej Pavlin, Iztok Devetak

THE ROLE OF MATHEMATICS FOR PHYSICS TEACHING AND UNDERSTANDING 889
Gesche Pospiech, BatSheva Eylon, Esther Bagno, Yaron Lehavi, Marie-Annette Geyer

SCIENCE TEACHERS’ TRANSFORMATIONS WHEN IMPLEMENTING INQUIRY-BASED 897
TEACHING-LEARNING SEQUENCES
7. Physics Teaching and Learning in Informal Settings

DEVELOPMENT OF STUDENTS’ INTEREST IN PARTICLE PHYSICS AS EFFECT OF
PARTICIPATING IN A MASTERCLASS

Kerstin Gedigk, Gesche Pospiech

"GOOD VIBRATIONS" - A WORKSHOP ON OSCILLATIONS AND NORMAL MODES

Sara R. Barbieri, Marina Carpineti, Marco Giliberti, Enrico Rigon, Marco Stellato, Marina Tamborini

CHAOS THEORY AND ITS MANIFESTATIONS: AN INFORMAL EDUCATIONAL ACTIVITY
TO EXPLAIN CHAOS TO STUDENTS

Valeria Greco, Salvatore Spagnolo

MULTIMEDIA SOFTWARE “ARCHIMEDES AND HIS WORK”: A DEEPENING PATH IN
THE ARKIMEDEION MUSEUM OF SIRACUSA

Silvia Merlino, Marco Bianucci, Carlo Mantovani, Roberto Fieschi

PHYSICS COMPETITIONS FOR LEARNERS OF PRIMARY SCHOOLS IN SLOVENIA

Barbara Rovšek, Robert Repnik

A SINGING WINE GLASS AS AN INSTRUMENT FOR TEACHING ACOUSTICS

José A. Zárate Colin, Marisol Rodríguez Arcos, Karina Ramos Musalem, Estela M. Puente Leos, Marcos Ley Koo

INFORMAL TEACHING OF PHYSICS AT A HUNGARIAN SCIENCE CENTER

Péter Mészáros

8. History and Philosophy of Science in Physics Education

RECASTING PARTICLE PHYSICS BY ENTANGLING PHYSICS, HISTORY AND PHILOSOPHY

Eugenio Bertozzi, Olivia Levrini

THE DISCOVERY OF X-RAYS DIFFRACTION: FROM CRYSTALS TO DNA. A CASE-STUDY TO
PROMOTE UNDERSTANDING OF THE NATURE OF SCIENCE AND OF ITS INTERDISCIPLINARY
CHARACTER

Francesco Guerra, Matteo Leone, Nadia Robotti

A TEACHING PROPOSAL ON ELECTROSTATICS BASED ON THE HISTORY OF SCIENCE
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS

Andre F. Pinto Martins, Jim Ryder

9. Pedagogical Methods and Strategies

THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED
ELECTRIC CIRCUITS

Wheijen Chang

INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY

Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene

A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE:
A CASE STUDY ABOUT THE BOLTZMANN FACTOR

Onofrio R. Battaglia, Benedetto Di Paola

AN AMERICAN INSTRUCTOR IN AN UPPER-LEVEL ITALIAN PHYSICS CLASS

Gerald Feldman

TEACHER CHANGE IN IMPLEMENTING A RESEARCH DEVELOPED REPRESENTATION
CONSTRUCTION PEDAGOGY

Peter Hubber, Gail Chittleborough

LABORATORY ACTIVITIES AND THE PERCEPTION OF STUDENTS

Daniela Marocchi, Marina Serio

MATHEMATICAL MODEL OF THE DIDACTIC STRUCTURE OF PHYSICS KNOWLEDGE
EMBODIED IN PHYSICS TEXTBOOKS

Eizo Ohno

INFLUENCE OF PEER METHOD AND IBSE IN SCIENCE COMPETENCE IN CHILEAN
SECONDARY STUDENTS

Nataly Rodríguez, Iván Sánchez, Ivo Fustos

SOLVING OF QUANTITATIVE PHYSICS TASKS – SELECTED SUB-SKILLS AND HOW TO
TEACH THEM
Marie Snetinova, Zdeňka Koupilová,
USING ROLE-PLAYING GAME IN A VIRTUAL LEARNING ENVIRONMENT FOR A NEW 1095
APPROACH TO PHYSICS CLASSROOM LESSONS
Annalisa Terracina, Massimo Mecella

List of Referees .. 1105

Author Index ... 1107
Preface

The GIREP-MPTL International conference on Teaching/Learning Physics: Integrating Research into Practice [GIREP-MPTL 2014] was held from 7 to 12 July 2014, at the University of Palermo, Italy.

The conference has been organised by the Groupe International de Recherche sur l’Enseignement de la Physique [GIREP] and the Multimedia in Physics Teaching and Learning [MPTL] group and it has been sponsored by the International Commission on Physics Education [ICPE] – Commission 14 of the International Union for Pure and Applied Physics [IUPAP], the European Physical Society – Physics Education Division [EPS-PED], the Latin American Physics Education Network [LAPEN] and the Società Italiana di Fisica [SIF].

The theme of the conference, Teaching/Learning Physics: Integrating Research into Practice, underlines aspects of great relevance in contemporary science education. In fact, during the last few years, evidence based Physics Education Research provided results concerning the ways and strategies to improve student conceptual understanding, interest in Physics, epistemological awareness and insights for the construction of a scientific citizenship. However, Physics teaching practice seems resistant to adopting adapting these findings to their own situation and new research based curricula find difficulty in affirming and spread, both at school and university levels. The conference offered an opportunity for in-depth discussions of this apparently wide-spread tension in order to find ways to do better.

The purpose of the GIREP-MPTL 2014 was to bring together people working in physics education research and in physics education at schools from all over the world to allow them to share research results and exchange their experience.

About 300 teachers, educators, and researchers, from all continents and 45 countries have attended the Conference contributing with 177 oral presentations, 15 workshops, 11 symposia, and around 60 poster presentations, together with 11 keynote addresses (general talks).

After the conference, 147 papers have been submitted for the GIREP-MPTL 2014 International Conference proceedings. Each paper has been reviewed by at least two reviewers, from countries that are different to those of the authors and on the basis of criteria described on the Conference web site. Papers were subsequently revised by authors according to reviewers’ comments and the accepted papers are reported in this book, divided in 8 Sections on the basis of the keywords suggested by authors. The other book section (actually, the first one) contains the papers that six of the keynote talkers sent for publication in this Proceedings Book.

We would like to thank all the authors that contributed with their papers to the realization of this book and all the referees that with their criticism helped authors to improve the quality of the papers.

Palermo, 30th June 2015

Rosa Maria Sperandeo Mineo and Claudio Fazio