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Abstract. 

 

The aim of this paper is to analyse and empirically test how to unlock volatility information 

from option prices. The information content of three option based forecasts of volatility: Black-

Scholes implied volatility, model-free implied volatility and corridor implied volatility is addressed, 

with the ultimate plan of proposing a new volatility index for the Italian stock market. As for 

model-free implied volatility, two different extrapolation techniques are implemented. As for 

corridor implied volatility, five different corridors are compared. 

Our results, which point to a better performance of corridor implied volatilities with respect 

to both Black-Scholes implied volatility and model-free implied volatility, are in favour of narrow 

corridors. The volatility index proposed is obtained with an overall 50% cut of the risk neutral 

distribution. The properties of the volatility index are explored by analysing both the 

contemporaneous relationship between implied volatility changes and market returns and the 

usefulness of the proposed index in forecasting future market returns. 

 

 

Keywords: volatility index, Black-Scholes implied volatility, model-free implied volatility, corridor 

implied volatility, implied binomial trees. 

 

JEL classification: G13, G14.  

 

                                                
1 Department of Economics and CEFIN, University of Modena and Reggio Emilia, Viale Berengario 51, 41100 
Modena (I), Tel. +390592056771 Fax +390592056947, e-mail: silvia.muzzioli@unimore.it. The author thanks Diego 
Covizzi for research assistance, Andrea Cipollini and George Skiadopoulos for helpful comments and suggestions. The 
author gratefully acknowledges financial support from MIUR and Fondazione Cassa di Risparmio di Modena. Usual 
disclaimer applies. 

mailto:silvia.muzzioli@unimore.it


 

1. Introduction. 

 

Volatility is a key variable for portfolio selection models, option pricing models and risk 

management techniques. Volatility can be estimated and forecasted by using either historical 

information or option prices. The present paper focuses on option based volatility forecasts for three 

main reasons. First, for the forward-looking nature of option based forecasts (as opposed to the 

backward-looking nature of historical information); second, for the average superiority, documented 

in the literature, of option based estimates in forecasting future realized volatility (see e.g. Poon and 

Granger (2003)); third, for the widespread use of option prices in the computation of the most 

important market volatility indexes (see e.g. the VIX index for the Chicago Board Options 

Exchange).  

Among option based volatility forecasts we find Black-Scholes (BS) implied volatility, that 

is a “model-dependent” forecast since it relies on the Black and Scholes (1973) model, the so called 

“model-free” implied volatility (MF), proposed by Britten-Jones and Neuberger (2000), which does 

not rely on a particular option pricing model, being consistent with several underlying asset price 

dynamics (see e.g. Jiang and Tian (2005)) and corridor implied volatility (CIV), introduced in Carr 

and Madan (1998), and recently implemented in Andersen and Bondarenko (2007), which is 

obtained from model-free implied volatility by truncating the integration domain between two 

barriers. 

The three volatility forecasts present some drawbacks arising from the discrepancy from the 

theoretical underpinnings of the measures and the reality of financial markets. BS option pricing 

model is derived under the assumption of a constant volatility. However, BS implied volatility 

differs depending on strike price of the option (the so-called smile effect), time to maturity of the 

option (term structure of volatility) and option type (call versus put). Nonetheless at-the-money 

Black-Scholes implied volatility is widely recognized by market participants as a good predictor of 

future realised volatility.  

The theoretical definition of MF implied volatility supposes the availability of a continuum 

of option prices in strikes, ranging from zero to infinity. As in the market only a limited number of 

strike prices are quoted, both truncation and discretization errors occur (see e.g. Jiang and Tian 

(2007)). Truncation errors are faced since a limited range of strike prices is used. Discretization 

errors are due to the fact that only a finite number (instead of a continuum) of strike prices are used. 

In order to overcome this limits interpolation and extrapolation techniques have been proposed (see 

e.g. Jiang and Tian, 2005 and 2007). 



CIV measures are implicitly linked with the concept that the tails of the risk-neutral 

distribution are estimated with less precision than central values, due to the lack of liquid options 

for very high and very low strikes. The theoretical definition of CIV implied volatility supposes the 

availability of a continuum of option prices in strikes, between the two barriers. Therefore if the 

barriers are set within the quoted domain of strikes, only discretization errors are faced. However, in 

order to truncate the strike price domain, CIV needs a costly estimation of the risk-neutral 

distribution of the underlying asset and a subjective choice of the barriers, which render its 

forecasting performance mainly an empirical question.  

Carr and Wu (2006) highlight that MF implied volatility should be theoretically superior to 

BS implied volatility. They show that at-the-money BS implied volatility can be considered as a 

proxy for a volatility swap rate, while model-free variance can be considered as a proxy for a 

variance swap rate. While the payoff on a volatility swap is difficult to replicate, the payoff of a 

variance swap rate is easily replicable by using a static position in a continuum of European options 

and a dynamic position in futures (for more details see Carr and Wu (2006)). Given the more 

concrete economic meaning of model-free implied volatility, the most important market volatility 

indexes (see e.g. the VIX index for the Chicago Board Options Exchange, or the V-DAX New for 

the German stock market) have switched from an old version based on an average of at-the-money 

BS implied volatilities to a formula based on MF implied volatility.  

However, the latter market volatility indexes are computed with the use of quoted strike 

prices only, as such, they can be considered as a CIV measure with barriers set at the minimum and 

maximum strike price quoted (which fulfil some liquidity constraints, as will be explained in 

Section 5). Jiang and Tian (2007) point out how the latter choice, which makes the barriers 

stochastically dependent on the range of quoted strike prices may affect the usefulness of the 

volatility indexes, which can severely underestimate or overestimate the true volatility. 

Nonetheless, the VIX index methodology has been widely used in order to compute the 

volatility indexes gradually introduced in various European exchanges. The VDAX New for the 

German market, the VSMI for the Swiss market, and the VSTOXX volatility indices with their 

respective sub-indices were launched on 20, April, 2005. The VAEX Volatility Index for the Dutch 

market, the VBEL Volatility Index for the Belgian market and the VCAC Volatility Index for the 

French market started to be traded on 3 September 2007. On 12 June 2008, VFTSE, the volatility 

index of FTSE 100 British market index has been launched. Surprisingly, a volatility index for the 

Italian market has not been introduced yet. 

At the empirical level, the forecasting power of both MF and CIV implied volatilities has 

not been extensively tested yet and the superiority w.r.t. BS volatility is questioned. As for MF 



implied volatility, some papers find that it is an unbiased and an efficient forecast of future realised 

volatility (see e.g. Lynch and Panigirtzoglou (2003), Jiang and Tian (2005), Bollerslev et al. 

(2009)). However, its superiority w.r.t. BS is questioned (see e.g. Taylor et al. (2006), Becker at al. 

(2007), Muzzioli (2010)). To the best of our knowledge, the performance of CIV implied volatility 

has been empirically tested only in Andersen and Bondarenko (2007) and Tsiaras (2009). Both 

studies are in favour of CIV implied volatility with respect to BS and MF. However, opposite 

results regarding the optimal corridor width are found. Andersen and Bondarenko (2007), by using 

options on the S&P500 futures market, find that narrow corridor measures, closely related to BS 

implied volatility are more useful for volatility forecasting than broad corridor measures, which 

tend to model-free implied volatility as the corridor widens. Tsiaras (2009), by using options on the 

30 components of the DJIA index, concludes that CIV forecasts are increasingly better as long as 

the corridor width enlarges. 

In light of the above, the paper supplements existing literature by analysing and empirically 

testing the three option-based measures of volatility, with the ultimate plan of devising a volatility 

index for the Italian market. As for model-free implied volatility, we consider two different 

implementation techniques that vary in the extrapolation of the strike price domain. As for BS 

implied volatility, we use a weighted average of implied volatilities backed out from different 

option classes. As for CIV implied volatility, the enhanced Derman and Kani (1994) (EDK) method 

proposed in Moriggia et al. (2009) is used in order to derive the risk-neutral distribution of the 

underlying asset. Relatively to other methodologies, the use of the EDK method presents several 

advantages. First, it fits existing option prices ensuring positive risk-neutral probabilities, i.e. 

absence of arbitrage opportunities, second it correctly models the tails of the distribution, 

fundamental for the computation of CIV implied volatilities with broad corridors. Following the 

industry standard for volatility indexes, a CIV measure based only on quoted strike prices is also 

obtained. 

This paper makes at least two contributions to the ongoing debate on the information content 

of option implied measures of volatility and the construction of volatility indexes. First, unlike 

previous studies (Andersen and Bondarenko (2007), Tsiaras (2009)) which address the information 

content of CIV measures by using settlement prices, it uses the more informative intra-daily 

synchronous prices between the options and the underlying asset. This is important to stress, since 

the implied volatilities obtained are real “prices”, as determined by synchronous no-arbitrage 

relations. Second, it is the first contribution aimed at devising a volatility index for the Italian stock 

market, which is one of the most important European markets.  



The plan of the paper is as follows. Section 2 presents the volatility measures used. Section 

3 illustrates the computational methodology of European and US volatility indexes. Section 4 

briefly reviews the different approaches for estimating the risk-neutral distribution of the underlying 

asset and Section 5 recalls the EDK methodology used in the paper. Section 6 presents the data set 

used. Section 7 illustrates the computation of the volatility measures. Section 8 evaluates the 

forecasting performance of the different volatility measures for two forecasting horizons. Section 9 

illustrates the properties of the implied volatility index proposed. The last Section concludes. The 

Appendix recalls the relationship between model-free implied volatility and the computational 

methodology of traded volatility indexes. 

 

 

2. Variance and Volatility measures. 

 

Assume that the stock price evolves as a diffusive process (no jumps allowed), as follows: 

( ,...) ( ,...)t
t

t

dS t dt t dZ
S

µ σ= +           (1) 

Realized variance (also called integrated variance) in the period 0-T is given by: 
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If we assume absence of arbitrage opportunities and the existence of a unique risk-neutral measure, 

the fair price of variance is the risk-neutral expectation of future integrated variance: 

2

0

1( ) ( ,...)
T

E V E t dt
T

σ
 

=  
 
∫

) )
          (3) 

Note that equation (1) includes implied tree models (see e.g. Derman and Kani (1994)) as a 

special case, if volatility is assumed as a deterministic function of asset price and time. In implied 

tree models the so called local volatility ( , )S tσ  is obtained by calibrating the implied tree to quoted 

option prices. Local volatility (also known as forward volatility) was introduced by Dupire (1994) 

and Derman and Kani (1994) as the market expectation (or the fair value as it is implied from actual 

implied volatilities) of instantaneous volatility for a future market level of K at some future date T, 

( , )K Tσ . While implied volatilities are global measures of volatility, since under certain conditions 

(no strike dependence of the implied volatility) can be considered as the market’s estimate of 

expected average of volatilities up to expiry, local volatilities are a local measure since they give a 

volatility forecast for a couple of K and T. As noted in Demeterfi et al. (1999) as we do not know 

the value of future volatility, we can resort to simulation in order to compute the fair price of the 



variance. In particular, we can use local volatility, in order to proxy for realised volatility and 

compute the fair price of the variance by averaging across simulated underlying paths consistent 

with the implied tree. 

Local volatilities could be useful to value the contract, but not to replicate it. Demeterfi et al. 

(1999) and Britten-Jones and Neuberger (2000), show how to replicate the risk-neutral expectation 

of variance with a portfolio of options with strike price ranging from zero to infinity, as follows: 
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where M(K,T) is the minimum between a call or put option price, with strike price K and maturity T, 

i.e. only out-of-the-money options are used.  

Equation (4) is also known as model-free implied variance, and its square root as model-free 

implied volatility, since, differently from Black-Scholes implied volatility it does not rely on any 

particular option pricing model. Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000) 

assumed only a diffusion process for the underlying asset; Jiang and Tian (2005) extended to jump-

diffusion process the derivation of model-free implied variance.  

A practical limitation of model-free implied volatility is that in the reality of financial 

markets only a limited and discrete set of strike prices are quoted, therefore interpolation and 

extrapolation are needed in order to compute model-free implied volatility (see Jiang and Tian 

(2005) and (2007)).  

Carr and Madan (1998) and Andersen and Bondarenko (2007) introduce the notion of 

“corridor variance”. A corridor variance contract pays realised variance only if the underlying asset 

lies between two specified barriers B1 and B2, Therefore corridor integrated variance can be defined 

as follows: 
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where I(B1,B2) is the indicator function that is equal to 1 only when the underlying is inside the two 

barriers and determines if variance is accumulated or not. If B1=0 and B2=∞, then corridor variance 

coincides with model-free variance. Therefore if a CIV measure is used as a forecast of integrated 

variance, there is a mismatch between the forecast and the forecasted quantity. 

Carr and Madan (1998) and Andersen and Bondarenko (2007) show that it is possible to compute 

the expected value of corridor variance under the risk-neutral probability measure, by using a 

portfolio of options with strikes ranging from B1 to B2, as follows: 
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Equation (6) is known as corridor implied variance and its square root as corridor implied 

volatility. By choosing different levels for the barriers, we obtain CIV measures with wider or 

narrower corridors. CIV measures are implicitly linked with the concept that the tails of the risk-

neutral distribution are estimated with less precision than central values, due to the lack of liquid 

options for very high and very low strikes.  

In the following, volatility measures are taken as the square root of variance measures. 

 

 

3. Volatility indexes.  

 

Volatility indexes are deemed by market participants to capture the so-called “market fear”: 

high index values are associated with high uncertainty in the underlying market, low index values 

with stable conditions. Volatility indexes serve as underlying assets for volatility derivatives, which 

have been introduced in various exchanges in order to make pure volatility tradable. The possibility 

to trade volatility as a separate asset class has at least three advantages. First, it enables to better 

hedge the portfolio with a pure position in volatility, in contrast with an impure hedging usually 

pursued with options that are sensitive to both volatility and the underlying asset and thus require 

continuous delta hedging. Second, it permits to diversify the portfolio by adding a new asset class: 

volatility derivatives are ideal to hedge downside equity market risk and are also viewed as an 

important tool for disaster hedges, given their quasi perfect negative correlation with the market. 

Last, it allows speculating on future volatility levels by exploiting the mean-reversion nature of 

volatility. In this Section we briefly illustrate the characteristics of the main volatility indexes traded 

in Europe and U.S.A, in order to enucleate the best practices to be applied to the Italian volatility 

index.  

The CBOE Volatility Index (VIX) is a key measure of market expectations of near-term 

volatility conveyed by S&P500 stock index option prices. Since its introduction in 1993, VIX has 

been considered by many to be the world's premier barometer of investor sentiment and market 

volatility. On September 22, 2003 the old VIX index (renamed as VXO) that was based on an 

average of at-the-money implied volatilities of S&P100 (OEX) options has been substituted by the 

new VIX, based on model-free implied volatility computed from S&P500 (SPX) options. CBOE 

continues to calculate and disseminate also the original-formula index VXO and calculates also 

other important volatility indexes such as the DJIA Volatility index, NASDAQ-100 Volatility 

index, Russell 2000 Volatility index, S&P500 3-Month Volatility index. 

The VDAX New, VSMI and VSTOXX volatility indices with their respective sub-indices 



were jointly developed by Goldman Sachs and Deutsche Börse and launched on 20, April, 2005. 

VDAX New is the volatility index of the DAX index, representative of the 30 largest companies of 

the German stock market, VSMI is the volatility index of the SMI index, representative of the 40 

largest companies of the Swiss market, VSTOXX is the volatility index of the Dow Jones EURO 

STOXX 50, a blue chips index of the top 50 stocks of the Euro zone. These volatility indices 

capture the volatility expectations over the following 30 days and are based on a formula similar to 

the one used in the computation of the VIX index of the CBOE. However, differently from the VIX, 

sub-indices are calculated also for different times-to-maturity. The VDAX-New replaces the old V-

DAX index, still computed and disseminated by Deutsche Börse. The old V-DAX index expresses 

the volatility to be expected in the next 45 days for the DAX and is based on an average of at-the-

money implied volatilities of DAX-index options. 

NYSE EURONEXT has issued on 3 September 2007 the VAEX Volatility Index that 

represents the implied volatility of the AEX Dutch market index, the VBEL Volatility Index for the 

BEL 20 Belgian market index and the VCAC Volatility Index for the CAC40 French market index. 

On 23 June 2008, VFTSE, the volatility index of FTSE 100 British market index has been 

introduced. All these indexes follow the computational methodology of the VIX index, adapted to 

European markets. 

All the above mentioned volatility indexes are based on the following formula (see 

Demeterfi et al. (1999)) computed for the nearest (i=1) and the next term (i=2) expiries: 
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where: 

Ti = time to expiry of the i-th maturity options, expressed in fraction of year, 

Fi = forward price derived from the prices of the i-th maturity for which the absolute difference 

between call and put prices is smallest: 

  Fi = Kmin|C - P| + i ir Te (C – P),  

Ki,j = exercise price of the j-th out-of-the-money option of the i-th expiry month in ascending order,  

∆Ki,j = interval between strike prices (computed as half the interval between the one higher and the 

one lower strike prices or the simple difference between the highest and the second highest strike 

prices or lowest and second lowest): 
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Ki,0 = highest exercise price below forward price, 

eriTi = refinancing factor for the i-th expiry, 

ri = risk free interest rate for the i-th expiry, 



M(Ki,j) = call or put option price with strike price Ki,j, with Ki,j ≠ Ki,0, 

M(Ki,0) = average of call and put prices at exercise price Ki,0, 
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The volatility index is computed by linear interpolation of the two sub-indices which are the 

nearest to the remaining time to expiry of 30 days (σ1 is for the near-term maturity and σ2 for the 

next-term), as follows: 
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where 

NTi = number of seconds /minutes to expiry of the i-th maturity index option 

NT = number of seconds/minutes in 30 days 

N365 = number of seconds/minutes in a year 

Note that calendar time is measured in seconds for VDAX-New family of indexes and NYSE 

EURONEXT indexes, while in minutes for CBOE indexes. 

Even if all traded indexes are computed on the basis of the same formula, important 

differences among indexes hold for the filters applied to the data set. Regarding the options’ expiry, 

the VDAX-New family of indexes uses only options with at least two days to expiration, whereas 

the VIX family of indexes retains options with at least seven days to expiration and the NYSE 

EURONEXT family of indexes utilizes options with at least eight days to expiration. Regarding 

liquidity constraints, once two consecutive call (put) options are found to have zero bid prices, no 

calls (puts) with higher (lower) strike are considered in the computation of the VIX family of 

indexes. For the NYSE EURONEXT indexes, prices are excluded if the bid-ask spread is too wide, 

in particular if ( ) %50
5.0

>
+

−
BidAsk

BidAsk . For the V-Dax New, all option prices that are one-sided 

(with either a bid or an ask price only), options that are not quoted within the established maximum 

spread for EUREX market makers and options whose price is lower than 0.5 index points are 

excluded from the index computation. 

 

 

 

 



4. Recovering risk-neutral distribution from option prices. 

 

As for the implementation of corridor implied volatility we need the estimation of the risk-

neutral distribution, in this Section we briefly review the numerous methodologies proposed in the 

literature for recovering the risk-neutral distribution from option prices at one particular date in the 

future. For a complete survey we refer the interested reader to Jackwerth (1999).  

We distinguish among parametric and non-parametric methods. Parametric methods start 

from a basic distribution and generalize it with the help of additional parameters. Parametric 

methods include expansion methods, generalized distribution methods and mixture methods. 

Starting from a basic distribution, such as the normal or the log-normal one, expansion methods 

(see e.g. Rubinstein (1998)) use correction terms in order to make the basic distribution more 

flexible. A drawback of expansion methods is that the positivity of the risk-neutral density is not 

guaranteed. Generalized distribution methods (see e.g. Aparicio and Hodges (1998)) use family of 

distributions that may contain basic distributions as special cases and are therefore inherently more 

flexible. Mixture methods (see e.g. Melick and Thomas (1997)) generate new distributions from 

mixture of two or more basic distributions. Parametric methods are not suitable for small samples 

where data over-fitting can be serious. 

Non-parametric methods are data-driven methods that make no assumptions on the 

parametric form of the distribution. In this category we find kernel methods, maximum entropy 

methods, curve fitting methods and implied trees. Kernel methods (see e.g. Ait Sahalia and Lo 

(1998)) try to fit a function to the data, without specifying the parametric form of the function. A 

modified kernel method is the positive convolution approximation method, developed by 

Bondarenko (2003) and implemented in Andersen and Bondarenko (2007), which ensures no-

arbitrage.  Maximum entropy methods try to find a non parametric probability distribution that is as 

close as possible to a prior distribution, while ensuring some no-arbitrage pricing constraints (see 

e.g. Stutzer (1996)). Curve fitting methods interpolate implied volatilities between strike prices (see 

e.g. Shimko (1993)) or the risk-neutral distribution itself see e.g. Rubinstein (1994), by some 

general function, such as the class of polynomials. In the implied volatility interpolation, in order to 

increase the fit to the data, splines (see e.g. Campa et al. (1998) can be used in order to connect the 

knots smoothly. Tsiaras (2009) uses a variation of Shimko (1993) by interpolating implied 

volatilities in the delta space rather than in strikes. Note that curve-fitting methods do not guarantee 

the positivity of the risk-neutral probabilities (see e.g. Monteiro et al. (2008)). 

Implied trees are discretizations of one or two dimension diffusions, aimed at introducing 

non-constant volatility in an option pricing model. We can distinguish between deterministic and 



stochastic models, depending on whether volatility is assumed to be a deterministic function of 

asset price and time or it is assumed to follow a stochastic process. These models are also called 

smile-consistent models since the market price of options is taken as given and used to infer the 

underlying asset distribution. Deterministic volatility models (see e.g. Derman and Kani (1994), 

Barle and Cakici (1998), Rubinstein (1994), Jackwerth (1997), Dupire (1994)) derive endogenously 

from European option prices the instantaneous volatility as a deterministic function of asset price 

and time. Stochastic volatility models (see e.g. Derman and Kani (1998), Britten-Jones and 

Neuberger (2000)) allow for a no-arbitrage evolution of the implied volatility surface.  

As for the accuracy of the different methodologies, Jackwerth and Rubinstein (1996) argue 

that if we observe a sufficient number of option prices (10-15, as it is the case in our dataset), then 

all the different methods tend to be rather similar, except in the modelling of the tails of the 

distribution. The same conclusion has been reached in Campa et al. (1998), where three different 

methods are used: a mixture of lognormals, an implied binomial tree of Rubinstein (1994) and cubic 

splines. They find similar probability density functions in any of the methods, but they prefer the 

implied tree approach for its flexibility and good representation of the data. As for the problem of 

modelling the tail distribution, they point out that one drawback of the cubic splines interpolation is 

the potential explosion of implied volatility outside the quoted range of strike prices. In their 

implementation of the Rubinstein (1994) binomial tree many outliers were generated in the tails. In 

order to avoid outliers, they trim the implied binomial tree with a 20% cut of the possible outcomes 

in the top and bottom terminal nodes. 

 

 

5. The EDK implied tree and the risk-neutral probabilities computation. 

 

In our dataset made of almost 15 strike prices quoted each day, we expect the different 

methodologies to be rather similar. However, three are our goals: fitting quoted option prices, 

ensuring positivity of the risk-neutral probabilities, i.e. absence of arbitrage opportunities and 

correctly modelling the tails of the distribution, fundamental for the computation of CIV measures 

with wide corridors. We prefer non parametric methods, since parametric methods are not flexible 

enough to fit exactly a given number of option prices. Following Campa et al. (1998), we 

concentrate on implied trees; however, with the aim of correctly modelling the tails of the 

distribution, we focus on forward induction implied trees. In particular, we use the Derman and 

Kani (1994) algorithm with the modifications proposed in Moriggia et al. (2009), (the so called 

Enhanced Derman and Kani implied tree (EDK)) which are fundamental both to avoid arbitrage 



opportunities and to correctly model the tails of the distribution. In fact the Derman and Kani 

(1994) implied tree, even with the Barle and Cakici (1998) modifications, is not free from arbitrage, 

in particular at the boundary of the tree and may become numerically unstable, when the number of 

steps becomes large. The advantages of the proposed methodology are at least three. First, it is a 

methodology that fits the data well without imposing a rigid parametric structure. Second, it does 

not require any costly estimation of the risk-neutral probability by entropy maximization or distance 

minimization from the a-priori distribution with subjective choice of the loss function used. Last, it 

ensures positivity of the risk-neutral probabilities.  

The Derman and Kani (1994) implied tree is computed as follows (for more details see 

Derman and Kani (1994)). Let j=0,…,n be the number of levels of the tree, that are spaced by ∆t. 

As the tree recombines, i=1,...,j+1 is the number of nodes at level j. Forward induction is used to 

compute level j variables given level j-1 variables as inputs. The initial inputs are the risk-less 

interest rate, the stock price at time zero and the smile function. The latter is used to determine the 

price of the appropriate ATM call and put prices. 

The Derman and Kani (1994) methodology assumes that the tree has been implied out to level 

j-1. The known stock price Si,j-1, can evolve into Si+1,j in state up and Si,j, in state down. The risk-

neutral probability of an up jump is pi,j. The Arrow-Debreu price, λi,j, is computed by forward 

induction as the sum over all paths leading to node (i,j) of the product of the risk-neutral 

probabilities discounted at the risk-free rate at each node in each path. 

The problem is how to imply nodes at level j. There are 2j+1 unknowns: j+1 stock prices (Si,j) 

and j risk-neutral probabilities of an up move (pi,j). Hence, 2j+1 equations are needed: the first 2j 

equations require the theoretical value of j forwards and j options expiring at time j to match their 

market values (for the upper part of the tree call options are used, while for the lower part of the 

tree, put options), the remaining degree of freedom is used to require the tree to develop around the 

current stock price (centring condition). The centring condition is given by equation (8) if the level 

is even and by equation (9) if the level is odd: 
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where S0,0 is the initial stock price. 

For the upper part of the tree the recursive equation to compute Si+1,j given Si,j is:  
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jk SFλ  , Fi,j-1 is the forward value of Si,j-1 and 1, −jiC  is the price at time 0 of 

a call with strike Si,j-1 and maturity j. In order to use equation (10), an initial node Si,j is needed. If 

the number of nodes is even, the central node is chosen to be equal to the current spot (equation 

(8)); if the number of nodes is odd, combining equations (9) and (10) yields the following equation: 
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For nodes in the lower part of the tree, a put with strike Si,j-1 instead of a call, is used. The 

recursive formula that provides Si,j given Si+1,j is obtained: 
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= −∑ ∑  and 1, −jiP  is the price at time 0 of a call with strike Si,j-1 and 

maturity j and it is computed using a j step tree with constant volatility obtained from the smile 

function. By repeating this process at each level, the entire tree is generated. 

The EDK methodology is aimed at ensuring the absence of no-arbitrage violations in the DK 

implied tree (for more details see Moriggia et al. (2009)). To this end it provides no-arbitrage 

checks and proposes no-arbitrage replacements for all the nodes in the tree. The no-arbitrage 

condition and the relative replacements are summarized in Table 1.  

 

[Table 1 about here] 

 

Transition probabilities pi,,j for i=1,…,j+1, j=1,…,100,  are computed as follows: 

 , , 1
,

1, 1 , 1

i j i j
i j

i j i j

F S
p

S S
+

+ + +

−
=

−
  

Arrow-Debreu prices at the boundary of the tree (i=1 and i=j+1, j=1,…,100) are computed as 

follows: 

 1, 1, 1 1, 1(1 ) rdt
j j jp eλ λ −

− −= −   

 1, 1, 1 1, 1
rdt

j j j j j jp eλ λ −
+ + − + −=  

Arrow-Debreu prices in the remaining part of the tree (i=2,…j-1, j=1,…,100) are computed as 

follows:  

 ( ) *
, 1, 1 1, 1 , 1 , 1(1 ) r dt

i j i j i j i j i jp p eλ λ λ −
− − − − − −= + −   



The final risk-neutral probabilities (Pi,n) are obtained by multiplying the final Arrow-Debreu 

prices by erT: 

, , 1,..., 1rT
i n i nP e i nλ= = +  

For the current implementation, the initial node is taken as the average value of the 

underlying asset recorded in the hour of trades, corrected for the dividend yield. We build an 

implied tree with 100 steps.  

 

 

6. The Data set. 

 

The data set consists of intra-daily data on FTSE MIB-index options (MIBO), recorded from 1 

June 2009 to 30 November 2009. Each record reports the strike price, expiration month, transaction 

price, contract size, hour, minute, second and centisecond. MIBO are European options on the 

FTSE MIB index, which is a capital weighted index composed of 40 major stocks quoted on the 

Italian market. FTSE MIB options quote in index points, representing a value of 2.5 €, with 10 

different expirations (the 4 three-monthly expiries in March, June, September and December, the 2 

nearest monthly expiry dates, the 4 six-month maturities (June and December) of the two years 

subsequent the current year, the 2 annual maturities (December) of the third and fourth years 

subsequent the current year). The contract expires on the third Friday of the expiration month at 

9.05 am. If the Exchange is closed that day, the contract expires on the first trading day preceding 

that day. For each maturity up to twelve months (monthly and three-month maturities), exercise 

prices are generated at intervals of 500 index points. At least 15 exercise prices are quoted for each 

expiry: one at-the-money, seven in-the-money and seven out-of-the-money strikes. The daily 

closing price is established by the clearing and settlement organisation Cassa di Compensazione e 

Garanzia. 

As for the underlying asset, intra-daily prices of the FTSE MIB-index recorded from 1 June 

2009 to 31 December 2009 are used. The FTSE MIB is the primary benchmark Index for the Italian 

equity market and seeks to replicate the broad sector weights of the Italian stock market. It is 

adjusted for stocks splits, changes in capital and for extraordinary dividends, but not for ordinary 

dividends. Therefore, the daily dividend yield is used in order to compute the appropriate value for 

the index, as follows: 
t t

t tS S e δ− ∆=
)

 

where St is the FTSE MIB value at time t, δt is the dividend yield at time t and ∆t is the time to 

maturity of the option.  



As a proxy for the risk-free rate, Euribor rates with maturities one week, one, two and three 

months are used. Appropriate yields to maturity are computed by linear interpolation. The data-set 

for the FTSE MIB index and the MIBO is kindly provided by Borsa Italiana S.p.A, Euribor rates 

and dividend yields are obtained from Datastream.  

Several filters are applied to the option data set. First, in order not to use stale quotes, we 

eliminate options with trading volumes of less than one contract.  Second, we eliminate options near 

to expiry which may suffer from pricing anomalies that might occur close to expiration. In order to 

keep the outline similar to the computation methodology of quoted volatility indexes, we choose to 

use the most conservative filter that eliminates options with time to maturity of less than 8 days. 

Third, following Ait-Sahalia and Lo (1998) only at-the-money and out-of-the-money options are 

retained (call options with moneyness K/S > 0.97 and put options with moneyness K/S < 1.03). 

Fourth, option prices violating the standard no-arbitrage constraints are eliminated: 
( ) ( )max( ,0)r T t T tP Ke Se− − −∂ −≥ − , ( ) ( )max( ,0)T t r T tC Se Ke−∂ − − −≥ − . Finally, in order to reduce 

computational burden, we only retain options that are traded in the last hour of trade, from 4:40 to 

5:40 (the choice is motivated by the high level of trading activity in this interval). 

 

 

7. The computation of the volatility measures. 

 

In order to keep the computation of the volatility measures as much similar as possible to the 

computation of traded market volatility indexes, the volatility measures are computed by linear 

interpolation of the two sub-indices which are the nearest to the remaining time of expiry of 30 days 

(σ1 is for the near-term maturity and σ2 for the next-term), as follows: 
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where: 

Ti= number of days to expiry of the i-th maturity index option, i=1,2. 

To this end, each day of the sample, we divided quoted option prices in two sets: near term and next 

term options, in order to compute the two volatility sub-indices.  

We compute four volatility measures: realised volatility (σr), BS implied volatility (σBS) 

model-free implied volatility (σMF) and corridor implied volatility (σCIV). Realised volatility is 

computed, in annual terms, as the squared root of the sum of five-minute frequency squared index 

returns over the next 30 days: 
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where n is the number of index prices spaced by five minutes in the 30 days period. The choice of 

using five-minute frequency is made following Andersen and Bollerslev (1998) and Andersen et al. 

(2001) who showed the importance of using high frequency returns in order to measure realised 

volatility and point out that returns at a frequency higher than five minutes are affected by serial 

correlation.  

BS implied volatility (σBS) is defined as the weighted average of the two implied volatilities 

that correspond to the two strikes that are closest to being at-the-money, with weights inversely 

proportional to the distance to the moneyness (for example if the FTSE MIB index is 20600 and the 

closest strikes are 21000 and 20500 the implied volatility of the 21000 strike will be weighted 1/5 

against the implied volatility of the 20500 strike which is weighted 4/5). As we are using one hour 

of data, the underlying used is the average in the hour of trades. Similarly, for the two strikes closest 

to the at-the-money value, the average of the corresponding implied volatilities in the hour of trades 

is taken. 

Model-free implied volatility (σMF) is computed as follows: 
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where max min( ) /K K K m∆ = − , m is the number of abscissas, min ,iK K i K= + ∆ 0 i m≤ ≤ , 

2( , ) [min( ( , ), ( , )] /i i i ig T K C T K P T K K= , and the trapezoidal rule is used in order to increase the 

accuracy of integration.  

Model-free implied volatility has been computed with the following procedure. First, we 

recover the Black-Scholes implied volatilities by using synchronous prices of the option and the 

underlying that are matched in one minute interval. These implied volatilities are averaged for each 

strike in the hour of trades resulting in a matrix of quoted strike prices and corresponding implied 

volatilities. Second, as only a discrete number of strikes are available, we need to interpolate and 

extrapolate option prices in order to generate the missing prices that are input to the model-free 

implied volatility formula. As for the interpolation, following Shimko (1993) and Ait-Sahalia and 

Lo (1998) we choose to interpolate implied volatilities between strike prices, rather than option 

prices. With the aim of having a smooth function, following Campa et al. (1998), we use cubic 

splines to interpolate implied volatilities.  

As for the extrapolation methodology, we compute model-free implied volatility in two 

different ways. First, we compute model-free implied volatility ( 1MFσ ) by following the 



methodology in Jiang and Tian (2005): we suppose that for strikes below (above) the minimum 

(maximum) value, implied volatility is constant and equal to the volatility of Kmin (Kmax). Second, 

as the latter methodology may underestimate implied volatility in the tails of the strike price 

domain, we compute model-free implied volatility ( 2MFσ ) by following the methodology in Jiang 

and Tian (2007): we extrapolate volatilities outside the listed strike price range by using a linear 

function that matches the slope of the smile function at Kmin and Kmax. This methodology has the 

advantage that the smile function remains smooth at Kmin and Kmax. As this latter methodology of 

extending the strike price domain by a segment that matches the slope of the smile function at Kmin 

and Kmax may generate implied volatilities that are artificially too high (in case the slope is positive) 

or too low (in case the slope is negative), we have imposed both a lower and an upper bound to 

implied volatilities equal to 0.001 and 0.999 respectively. Recall that 1MFσ  is by construction 

subject to possible no-arbitrage violations (associated to kinks in the smile function), nonetheless 

Muzzioli (2010), by investigating the DAX-index options market, found it to perform better 

than 2MFσ . 

In order to extrapolate implied volatilities outside the minimum and the maximum strike 

price quoted, we extend the strike price domain by using a factor u such that: 

/(1 ) (1 )S u K S u+ ≤ ≤ + . For the current implementation u has been chosen to be equal to 10, since 

in Muzzioli (2010) it has been shown that the truncation bias is likely to be negligible for values of 

u greater than 0.3. Therefore we expect our results not to be affected by truncation errors. In order 

to have a sufficient discretization of the integration domain, given that FTSEMIB index values in 

the observed time period are greater than 17673 index points, we compute strikes spaced by an 

interval 10K∆ = , since in Muzzioli (2010) it has been shown that a strike price discreteness of 1% 

is enough to ensure an insignificant discretization error. Finally, we use the Black and Scholes 

formula in order to convert implied volatilities into call prices.  

Corridor implied volatility (σCIV) is computed as follows: 
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where max min( ) /K K K m∆ = − , m is the number of abscissas, min ,iK K i K= + ∆ 0 i m≤ ≤ , 
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where  p = 0.25, 0.10, 0.05, 0.025 respectively for CIV1, CIV2, CIV3, CIV4, and the trapezoidal 

rule is used in order to increase the accuracy of integration. From CIV1 to CIV4 we explore wider 

corridor implied volatility measures and we expect CIV4 to be the more similar to model-free 

implied volatility. The barriers B1 and B2 are computed by looking at the risk-neutral distribution 



obtained by fitting an implied binomial tree with 100 levels to quoted option prices, as described in 

Section 5. As the implied tree yields a discrete cumulative distribution, ( ) ( ) ( )
t x

H x P X x p t
≤

= ≤ = ∑ , 

the barrier level x has been chosen to be the average between x1 and x2, where x1  and x2 are the 

barrier levels such that 1( )P X x≤  and ( 2( )P X x≤ ) are the closest to the desired p. The implied tree 

is fitted to the volatility smile computed by using the same interpolation-extrapolation technique 

used in Jiang and Tian (2007), the same used for the computation of 2MFσ . In fact the extrapolation 

technique used for 1MFσ , that supposes constant volatility outside quoted strike prices, yields 

several no-arbitrage replacements, since kinks in the smile function are usually associated to no-

arbitrage violations. Last, in order to have an estimate consistent with the computational 

methodology of traded volatility indexes, we compute a corridor measure ( 5CIVσ ) with barriers 

equal to the lowest and highest strike price quoted. 

We report descriptive statistics for the volatility series in Table 2. Figures 1 and 2 plot the 

volatility series in our sample period. On average realised volatility is lower and less volatile than 

option based volatility estimates, indicating that variance risk is priced with a substantial risk 

premium (Carr and Wu, 2009). Model-free implied volatilities are on average higher than BS which 

is higher than CIV measures (as in Andersen and Bondarenko (2007). As expected, CIV measures 

are higher as long as the corridor width increases, CIV5, obtained with only quoted strike prices is 

much higher than CIV4, obtained with a cut of 0.025, indicating that deep out-of-the-money options 

carry a very high implied volatility. Among model-free measures, MF1, obtained with natural 

splines extrapolation, is lower than MF2, obtained with clamped splines extrapolation. The 

volatility series are on average skewed (long right tail except realised volatility) and leptokurtic 

(except CIV1 and CIV5) and the hypothesis of a normal distribution is rejected for realised 

volatility and BS, indicating the presence of extreme movements in volatility. 

 

[Table 2 about here] 

[Figures 1 and 2 about here] 

 

 

 

 

 

 

 



8. The results.  

 

In order to gauge the forecasting performance of the different volatility measures, we resort 

to popular evaluation metrics2 widely used in the literature (see e.g. Poon and Granger (2003)). In 

particular, as indicators of the goodness of fit, we use the MSE, the RMSE, the MAE, the MAPE 

and the QLIKE, defined as follows: 
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where iσ  is the volatility forecast (i=CIV1, CIV2, CIV3, CIV4, CIV5, BS, MF1, MF2), rσ  is the 

subsequent realised volatility, m is the number of observations. The MSE, RMSE and the MAE are 

indicators of absolute errors, while the MAPE indicates the percentage error. The QLIKE 

discriminates between positive and negative errors by assigning a larger penalty if the forecast 

underestimate realised volatility. Since a higher volatility is usually associated with negative market 

returns, the QLIKE function considers more important the correct estimation of volatility peaks than 

volatility minima.  

An important issue in ranking volatility forecasts is that the forecasted quantity is not 

observable, even ex-post. As a proxy for the true volatility is used, the substitution of a different 

volatility proxy may change the ranking of the different volatility forecasts. On this point, we 

remark that our computation methodology that exploits intra-daily five-minutes squared returns, has  

been shown to provide large gains in terms of consistent ranking with respect to other more noisy 

volatility proxies (Patton and Sheppard (2007), Hansen and Lunde (2006)).  

 

                                                
2 Mincer-Zarnowitz regressions are widely used in the literature in order to assess the unbiasedness and efficiency (with 
respect some historical measure of volatility) of the volatility forecasts. In order to avoid the telescoping overlap 
problem described in Christensen et al. (2001) forecasts are usually sampled at a monthly frequency (see e.g. Jiang and 
Tian, 2005). Given the limited sample at our disposal, we leave the investigation of the unbiasedness and efficiency of 
the volatility forecasts for future research. 



 

8.1 The results for the 30-day horizon. 

 

The results for the 30-day forecast horizon are reported in Table 3. According to all the 

indicators, CIV measures perform better than both BS implied volatility and MF implied measures. 

The best performance is obtained by CIV1 (narrowest corridor) and as long as the corridor width 

becomes larger the fit gradually deteriorates. CIV5 (the worst among CIV measures) is inferior to 

BS implied volatility, but superior to MF measures. Overall, BS implied volatility performs better 

than model-free measures. Among model-free measures the best implementation technique is the 

natural splines extrapolation (a similar result was obtained in Muzzioli (2010)). All option based 

volatility measures substantially over predict subsequent realised volatility. The narrowest the 

corridor of strike prices used, the best the forecasting performance. This points out to a very low 

degree of information of deep-out-of-the-money options.  

 

[Table 3 about here] 

 

In order to see if the differences in forecasting performance are significant from a statistical 

point of view, we compare the predictive accuracy of the forecasts by computing the Diebold and 

Mariano test statistic (for more details see Diebold and Mariano (1995)). We concentrate the 

attention on two ranking functions (the MSE and the QLIKE) that are considered as robust to the 

presence of noise in the volatility proxy (Patton (2010)). 

 

[Tables 4 and 5 about here] 

 

The pair-wise comparisons are reported in Tables 4 and Table 5 for the MSE and the QLIKE 

ranking functions respectively (t-statistics along with the p-values). Note that a positive (negative) t-

statistic indicates that the row model produced larger (smaller) average loss than the column model. 

The Diebold and Mariano test statistic under the null of equal predictive accuracy is distributed as a 

N(0,1). The null of equal predictive accuracy is strongly rejected at the 1% level in all cases, except 

for BS and CIV4 which are not clearly distinguishable. Both the MSE and the QLIKE point to the 

same ranking and thus corroborate the results found in Table 3. As an additional test, the modified 

Diebold and Mariano test (Harvey et al. (1997)), which is useful in moderate-sized samples has 

been implemented (the results are available upon request) and the findings remain unaltered. 

 



 

8.2. The results for the one-day horizon. 

 

In order to see if the implied volatility conveyed by option prices can also be considered as 

forward looking indicator of next-day realised volatility, in this Section we compare the predictive 

accuracy of the volatility measures as forecasts of realised volatility in the subsequent day. This can 

be very important in a Value at risk (VaR) framework, where the implied volatility measures can be 

used directly to proxy for volatility in the VaR specification (see e.g. Giot (2005a)).  

In order to measure daily realised volatility, we compute the squared root of the sum of five-

minute frequency squared index returns over the next day: 
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where n is the number of index prices spaced by five minutes in the next day.  

Following Giot (2005a), we compute implied volatility measures for the forward looking 

time horizon of 1-day from the 30-day measures expressed in annualized terms as: 

,1, ,
1

365i t i tσ σ=  

for i=BS, MF1, MF2, CIV1, CIV2,CIV3, CIV4, CIV5, where σi,1,t is the expected volatility over the 

next day. 

 

[Table 6 about here] 

[Figures 3 and 4 about here] 

 

We report descriptive statistics for the volatility series in Table 6. Figures 3 and 4 plot the 

volatility series in our sample period. On average realised volatility is much more volatile than 

option based volatility estimates since option based estimates reflect the implied volatility over the 

next 30-days and can be considered as a smoothed expectation of realised volatility. Model-free 

implied volatility is on average higher than BS, which is higher than CIV measures. As expected, 

CIV measures are higher as long as the corridor width increases, with CIV5 being on average the 

highest. The volatility series are positively skewed and leptokurtic (except MF1 and CIV1) and the 

hypothesis of a normal distribution is rejected for both realised volatility and BS. 

 

[Table 7 about here] 

 



The results reported in Table 7 almost confirm the 30-day horizon results obtained in the 

previous Section, even if some differences emerge. CIV1 is the best forecast only for the MAPE, 

for the other indicators the preferred forecast is CIV2, closely followed by CIV3. BS obtains a 

better performance than in the 30-day horizon case, since it is on average one of the best forecasts. 

CIV5 is the worst forecasts among CIV measures. Model-free forecasts obtain the worst 

performance, with MF1 better than MF2. Looking at the Diebold and Mariano tests, reported in 

Table 8, that are performed with respect to the MSE loss function, we can see that Black Scholes 

implied volatility is better (almost at the 1% level) than CIV5 and model-free measures, corridor 

implied volatilities (unique exception CIV1) are better than model-free measures. However, it is 

impossible to clearly distinguish among BS and CIV measures (except for CIV5 that obtains clearly 

a worse performance). Among model-free measures, the best performance at the 1% level is 

obtained by MF1 that uses natural splines, the worst by MF2 that extrapolates with clamped splines. 

The Diebold and Mariano tests have been performed also with respect to the QLIKE loss function 

and similar results, reported in Table 9, have been obtained. The findings are confirmed by the 

modified Diebold and Mariano test (Harvey et al. (1997)) which has been implemented (the results 

are available upon request). 

 

[Tables 8 and 9 about here] 

 

 

9. Properties of the implied volatility index 

 

From the analysis conducted in Section 8, CIV1 emerges as the best volatility index on a 30-

day horizon and one of the best indexes for next-day subsequent realised volatility. As we deem 

more important the results obtained in the 30-day horizon, given the natural interpretation of 

implied volatility as the expected value of realised volatility over the life time of the option, we 

choose CIV1 as the suggested implied volatility index. In this Section we investigate the 

relationship between the suggested implied volatility index and the returns of the underlying stock 

index. Following Skiadopoulos (2004), who conducts a similar analysis for the proposed Greek 

volatility index, we investigate first if the volatility index is an indicator of current risk; second we 

investigate if the volatility index can be considered as an indicator of future market returns. On the 

first issue, several papers (see e.g Whaley (2000), Skiadopoulos (2004), Giot (2005b)) have found a 

negative relationship between volatility changes and index returns, since negative returns are 

usually associated with an increase in volatility. In fact, bad news as measured by negative returns, 



increase the risk perception, boosting the purchase of put options and therefore augmenting implied 

volatility. Thus the volatility index is expected to spike upward (downward) during periods of 

market turmoil (calm).  

Figure 5 shows the evolution of the proposed index and the FTSE-MIB index over the 

sample period. As expected, there seems to be a negative relationship between changes in the 

market index and changes in the volatility index: when the FTSE-MIB index increases (decreases) 

the volatility index decreases (increases). Table 10 reports the descriptive statistics of FTSE-MIB 

daily index returns (continuously compounded) and daily changes in CIV1 (∆CIV1=CIV1t-CIV1t-

1). The correlation coefficient between FTSE-MIB index returns and changes in CIV1 is -0,478, 

thus suggesting the existence of some leverage effect.  

 

[Table 10 about here] 

[Figure 5 about here] 

 

In order to investigate the relationship between FTSE-MIB index returns and changes in 

CIV1, we regress: 

1 1t t tR CIVα β ε= + ∆ +  

The regression results are (t-values in brackets): 

0.00 (0.34) 0.42( 3.47) 1t tR CIV= − − ∆  

The R2 is 0.23 and the slope coefficient is highly significant. By looking at the sign of the slope 

coefficient we can observe that there is a negative relationship between the volatility index and the 

FTSE-MIB: if the volatility index rises (decreases) by 0.01, the FTSE-MIB decreases (rises) by 

0.0042. 

In order to control for asymmetric effects, we divide the changes in CIV1 in positive 

( 1 1 1 0, 1 0t t t tCIV CIV if CIV CIV+ +∆ = ∆ ∆ > ∆ = ) and negative ones 

( 1 1 1 0, 1 0t t t tCIV CIV if CIV CIV− −∆ = ∆ ∆ < ∆ = ) as follows: 

1 21 1
tt t tR CIV CIVα β β ε− += + ∆ + ∆ +  

The regression results are (t-values in brackets): 

0.00 (1.42) 0.25( 2.00) 1 0.59( 3.02) 1
tt tR CIV CIV− += − − ∆ − − ∆  

The R2 is 0.24; the slope coefficient of positive changes in the volatility index is highly significant, 

while the slope coefficient of negative changes is significantly different from zero only at the 5% 

level. As the slope coefficient of positive changes in the volatility index is more than twice the slope 

coefficient in negative changes, a rise in implied volatility affects the returns more than twice than a 



decrease in implied volatility. As expected, an upward volatility spike is more important than a 

downward volatility spike. Therefore CIV1 can be considered as a measure of market fear more 

than a measure of market excitement, since the market reacts more negatively to increases in 

volatility than it reacts positively when the volatility index decreases. 

As for the second goal of our investigation, we want to assess if the volatility index can be 

considered as an indicator of future market returns. Skiadopulos (2004) found that investors can use 

past market returns in order to forecast future changes in implied volatility. Giot (2005b) has argued 

that positive returns are to be expected as a consequence of high levels of implied volatility. A 

possible explanation is that if volatility is high investors are over-reacting selling stocks without a 

clear rationale, as a consequence stocks could be undervalued and therefore high volatility can be 

viewed as a “buy” signal. To this end we estimate a Vector Autoregression (VAR) model as 

follows: 
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with k=2, chosen in order to keep the model as parsimonious as possible, according to the Schwarz 

criterion.  

We perform a Granger causality test, the null hypothesis is bi=0, i=1,2 in order to see if R 

does not Granger cause ∆CIV1 in the first regression and ∆CIV1 does not Granger cause R in the 

second regression. The results are reported in Table 11. We can observe that while returns can not 

be explained by past returns or past differences in CIV1, changes in CIV1 can be explained by past 

changes in CIV1 (the negative sign indicates the mean reverting nature of CIV1) and only 

marginally by past returns (that are significant only at the 10% level). From the Granger causality 

test we can see that the returns are marginally (only at the 10% level) useful in order to forecast 

future volatility, while the changes in CIV1 do not contain any information about future returns of 

the FTSE-MIB. Therefore, our results suggest that an investor can use the returns on the FTSE-MIB 

index in order to predict future movements of the implied volatility and set up an appropriate option 

strategy, but changes in implied volatility have no explanatory power in predicting the underlying 

FTSE-MIB returns.  

 

[Table 11 about here] 

 

 



 

10. Conclusions  

 

In this paper several option based measures have been analysed in the Italian FTSE-MIB 

index options market in order to devise a volatility index for the latter. Black-Scholes implied 

volatility, two model-free measures (obtained with different extrapolation techniques), four corridor 

implied volatility measures that vary in the choice of the corridor width and one corridor measure 

which closely mimics the construction methodology of traded volatility indexes, have been 

compared. Two forecasting horizons have been analysed: the 30-day and the one-day horizon. The 

volatility forecasts have been ranked on the basis of popular evaluation measures and the difference 

in the forecasting performance has been statistically scrutinised on the basis of the Diebold and 

Mariano test of equal predictive accuracy with the use of robust loss functions.  

As for the 30-day horizon, according to all the indicators, CIV measures perform better than 

both BS implied volatility and MF implied measures. The best performance is obtained by CIV1 

(narrowest corridor, that corresponds to an overall 50% cut) and as long as the corridor width 

becomes larger the fit gradually deteriorates. CIV5 (the one obtained with a methodology similar to 

the one used for traded volatility indexes) is inferior to BS implied volatility, but superior to MF 

measures. Overall, BS implied volatility performs better than model-free measures. Among model-

free measures the best implementation technique is the natural splines extrapolation (a similar result 

was obtained in Muzzioli (2010)). As for the one-day horizon the results are quite similar, even if in 

this case the narrowest CIV measure is the best only for one ranking measure. According to the 

Diebold and Mariano test CIV5 and model-free measures still obtain clearly the worst performance, 

however it is impossible to discriminate among corridor implied volatilities and Black-Scholes 

implied volatility. Overall, the results point out to a very low degree of information of deep out-of-

the-money options, which are notoriously less liquid than around-the-money options. In order to 

devise an implied volatility index for the Italian stock market the results do not suggest the use of  

quoted strike price in order to cut the integration domain: an average of at-the-money Black-Scholes 

implied volatility would be better. Rather, the results suggest to “cut the wings” with some corridor 

implied volatility: the 50% cut (CIV1) is the best in our sample. As in Andersen and Bondarenko 

(2007) we find that stretching the corridor yields to a better forecasting performance. 

On the basis of our analysis CIV1 has been selected as the suggested volatility index for the 

Italian market. As for the properties of the proposed volatility index, we have analysed both the 

contemporaneous relationship between implied volatility changes and market returns and the 

usefulness of the proposed index in forecasting future market returns. Our results advise that the 



suggested volatility index can be considered more as a measure of market fear than a measure of 

market excitement, since the market reacts more negatively to increases in volatility than it reacts 

positively when the volatility index decreases. Moreover, the proposed volatility index can not be 

used in order to predict future market movements; rather there is weak evidence that an investor can 

use the returns on the FTSE-MIB index in order to predict future movements of the implied 

volatility and set up an appropriate option strategy.  

The present paper lends itself to be extended in many directions. High on the research 

agenda are the investigation of other corridor measures with asymmetric cuts of the risk neutral 

distribution and the use of a longer dataset in order to investigate the unbiasedness and efficiency of 

the different volatility forecasts. 

 

 

Appendix. The VIX index and the theoretical definitions of variance. 

 

In this Appendix we clarify the link between model-free implied volatility developed by 

Britten-Jones and Neuberger (2000), fair value of future variance developed in Demeterfi et al. 

(1999) and the VIX index formula. We follow Jiang and Tian (2007). 

In order to show that the fair value of future variance developed in Demeterfi et al. (1999) 

coincides with the Britten-Jones and Neuberger variance equation we start from Britten Jones and 

Neuberger (2000) equation in forward prices: 
2

0
2

0 0

( , ) max( ,0)2T rT rT
Q t

t

dS e C T K S e KE dK
S T K

∞   − −  = 
   
∫ ∫                 (A1) 

Partitioning the integral into two segments at K=F0=S0erT we get: 

0

0
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t F
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And using the put-call parity we obtain: 

0

0

2

2 2
0 0

2 ( , ) ( , )FT rT
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t F

dS e P T K C T KE dK dK
S T K K

∞    
  = +  
       
∫ ∫ ∫                 (A3) 

As in the reality of financial markets it is very unlikely to find a call or a put with strike 

price equal to the forward price, we partition the integral into three segments, using 0K K= , where 

0K  is taken to be an arbitrary stock price, that defines the boundary between calls and puts, 

typically chosen to be the strike immediately below F0  (at-the-money forward stock level): 
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Using the put-call parity for the put in the last integral yields: 

0 0

0 0
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2 2 2
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Integrating out the last term yields: 
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Equation (A6) is the fair value of future variance developed in Demeterfi et al. (1999).  

Note that the last term disappears if 0 0K F= . 

 In order to obtain the VIX index formula, we rewrite the last term in equation (A6) as 

follows: 
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Applying the Taylor series expansion and ignoring terms of order higher than the second we get: 
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and therefore: 
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From equations (A6) and (A9) we get: 
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The VIX index is computed as linear interpolation of the near (i=1) and next term (i=2) variances 

( 2
iσ ): 

i i

2

, r T2
,2

, ,0

2 1e ( ) 1i j i
i i j

ji i j i i

K FM K
T K T K

σ
 ∆

= − − 
  

∑                        (A11) 

Equation (A11) is the discrete time version of equation (A10), where the integral is 

substituted by a discrete summation (discretization error) and the integration interval has been 

truncated to the limited range of strike prices that fulfil the liquidity constraints described in Section 

3 (truncation error). Beside truncation and discretization errors, the VIX index is also subject to an 



approximation error given by the Taylor series expansion of the log function. This latter error is 

likely to be negligible since K0 is chosen to be the closest strike below F0. 
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Figure 1. Realised volatility, Black-Scholes implied volatility and model-free measures (σMF1 , 

σMF2) for the 30-days horizon. 
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Figure 2. Realised volatility, CIV measures for the 30-days horizon. 
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Figure 3. Realised volatility, Black-Scholes implied volatility and model-free measures (σMF1 , 

σMF2) for the one-day horizon. 
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Figure 4. Realised volatility, CIV measures for the one-day horizon. 
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Figure 5. Corridor implied volatility CIV1 and the FTSE-MIB over the sample period. 
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Table 1. No-arbitrage conditions and corresponding replacements.  

 

 No-arbitrage condition No-arbitrage replacement 
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Table 2. Descriptive statistics. 

 

Statistic σr σBS σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 σCIV5 

mean 0.216 0.270 0.287 0.292 0.231 0.254 0.258 0.263 0.282 

std dev 0.022 0.023 0.024 0.025 0.021 0.025 0.027 0.028 0.023 

skewness -0.704 0.752 0.379 0.397 0.479 0.469 0.397 0.307 0.305 

kurtosis 3.004 3.200 3.019 3.120 2.885 3.181 3.281 3.171 2.972 

Jarque Bera 10.840 12.550 3.152 3.529 5.088 4.999 3.876 2.225 2.033 

p-value 0.004 0.002 0.207 0.171 0.078 0.082 0.144 0.328 0.362 

 

 

Table 3. Predictive accuracy of the different volatility measures, 30-day horizon. 

 

 σBS σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 σCIV5 

MSE 0.0037 0.0059 0.0067 0.0009 0.0023 0.0027 0.0032 0.0052 

RMSE 0.0610 0.0767 0.0817 0.0306 0.0475 0.0519 0.0562 0.0719 

MAE 0.0547 0.0708 0.0757 0.0251 0.0408 0.0451 0.0488 0.0661 

MAPE 0.2645 0.3403 0.3637 0.1221 0.1977 0.2177 0.2353 0.3183 

QLIKE -0.5067 -0.4932 -0.4887 -0.5267 -0.5170 -0.5140 -0.5110 -0.4974 

 

 

 



Table 4. Diebold and Mariano tests: pair-wise comparisons (MSE). 

 σBS σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 σCIV5 

σBS  -9.94 -10.79 6.39 5.78 3.86 1.88 -7.99 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.06) (0.00) 

σCIV1  -9.04 -9.39  -5.16 -5.57 -5.89 -8.84 

  (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

σCIV2  -16.81 -9.71   -9.24 -6.89 -8.48 

  (0.00) (0.00)   (0.00) (0.00) (0.00) 

σCIV3  -8.12 -8.98    -6.53 -7.21 

  (0.00) (0.00)    (0.00) (0.00) 

σCIV4  -6.77 -7.85     -5.60 

  (0.00) (0.00)     (0.00) 

σCIV5  -8.24 -9.45      

  (0.00) (0.00)      

σMF1   -8.88      

   (0.00)      

Note. The Table reports the t-statistic and associated p-value for the Diebold and Mariano 

test of equal predictive accuracy for each couple of forecasts. The loss function used is the MSE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Diebold and Mariano tests: pair-wise comparisons (QLIKE). 

 

 σBS σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 σCIV5 

σBS  -9.91 -10.90 6.87 5.86 4.12 2.26 -8.02 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.00) 

σCIV1  -8.43 -8.82  -5.23 -5.72 -6.16 -8.15 

  (0.00) (0.00)  (0.01) (0.00) (0.00) (0.00) 

σCIV2  -8.60 -9.23   -7.17 -7.74 -7.99 

  (0.00) (0.00)   (0.00) (0.00) (0.00) 

σCIV3  -7.77 -8.54    -7.52 -6.93 

  (0.00) (0.00)    (0.00) (0.00) 

σCIV4  -6.60 -7.51     -5.58 

  (0.00) (0.00)     (0.00) 

σCIV5  -8.63 -10.02      

  (0.00) (0.00)      

σMF1   -9.36      

   (0.00)      

         

Note. The Table reports the t-statistic and associated p-value for the Diebold and Mariano 

test of equal predictive accuracy for each couple of forecasts. The loss function used is the QLIKE. 

 

 

Table 6. Descriptive statistics, one day horizon. 

 

Statistic σr σBS σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 σCIV5 

mean 0.013 0.014 0.015 0.015 0.012 0.013 0.013 0.014 0.015 

std dev 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

skewness 0.658 0.752 0.304 0.379 0.479 0.469 0.397 0.307 0.397 

kurtosis 4.916 3.200 2.972 3.019 2.885 3.181 3.280 3.171 3.120 

Jarque Bera 29.510 12.550 2.033 3.152 5.088 4.999 3.876 2.224 3.529 

p-value 0.000 0.001 0.361 0.206 0.079 0.082 0.144 0.328 0.171 

 

 

 

 



Table 7. Predictive accuracy of the different volatility measures, 1 day horizon. 

 

 σBS σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 σCIV5 

MSE 0.118 ⋅10-4 0.142 ⋅10-4 0.151 ⋅10-4 0.126 ⋅10-4 0.113 ⋅10-4 0.118 ⋅10-4 0.123 ⋅10-4 0.131 ⋅10-4 

RMSE 0.343 ⋅10-2 0.377 ⋅10-2 0.389 ⋅10-2 0.355 ⋅10-2 0.336 ⋅10-2 0.343 ⋅10-2 0.351 ⋅10-2 0.362 ⋅10-2 

MAE 0.258 ⋅10-2 0.296 ⋅10-2 0.313 ⋅10-2 0.262 ⋅10-2 0.245 ⋅10-2 0.251 ⋅10-2 0.260 ⋅10-2 0.280 ⋅10-2 

MAPE 0.236 0.277 0.292 0.206 0.211 0.220 0.230 0.261 

QLIKE -3.332 -3.326 -3.324 -3.329 -3.333 -3.332 -3.331 -3.328 

 

 

Table 8. Diebold and Mariano tests: pair-wise comparisons, one day horizon (MSE). 

 

 σBS σCIV5 σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 

σBS  -2.72 -3.87 -4.30 -0.55 0.67 0.04 -1.02 

  (0.01) (0.00) (0.00) (0.58) (0.51) (0.97) (0.31) 

σCIV1  -0.30 -0.79 -1.19  1.46 0.77 0.21 

  (0.76) (0.43) (0.23)  (0.15) (0.44) (0.83) 

σCIV2  -1.70 -2.35 -2.82   -2.07 -2.55 

  (0.09) (0.02) (0.01)   (0.04) (0.01) 

σCIV3  -1.50 -2.28 -2.82    -2.96 

  (0.14) (0.02) (0.01)    (0.00) 

σCIV4  -1.00 -1.95 -2.59     

  (0.32) (0.05) (0.01)     

σCIV5   -5.65 -5.63     

   (0.00) (0.00)     

σMF1    -4.59     

    (0.00)     

Note. The Table reports the t-statistic and associated p-value for the Diebold and Mariano 

test of equal predictive accuracy for each couple of forecasts. The loss function used is the MSE.  

 

 

 

 

 

 



Table 9. Diebold and Mariano tests: pair-wise comparisons, one day horizon (QLIKE). 

 

 σBS σCIV5 σMF1 σMF2 σCIV1 σCIV2 σCIV3 σCIV4 

σBS  -2.60 -3.62 -3.93 -0.59 0.63 0.13 -0.62 

  (0.01) (0.00) (0.00) (0.56) (0.53) (0.90) (0.54) 

σCIV1  -0.09 -0.47 -0.75  1.71 0.91 0.45 

  (0.93) (0.64) (0.46)  (0.09) (0.37) (0.66) 

σCIV2  -1.49 -1.99 -2.34   -1.96 -2.36 

  (0.14) (0.05) (0.02)   (0.05) (0.02) 

σCIV3  -1.30 -1.90 -2.29    -2.74 

  (0.20) (0.06) (0.02)    (0.01) 

σCIV4  -0.90 -1.62 -2.08     

  (0.37) (0.11) (0.04)     

σCIV5   -5.23 -5.21     

   (0.00) (0.00)     

σMF1    -4.07     

    (0.00)     

Note. The Table reports the t-statistic and associated p-value for the Diebold and Mariano 

test of equal predictive accuracy for each couple of forecasts. The loss function used is the QLIKE.  

 

 

Table 10. Descriptive statistics of daily returns on the FTSE-MIB and daily changes in CIV1. 

 

 FTSE-
MIB 

Returns 

∆CIV1 

mean 0.0005 -0.0002 

std. Dev. 0.015 0.017 

skewness -0.374 0.261 

kurtosis 2.815 3.494 

Jarque-Bera 3.213 2.801 

p-value 0.200 0.246 

cross correlation -0.478  

 

 

 



Table 11. VAR estimates and Granger causality test between daily returns on the FTSE-MIB and 

daily changes in CIV1 (t-values in parentheses). 

 
 R ∆CIV1 

R(-1) -0.04 -0.19 

 (-0.42) (-1.79) 

R(-2) 0.13 -0.18 

 (1.29) (-1.71) 

∆CIV1(-1) -0.04 -0.51 

 (-0.42) (-4.94) 

∆CIV1(-2) -0.02 -0.21 

 (-0.19) (-2.04) 

c 0.00 -0.00 

 (0.47) (-0.11) 

   

Null Hp. F-stat p-value 

R does not Granger cause ∆CIV 2.80 (0.06) 

∆CIV does not Granger cause R 0.09 (0.92) 
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