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ABSTRACT In this manuscript, we analyze the most relevant classes of deterministic signal processing
methods currently available for the detection and the estimation of multiple targets in a joint communication
and sensing system employing orthogonal frequency division multiplexing. Our objective is offering a fair
comparison of the available technical options in terms of required computational complexity and accuracy
in both range and Doppler estimation. Our numerical results, obtained in various scenarios, evidence that
distinct algorithms can achieve a substantially different accuracy-complexity trade-off.

INDEX TERMS Dual-function radar-communication, frequency estimation, harmonic retrieval, joint com-
munication and sensing, maximum likelihood estimation, orthogonal frequency division multiplexing, radar
processing, spectral analysis.

I. INTRODUCTION
In the last few years, increasing attention has been paid
to the design of wireless systems able to perform both
communication and radar functions, i.e. to accomplish joint
communication and sensing (JCAS). Such systems make an
efficient use of the available spectrum and offer significant
benefits in terms of size, energy consumption, and cost,
since they employ a single radio device for both commu-
nication and sensing functionalities. For these reasons, they
are expected to play an important role in the field of future
vehicular networks [1], [2], [3].

One of the waveforms currently being considered for its
adoption in JCAS systems is orthogonal frequency division
multiplexing (OFDM) [4]. A huge technical literature is avail-
able about the signal processing techniques to be employed
at both the transmit (TX) and receive (RX) sides of wireless
communication systems exploiting this modulation format.
On the contrary, limited research efforts have been devoted
until now to the development of methods for target detection
and estimation in OFDM-based JCAS systems. The currently
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available methods can be divided in direct sensing methods
and indirect estimation methods. The former methods extract
target information from the received signal without compen-
sating for the effect of the data payload conveyed by its useful
component [5]; moreover, they typically exploit computation-
ally intensive compressed sensing techniques (e.g., see [6],
[7], [8], [9]). The latter methods, instead, rely on the knowl-
edge of a preliminary estimate of the communication channel.
The evaluation of this estimate requires compensating for
the contribution of the transmitted channel symbols to the
received signal (such symbols are always known at the receive
side of a colocated radar; e.g., see [10]). In this manuscript,
we focus on indirect methods only and investigate their use
in a colocated1 OFDM-based JCAS system equipped with
a single TX and a single RX antenna (i.e., of single-input
single-output (SISO) type). Moreover, we take into con-
sideration different classes of indirect methods, namely: 1)
discrete Fourier transform (DFT)-based or correlation-based
methods; 2) subspace methods; 3) maximum likelihood (ML)

1Since the considered system is colocated (i.e., its TX and RX antennas
are closely spaced), its receiver has a full knowledge of the structure and
content of the transmitted frames and of the carrier frequency.
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based methods. It is worth pointing out that, even if various
overviews on JCAS systems have appeared in the last three
years [4], [5], [11], [12], [13], [14], [15], [16], [17], [18],
[19], none of them provides a comparative analysis of the
above mentioned methods for sensing in an OFDM-based
radar system. Written with the aim of filling this gap, this
manuscript offers a fair comparison in terms of accuracy and
computational complexity of various algorithms belonging to
the aforementioned classes and highlights their peculiarities
and limitations.

The remaining part of this manuscript is organized as
follows. In Section II, the processing accomplished in an
OFDM-based radar system is summarized and the model of
the signal feeding target detection and estimation algorithms
is illustrated. Section III is devoted to the description of var-
ious relevant estimations methods, and to the assessment of
their computational complexity. The analyzed techniques are
compared in terms of accuracy and complexity in Section IV.
Finally, some conclusions are offered in Section V.
Notation: Throughout this paper, (·)T denotes matrix

transposition, whereas (·)∗ and (·)H denote complex conju-
gate and complex conjugate transpose (Hermitian operator),
respectively. Moreover, ℜ{x} and ℑ{x} indicate the real
and imaginary part, respectively, of the complex variable x.
Finally, 0D1,D2 denotes the D1 × D2 null matrix.

II. SYSTEM AND SIGNAL MODELS
In this section, the processing accomplished in a SISO
OFDM-based JCAS system is sketched; our main objective
is providing the mathematical model of the transmitted signal
and of the corresponding received signal in the presence of
multiple targets. In our analysis, we focus on the transmis-
sion of a single frame, consisting of M consecutive OFDM
symbols; the radio frequency (RF) waveform conveying the
transmitted frame is (e.g., see [20, eq. (4)])

xRF(t) = ℜ

{
exp (j2π fct)

M−1∑
m=0

xm(t)

}
, (1)

where fc denotes the frequency of the local oscillator
employed in the TX up-conversion and

xm(t) ≜ q (t − mTs)
N−1∑
n=0

sm,n exp
(
j2πn1f (t − mTs)

)
(2)

is the complex envelope of the transmitted signal conveying
the mth OFDM symbol (with m = 0, 1, . . . ,M − 1); here,
q(t) is a windowing function (employed for pulse shaping),
sm,n is the channel symbol carried by the nth subcarrier of
the mth OFDM symbol (with n = 0, 1, . . ., N − 1), N is the
overall number of subcarriers, 1f = 1/T is the subcarrier
spacing, T is the OFDM symbol interval, Ts ≜ T + TG
is the overall duration of the OFDM symbol and TG is the
cyclic prefix duration (also known as guard time [10]). In this
manuscript, a rectangular windowing function is assumed,
so that q(t) = 1 for t ∈ [−TG,T ] and q(t) = 0 elsewhere.

Let assume now that xRF(t) (1) is reflected by K point
targets, and that the kth target (with k = 0, 1, ..,K − 1) is
located at the (initial) distance Rk from the transmitter and
moves at the radial velocity2 vk with respect to it. It is not
difficult to show that, in this case, the complex envelope of
the signal received by the JCAS system is3

r(t) =

K−1∑
k=0

Ak exp
(
j2π fDk t

)
·

M−1∑
m=0

xm

(
t − τk +

fDk
fc
t
)

+ w (t) , (3)

where Ak ≜ αk exp(−j2π fcτk ) is the complex gain account-
ing for the attenuation, path loss and phase rotation due
to the overall propagation delay τk ≜ 2Rk/c introduced by
the kth target and αk is a positive parameter accounting for
the attenuation and the path loss associated with the same
target. Moreover, fDk = 2vk/λ is the Doppler shift due to
the relative velocity of the kth point target with respect to the
radar system, λ = c/fc is thewavelength of the radiated signal
and w(t) is the complex additive Gaussian noise process
affecting r(t). The signal r(t) (3) undergoes analog-to-digital
conversion and DFT processing. An analytical model that
describes the sequence generated by sampling r(t) in the mth
OFDM symbol interval can be obtained as follows. First of
all, the right-hand side (RHS) of (2) is substituted in that
of (3). Then, extracting the portion associated with the mth
OFDM symbol from the resulting expression and substituting
t with t ′ = t − mTs yields

rm(t ′) =

K−1∑
k=0

Ak exp
(
j2π fDk t

′
)
am(FDk )

N−1∑
n=0

sm,n

· an(−Frk ) ξn
(
fDk , t

′
)
ζm,n

(
fDk

)
exp

(
j2πn1f t ′

)
+ w(t ′), (4)

aq(FX ) ≜ exp(j2πqFX ), (5)

with q being either m or n if X is either D or r , respectively,

Frk ≜ 1f τk (6)

and

FDk ≜ fDkTs (7)

are the normalized target delay and the normalized Doppler
frequency,4 respectively, characterizing the kth target,

ξn
(
f , t ′

)
≜ exp

(
j2πn1f (f /fc) t ′

)
(8)

2This velocity is positive (negative) if the target approaches (moves away
from) the considered radar system.

3In our system, the availability of stable and accurate frequency and timing
references is assumed; for this reason, the time-frequency mismatch at the RX
side is deemed negligible [21, Sec. III-B].

4Note that Frk is always a positive quantity, whereas FDk is positive
(negative) if the kth target is approaching (moving away from) the radar
system.
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and

ζm,n(f ) ≜
(
j2πn1f (f /fc)mTs

)
. (9)

Sampling rm(t ′) (4) at the instant t ′l ≜ lT/N (that is equivalent
to sampling r(t) (3) at the instant tl ≜ t ′l + mTs), with l =

0, 1, . . . ,N − 1, results in

rm,l ≜ rm(t ′l ) =

K−1∑
k=0

Ak Dl
(
fDk

)
am(FDk )

N−1∑
n=0

sm,n

· an(−Frk ) ξn,l
(
fDk

)
ζm,n

(
fDk

)
exp(j2πnl/N ) + wl ,

(10)

whereDl(fDk ) ≜ exp(j2π fDk lT/N ) accounts for the so-called
range migration effect due to the kth target Doppler (e.g.
see [21]), ξn,l(fDk ) ≜ ξn(fDk , t

′
l ) and wl ≜ w(t ′l ) is the

Gaussian noise affecting rm,l (an additive white Gaussian
noise (AWGN) model is assumed for the sequence {wl; l =

0, 1, . . . ,N − 1}). In the following, we assume that the target
Dopplers {fDk } are sufficiently small and, more precisely,
|fDk /fc| ≪ 1/(MN ) for any k , so that the factors ξn,l(fDk )
and ζm,n(fDk ) appearing in the RHS of (10) can be neglected;
this leads to the simplified signal model

rm,l =

K−1∑
k=0

Ak Dl
(
fDk

)
am(FDk )

N−1∑
n=0

sm,n

· an(−Frk ) exp(j2πnl/N ) + wl . (11)

The N signal samples acquired in the mth OFDM
symbol interval undergo serial-to-parallel (S/P) conver-
sion; this produces the N -dimensional vector rm ≜
[rm,0, rm,1, . . . , rm,N−1]T for which an order N DFT is com-
puted. The nth element of the resulting DFT output vector

Rm ≜ [Rm,0,Rm,1, . . . ,Rm,N−1]T , (12)

can be expressed as

Rm,n = sm,n

K−1∑
k=0

Akam(FDk )an(−Fρk ) +Wm,n, (13)

whereWm,n is the Gaussian noise affecting the nth subcarrier
of the mth OFDM symbol and

Fρk = Frk − FDkT/(NTs) (14)

is a normalized frequency accounting for the target delay and
the range migration due to its velocity. In the following we
assume that N is large enough, so that the Fρk ≈ Frk for any
k , thus (13) can be simplified as

Rm,n = sm,n

K−1∑
k=0

Ak am(FDk ) an(−Frk ) +Wm,n. (15)

Since the channel symbol sm,n is known at the receive side for
any n and m, the estimate

Ĥm,n ≜
Rm,n

sm,n
≜

K−1∑
k=0

Ak am(FDk ) an(−Frk ) + W̄m,n (16)

of the channel gain Hm,n observed at the nth subcarrier fre-
quency in the mth OFDM symbol interval can be computed;
here,

W̄m,n ≜
Wm,n

sm,n
(17)

is the noise sample affecting Ĥm,n, in (16). It is worth pointing
out that:

1) The parameters Fr (6) and FD (7) satisfy the inequalities
Fr,min ⩽ Fr ⩽ Fr,max and FD,min ⩽ FD ⩽ FD,max, with
Fr,min = 0, Fr,max = 1 and FD,min = −1/2, FD,max = 1/2,
respectively.

2) an AWGN model is adopted for the noise samples
{Wm,n} (see (15)) and, consequently, for the noise samples
{W̄m,n} (see (17)), since a phase shift keying (PSK) constel-
lation is employed in our simulations (each element of the
sequence {W̄m,n} is assumed to have zero mean and variance
σ 2
W ).
3) Neglecting self-interference and range migration results

in a signal model in which the target delay and Doppler
frequency are decoupled parameters. This entails that, in prin-
ciple, the values of these parameters can be evaluated sepa-
rately through 1D frequency estimation techniques. However,
only 2D frequency estimation techniques are considered in
the following since, despite their higher computational effort
than their 1D counterparts, they achieve better accuracy and
do not require the use of a pairing method to associate the
estimated delays and Doppler frequencies with each detected
target.

4) Even if clutter plays an important role in radar sensing,
its contribution to the received signal can be mitigated resort-
ing to various techniques available in the technical literature
(e.g., see [6]). For this reason, in our work, this contribution
is always neglected.

From (16) it can be easily inferred that: a) the noisy sam-
ples {Ĥm,n} of the two-dimensional (2D) channel response
acquired over a single frame can be modelled as the super-
position of multiple 2D complex exponentials with AWGN;
b) target detection and estimation is tantamount to identifying
theK complex exponentials forming the useful component of
the 2D sequence {Ĥm,n} and at estimating their parameters,
respectively.

III. DETECTION AND ESTIMATION ALGORITHMS
In this subsection, various algorithms for the detection and
estimation of multiple targets in an OFDM-based radar
systems are illustrated and their computational complex-
ity is analyzed by deriving the order of magnitude of the
number of floating point operations (FLOPs) they require
to process a single OFDM frame. The general criteria
adopted in estimating the computational cost of the vari-
ous algorithms are the same as those illustrated in [22] and
[23, Appendix C]. These algorithms are divided in FFT-
based techniques, subspace-based methods and ML-based
techniques.

68874 VOLUME 11, 2023



M. Mirabella et al.: Deterministic Signal Processing Techniques for OFDM-Based Radar Sensing

A. FFT-BASED TECHNIQUES
Correlation-based and DFT-based methods have been devel-
oped in [24], [25], [26], [27], [28], [29], [30], [31], and [32].
In particular, matched filter (MF)-based techniques for the
estimation of range and Doppler in a single or multi-target
scenario have been investigated in [24] and [32]. Such tech-
niques benefit from the prior knowledge of the received signal
and are computationally efficient; however, the accuracy
they achieve in radar imaging may be poor because of high
sidelobes and leakage, especially in the presence of strong
clutter around real targets. A serial cancellation technique
for improving the overall accuracy of radar images has been
developed in [33], whereas a reduced complexity method,
based on the idea of splitting a 2D estimation problem
(involving target range and Doppler) into a couple of one-
dimensional (1D) simpler sub-problems, has been illustrated
in [29].

In the following we take into consideration the 2D peri-
odogram method (dubbed 2D-FFT in the following) and
two cancellation-based estimation algorithms, namely the
complex single frequency delay estimation and cancellation
(CSFDEC) algorithm [33] and the CLEAN algorithm [34],
[35]. On the one hand, the first algorithm can be considered
as a reference technique; on the other hand, the other two
algorithms as methods able to efficiently mitigate the main
problems of the first one, namely: 1) the limited accuracy due
to the discretization of the grid selected in the search for the
peaks of the periodogram; 2) the need to search for multiple
local maxima, which can lead to missed target detection
in the presence of closely spaced targets; 3) the significant
impact that spectral leakage may have in the presence of
multiple targets. In fact, both the CSFDEC and the CLEAN
algorithms combine the serial cancellation of the spectral
contribution of each detected target with leakage compen-
sation and re-estimation techniques. Moreover, unlike the
2D-FFT algorithm, they do not need a prior knowledge of
the overall number of targets.5

1) TWO-DIMENSIONAL PERIODOGRAM METHOD
This method is based on the so-called range-Doppler
map [26], i.e. on the function

J [l, p] = |S [l, p]|2 , (18)

with l = 0, 1, . . . ,M0 − 1 and p = 0, 1, . . . ,N0 − 1; here,

S [l, p] ≜
1
MN

M−1∑
m=0

N−1∑
n=0

Ĥm,n am(−FD[l]) an(Fr [p]), (19)

is the coefficient (l, p) of the order (M0,N0) discrete sym-
plectic Fourier transform (DSFT) of the 2D sequence {Ĥm,n}.

5This is a relevant feature of all the detection and estimation algorithms
that exploit a serial cancellation procedure for the sequential detection of
multiple targets.

Moreover,

FD [l] ≜ l/M0 − 1/2, (20)

Fr [p] ≜ p/N0, (21)

M0 ≜ LDM , (22)

N0 ≜ LrN ; (23)

and LD and Lr are the oversampling factors adopted in the
Doppler and range domain, respectively. The estimates of the
normalized Doppler frequency FD and the normalized delay
Fr of a single target are evaluated as F̂D = FD[l̂] and F̂r =

Fr [p̂], respectively, where(
l̂, p̂

)
≜ arg max

l̃ ∈SM0 , p̃∈SN0
J [l̃, p̃] (24)

and SX is the set of integers {0, 1, . . . ,X−1} for any positive
integer X . Given l̂ and p̂, the target complex amplitude A is
estimated as

Â = LD Lr S[l̂, p̂]. (25)

In a multi-target scenario, multiple (say K̂ , where K̂ denotes
a prior estimate of the number of targets K ) local maxima6

should be expected in the range-Doppler map; in this case,
the parameters of the target associated with each local maxi-
mum are evaluated according to (20), (21) and (25).

The most computationally intensive task required by this
method is represented by the evaluation of the above men-
tioned order (M0,N0) DSFT (see (19)). Then, the cost for the
search of K̂ local maxima in the range-Doppler map has to
be added to the previous cost. For this reason, the overall
computational cost of the 2D-FFT method is C2D−FFT =

O(N2D−FFT), where

N2D−FFT = M0 N0 log2(M0N0) + K̂ (M0N0). (26)

2) CLEAN ALGORITHM
The use of the CLEAN algorithm in radar systems has been
proposed in [34], [35], and [36]. On the one hand, one of
the earliest implementations of the CLEAN algorithm can
be found in [34], where the cancellation capability of the
CLEAN algorithm is adopted to reduce sidelobe-induced arti-
facts affecting the images generated by microwave systems
that employ antenna arrays. On the other hand, a more recent
CLEAN-based algorithm has been proposed in [35] and [36],
where it is employed in the context of stepped frequency
continuous wave (SFCW) radar technology. In that case, the
algorithm also includes a technique for the compensation of
the spectral leakage due to close targets. In this subsection,
we show how this algorithm can be also employed for jointly
estimating the range and velocity of multiple targets in the
OFDM-based radar system described in the previous section.
The CLEAN algorithm is based on the same cost function
as the 2D-FFT method (see (18)), but, unlike it, makes use

6In our simulations, the Fast 2D peak finder function available in
MatlabR2022a has been exploited to locate all the relevant peaks in range-
Doppler maps.
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of an iterative target cancellation procedure. This means that,
within each of its iterations, after detecting a new target and
estimating its parameters, its contribution to the above men-
tioned cost function is cancelled; this results in a residual cost
function, which is passed to the next iteration.More precisely,
the processing executed by the CLEAN algorithm consists in
an initialization step followed by an iterative procedure. In the
initialization, we set the iteration index k to 0 and

Ĥm,n[0] = Ĥm,n, (27)

with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . ,N − 1. Then,
in the kth iteration (with k = 0, 1, . . . , K̂ − 1, where K̂
denotes the overall number of detected targets), the four steps
described below are carried out sequentially.

1) Computation of the cost function— The cost function

Jk [l, p] = |Sk [l, p] |2 (28)

is computed for l = 0, 1, . . . ,M0−1 and p = 0, 1, . . . ,N0−

1; here, Sk [l, p] is expressed by (19), where, however, Ĥm,n
is replaced by Ĥm,n[k] (see (29) below).

2)Estimation of the parameters of a new target—Asearch
for the global maximum over the set {Jk [l, p]; l ∈ SM0 ,
p ∈ SN0} (collecting M0 N0 values) is performed to detect
a new target (i.e., the kth target); the value of the couple (l, p)
corresponding to the global maximum is denoted (l̂k , p̂k ).
Then, the estimates of the normalized frequency FDk and of
the normalized delay Frk of the kth target are evaluated as
F̂Dk = FD[l̂k ] and F̂rk = Fr [p̂k ], respectively (see (20) and
(21)); whereas that of its complex amplitude Âk is evaluated
according to (25), where S[l̂, p̂] is replaced by Sk [l̂k , p̂k ].
3) Threshold test to identify false targets — If |Âk | <

TCLEAN, where TCLEAN denotes a proper (positive) threshold,
a false target is identified and the execution is stopped by
moving to step 5); otherwise, we proceed with the next step.

4) Target cancellation — The new residual frequency
response

Ĥm,n [k + 1] ≜ Ĥm,n [k] − Âk am
(
F̂Dk

)
an

(
−F̂rk

)
(29)

is evaluated to cancel the contribution of the last detected
target to Ĥm,n[k] (with m = 0, 1, . . . ,M − 1 and n =

0, 1, . . . ,N − 1). Then, the iteration index k is increased by
one and a new iteration is started (i.e., we go back to step 1)).

5) End — The final output provided by the CLEAN
algorithm is represented by the set {(F̂Dk , F̂rk , Âk ); k =

0, 1, . . . , K̂ − 1}, where K̂ represents the last value taken on
by the iteration index k .

The serial cancellation procedure expressed by eq. (29)
may suffer from error accumulation, since the effects of
errors in the estimation of target parameters accumulate over
successive iterations. This may result in: a) poor accuracy in
the presence of multiple and/or closely spaced targets; b) the
detection of false targets. These considerations motivate the
use of a refinement procedure to be accomplished after the last
iteration of the CLEAN algorithm. This procedure consists of
NREF iterations. In its ith iteration (with i = 1, 2, . . . ,NREF),

the refined estimates {(F̂ (i)
Dk , F̂

(i)
rk , Â

(i)
k ); k = 0, 1, . . . , K̂ − 1}

of the parameters of the K̂ targets detected by the CLEAN
algorithm are evaluated as follows. First of all, we maximize,
over a specific rectangular grid (consisting of M̃0 Ñ0 distinct
nodes), the function

J (i)k
(
F̃D, F̃r

)
=

∣∣∣S(i)k (
F̃D, F̃r

)∣∣∣2 , (30)

where

S(i)k
(
F̃D, F̃r

)
≜

1
MN

M−1∑
m=0

N−1∑
n=0

Ĥ (i)
m,n [k] am

(
−F̃D

)
an

(
F̃r

)
(31)

and

Ĥ (i)
m,n [k]

= Ĥm,n[0] −

K̂−1∑
j=0, j̸=k

Â(i−1)
j am

(
F̂ (i−1)
Dj

)
an

(
−F̂ (i−1)

rj

)
, (32)

with k = 0, 1, . . . , K̂ − 1. The above mentioned grid, that
has a significant impact on the accuracy achieved by the
CLEAN algorithm, has the following properties: 1) its center
depends on both F̂ (i−1)

Dk and F̂ (i−1)
rk ; 2) its step sizes get smaller

as i increases. More precisely, its node (zD, zr ) (with zD =

0, 1, . . . , M̃0−1 and zr = 0, 1, . . . , Ñ0−1) is associated with
the frequencies (F̃ (i)

D [zD], F̃
(i)
r [zr ]).7 In Table 1 it is shown

how the nodes of the above mentioned grid are selected; in
that Table, δX = 1/M0 and Q̃0 = M̃0 − 1 if X = D (δX
= 1/N0 and Q̃0 = Ñ0 − 1 if X = r). The nodes are grouped
in the set

I(i)D,r

(
M̃0, Ñ0

)
= I(i)D

(
M̃0

)
× I(i)r

(
Ñ0

)
, (36)

where × denotes the Cartesian product between two sets,
I(i)D (M̃0) and I(i)r (Ñ0) are the sets collecting the M̃0 and Ñ0

frequencies {F̃ (i)
D [zD]} and {F̃ (i)

r [zr ]}, respectively.
Maximizing the function S(i)k (F̃D, F̃r ) (31) over I(i)D,r (36)

leads to the estimates F̂ (i)
Dk and F̂ (i)

rk of FDk and Frk , respec-

tively. Finally, the new estimate Â(i)k = S(i)k (F̂ (i)
Dk , F̂

(i)
rk ) of Ak is

evaluated.
It is important to point out that: 1) the evaluation of Ĥ (i)

m,n[k]
according to (32) aims at cancelling the contribution given to
Ĥm,n[0] by the (K̂ − 1) targets different from the kth one in
the ith iteration; 2) at the end of the last (i.e., of the NREFth)
iteration, the refined estimates {(F̂ (NREF)

Dk , F̂ (NREF)
rk , Â(NREF)

k );
k = 0, 1, . . . , K̂−1} become available; 3) the value assigned
to δX (with X = D and r) allows to cover two adjacent bins
of the evaluated DSFT.

It can be shown that the computational cost of the
CLEAN algorithm with refinement is O(NCL), where (see
[36, Sec. III-E, eq. (43)])

NCL = N̄CL (M0,N0) + NREF N̄CL
(
M̃0, Ñ0

)
. (37)

7In the equations listed in Table 1 and in (36), the dependence of F̃ (i)
X [zX ]

and I(i)D,r on the target index k is not specified to ease notation.
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TABLE 1. Description of the grid employed for the refinement step of the CLEAN algorithm.

Here,

N̄CL(M0,N0) = K [MN (6M0N0 + 15)

+ 2M0N0 (M + N )] (38)

is the contribution due a single iteration of the algorithm;
note that the parameters (M0,N0) and (M̃0, Ñ0) define the
grid sizes for the initialization and for the refinement steps,
respectively.

3) CSFDEC ALGORITHM
The CSFDEC algorithm, developed in [33], combines a sin-
gle 2D tone estimator, named complex single frequency delay
estimator (CSFDE), with a serial cancellation procedure, sim-
ilar to that used by the CLEAN algorithm [35]. However,
the CSFDEC algorithm performs target cancellation in the
frequency domain, whereas the CLEAN algorithm accom-
plishes it on the 2D sequence {Ĥm,n} extracted from the (time
domain) received signal. The processing accomplished by
the CSFDE algorithm consists in an initialization followed
by an iterative procedure. In the initialization, the following
quantities are computed: 1) The set of 13 M0 × N0 matri-
ces {Ȳk1,k2 = [Ȳk1,k2 [l, p]]} (with k1, k2 = 0, 1, 2, 3, and
(k1, k2) ̸= (0, 3), (3, 0) and (3, 3)); here,

Ȳk1,k2 ≜ DSFT
[
Ĥ(ZP)
k1,k2

]
(39)

is the order (M0,N0) DSFT of the zero padded version

Ĥ(ZP)
k1,k2

≜

[
Ĥk1,k2 0M ,(LD−1)N

0(Lr−1)M ,N 0(Lr−1)M ,(LD−1)N

]
(40)

of theM × N matrix Ĥk1,k2 ≜ [Ĥ (k1,k2)
m,n ] and

Ĥ (k1,k2)
m,n ≜ mk1nk2Ĥm,n, (41)

with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . ,N − 1 (the
oversampling factors LD and Lr are defined by (22) and (23),
respectively).

2) The coarse estimates F̂ (0)
D,c = l̂(0)/M0 − 1/2 and F̂ (0)

r,c =

p̂(0)/N0 of the normalized Doppler FD and normalized delay
Fr , respectively, that characterize the single target detected
by the algorithm; here,(

l̂(0), p̂(0)
)

= arg max
l̃ ∈SM0 ,p̃∈SN0

∣∣∣Ȳ0,0[l̃, p̃]∣∣∣2 . (42)

3) The initial estimate

Â(0)
= Ȳ

(
F̂ (0)
D,c, F̂

(0)
r,c

)
, (43)

of the complex amplitude A of the detected target; here,

Ȳ
(
F̃D, F̃r

)
≜

1
MN

M−1∑
m=0

N−1∑
n=0

Ĥm,n am
(
−F̃D

)
an

(
F̃r

)
. (44)

4) The coefficients

b� = 1̂3
ℑ
{
Â∗Ȳ2,3

}
/3 − 1̂2

ℜ
{
Â∗Ȳ2,2

}
− 21̂ ℑ

{
Â∗Ȳ2,1

}
+ 2ℜ

{
Â∗Ȳ2,0

}
, (45)

c� = 1̂3
ℜ

{
Â∗Ȳ1,3

}
/3 + 1̂2

ℑ
{
Â∗Ȳ1,2

}
− 21̂ ℜ

{
Â∗Ȳ1,1

}
− 2ℑ

{
Â∗Ȳ1,0

}
, (46)

b1 = −�̂3
ℑ
{
Â∗Ȳ3,2

}
/3 − �̂2

ℜ
{
Â∗Ȳ2,2

}
+ 2�̂ ℑ

{
Â∗Ȳ1,2

}
+ 2ℜ

{
Â∗Ȳ0,2

}
, (47)

and

c1 = �̂3
ℜ

{
Â∗Ȳ3,1

}
/3 − �̂2

ℑ
{
Â∗Ȳ2,1

}
− 2�̂ ℜ

{
Â∗Ȳ1,1

}
+ 2ℑ

{
Â∗Ȳ0,1

}
, (48)

where Ȳk1,k2 ≜ Ȳk1,k2 [l̂
(0), p̂(0)] for any k1 and k2.

5) The initial estimate �̂(0)(1̂(0)) of � (1) as

X̂ ′
= −cX/bX , (49)

with X = � (with X = 1).
6) The initial fine estimates

F̂ (0)
D = F̂ (0)

D,c + �̂(0)/(2π ) (50)

and

F̂ (0)
r = F̂ (0)

r,c + 1̂(0)/(2π ) (51)

of FD and Fr , respectively. This concludes the initialization.
The iterative procedure is started by setting the iteration index
i = 1. The ith iteration is fed by the estimates F̂ (i−1)

D , F̂ (i−1)
r

and Â(i−1) of FD, Fr and A, respectively, and produces the
new estimates F̂ (i)

D , F̂ (i)
r and Â(i) of the same quantities, with

i = 1, 2, . . . ,Nit (where Nit is the overall number of itera-
tions selected before starting the algorithm). The procedure
adopted for the evaluation of F̂ (i)

D , F̂ (i)
r and Â(i) consists of the

two steps described below.
1) Estimation of the normalized Doppler and the normal-

ized delay — The new estimates �̂(i) and 1̂(i) of �̃ and 1̃,
respectively, are computed according to (49). In evaluating
the coefficients bX and cX (with X = � and 1) on the
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basis of (45)-(48), Â = Â(i−1) is assumed; moreover, we set
Ȳk1,k2 = Ȳk1,k2 (F̂

(i−1)
D , F̂ (i−1)

r ) for any k1 and k2, where

Ȳk1,k2
(
F̃D, F̃r

)
≜

1
MN

M−1∑
m=0

N−1∑
n=0

Ĥ (k1,k2)
m,n

· am
(
−F̃D

)
an

(
F̃r

)
. (52)

An alternative to the use of the last formula for the evaluation
of Ȳk1,k2 is represented by the use of a 2D interpola-
tion method applied to a block of ID Ir elements of the
matrix Ȳk1,k2 (where ID and Ir denote the interpolation orders
adopted for Doppler and range, respectively); the need of
interpolation originates from the fact that, in general, F̂ (i−1)

D
and F̂ (i−1)

r cannot be put in the form (20) and (21) (with a
proper choice of the integers l and p), respectively.
Given �̂(i) and 1̂(i), the new estimates

F̂ (i)
D = F̂ (i−1)

D + �̂(i)/(2π ) (53)

and

F̂ (i)
r = F̂ (i−1)

r + 1̂(i)/(2π ) (54)

are computed.
2) Estimation of the complex amplitude — The new esti-

mate Â(i) of Â is evaluated by means of (43); in doing so, the
couple (F̂ (i)

D , F̂ (i)
r ) is used in place of (F̂ (0)

D,c, F̂
(0)
r,c).

Then, before starting the next iteration, the index i is
incremented by one. At the end of the last (i.e., of the Nitth)
iteration, the fine estimates F̂D = F̂ (Nit)

D , F̂r = F̂ (Nit)
r and

Â = Â(Nit) of FD, Fr and A, respectively, become available
and the algorithm stops.

The CSFDE algorithm represents the core of the CSFDEC
algorithm, which is used to recursively estimate the multi-
ple tones forming the useful component of the 2D complex
sequence {Ĥm,n}, whose (m, n)th element is expressed by
(16), with K ≥ 1 and, in general, unknown. The CSFDEC
algorithm is initialized by: 1) running the CSFDE algorithm
to compute the initial estimates F̂ (0)

D0
, F̂ (0)

r0 and Â(0)0 of
the parameters FD0 , Fr0 and A0 characterizing the first
(i.e., the strongest) target; 2) setting the recursion index
i to 1 and Ȳ(0)

0,0 = Ȳ0,0 (see (39) with k1 = k2 =

0). Then, a recursive procedure is started. The ith recur-
sion of this procedure is fed by the vectors F̂(i−1)

D =

[F̂ (i−1)
D0

, F̂ (i−1)
D1

, . . . , F̂ (i−1)
Di−1

]T , F̂(i−1)
r = [F̂ (i−1)

r0 , F̂ (i−1)
r1 ,. . .,

F̂ (i−1)
ri−1 ]T and Â(i−1)

= [Â(i−1)
0 , Â(i−1)

1 ,. . ., Â(i−1)
i−1 ]T , collecting

the estimates of the normalized Doppler frequency, normal-
ized delay and complex amplitude, respectively, of the i tones
detected and estimated in the previous recursions, and gen-
erates the new vectors F̂(i)

D , F̂(i)
r and Â(i) after: a) estimating

the parameters F̂ (i)
Di , F̂

(i)
ri and Â(i)i of the new (i.e., of the

ith) tone (if any); b) refining the estimates of the i tones
available at the beginning of the considered recursion. The
procedure employed for accomplishing all this consists of
three steps and can be summarised as follows. In its first step,
the residual spectrum Y(i)

0,0 is computed by subtracting from

Y(i−1)
0,0 the contribution given by the i estimated 2D tones. If the

overall energy ε0,0[i] ≜ ∥Y(i)
0,0∥

2 of the vector Y(i)
0,0 satisfies

the inequality ε0,0[i] < TCSFDEC, where TCSFDEC is a proper
threshold, the ith tone has to be considered as the last one;
for this reason, the estimate K̂ = i of K is generated and the
algorithm stops after carrying out the next two steps. In the
second step, Nit iterations are executed to refine the estimate
of the parameters of the new tone detected in the previous
step. The processing accomplished in this step follows closely
that described in the refinement part (i.e., in the second step)
of the CSFDE. Therefore, in each iteration, a new estimate
of the complex amplitude and of the two frequency residu-
als of the ith tone are computed. Finally, in the third step,
each tone is re-estimated after cancelling the leakage due to
all the other (i− 1) tones. This allows to progressively refine
the amplitude, normalizedDoppler frequency and normalized
delay of each tone, thus generating the final estimates of all
the detected tones. Note that, in principle, this re-estimation
procedure can be repeated multiple (say, NREF) times.
Finally, it is worth noting that the refinement procedure

of the CSFDEC algorithm does not need, unlike that of the
CLEAN algorithm [35], the definition of a search grid for
the optimization of a cost function. In fact, the frequency
residuals are computed by the CSFDEC on the basis of a
closed from expression (see (49)), whose use requires only
the knowledge of the spectral coefficients collected in the
matrices {Ȳk1,k2}. It can be shown that the computational cost
of the CSFDEC algorithm, when the frequency residuals are
evaluated on the basis of (49), isO(NCSFDEC), where (see [33,
Sec. III-C, eq. (58)])

NCSFDEC = 13M0 N0 log2(M0 N0)

+ K 2 NREF Nit 13 ID Ir . (55)

B. SUBSPACE-BASED METHODS
The use of subspace methods for target range and Doppler
estimation has been investigated in [9], [37], [38], and [39].
In particular, algorithms based on the Multiple Signal Clas-
sification (MUSIC) technique have been analyzed in [9],
[20], [37], and [39], whereas the use of the 2D estimation of
signal parameters via rotational invariant technique (ESPRIT)
for the estimation of the delay and Doppler of multiple
targets has been studied in [38]. Various results illustrated
in the above mentioned manuscripts lead to the conclusion
that MUSIC-based algorithms can outperform 2D FFT-based
methods for joint range-velocity estimation at the price, how-
ever, of a significantly larger computational complexity [37].
A lower complexity version of the MUSIC technique, called
auto-paired method, has been proposed in [39], whereas an
iterative method for improving the robustness of the MUSIC
algorithm has been developed in [9].

In the following we concentrate on the 2D-MUSIC
algorithm only, since it performs similarly as the 2D-ESPRIT
at a comparable computational cost [40], [41]. This algorithm
is based on the search of K̂ local maxima in the
2D-MUSIC spectrum (also known as pseudo spectrum),
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whose computation requires the identification of the so called
noise subspace. In practice, the algorithm needs a prior esti-
mate (denoted K̂ ) of K and consists of the following steps:

1) The (M N ) × (M N ) correlation matrix

R ≜
1
MN

H̄ H̄H (56)

is evaluated; here, H̄ denotes the (MN )-dimensional vector
generated by the ordered concatenation of the columns of the
M × N matrix Ĥ = [Ĥm,n] (see (16)).

2) The pseudo-spectrum

PMUSIC [l, p] ≜
∥∥∥QH

n M̄ [l, p]
∥∥∥−2

(57)

is computed for l = 0, 1, . . . ,M0−1 and p = 0, 1, . . . ,N0−

1; here, M0 and N0 are integer parameters defining the
size of the search space for the normalized Doppler fre-
quency and the normalized delay, respectively, M̄[l, p] is a
(MN ) × (M0 N0) matrix whose (m, n)th element is defined
by the product am(FD[l]) an(−Fr [p]) (with FD[l] and Fr [p]
expressed by (20) and (21), respectively) and Qn is (MN ) ×

(MN − K̂ ) matrix, whose columns represent the (MN − K̂ )
eigenvectors of R (56) associated with noise.8

3) The estimates of the normalized delay and of the normal-
ized Doppler frequency are evaluated by finding the global
maximum of the pseudo-spectrum (57) in the case of a single
target or its K̂ highest local peaks in the case of multiple
targets. Note that, in the last case, all the local maxima of the
cost function can be really identified if the spacing between
all the targets is greater than the grid step size; this problem
can be mitigated by using a finer grid (i.e., a smaller step size)
at the price, however, of a larger computational complexity.

The overall 2D-MUSIC complexity is O(NMUSIC), where

NMUSIC = CR + Ce + CP. (58)

Here, we have that: a) CR = 10(MN )2 + 2MN − 2 is the
cost due to the computation of the covariance matrix R (56);
b) Ce ≈ (MN )3 is the contribution due to computation of the
eigenvalues of the matrix R (56); c) CP = M0 N0(8(M N )2 +

M N ) is the contribution due to the evaluation of the pseudo-
spectrum (see (57)).

C. MAXIMUM LIKELIHOOD-BASED TECHNIQUES
Maximum likelihood-based algorithms are able to achieve an
accuracy comparable to that of subspace methods at the price
of an increase in computational complexity [41], [42], [43],
[44]. Recent research contributions to this field concern: 1)
the exploitation of alternating maximization approach to mit-
igate the computational complexity of ML estimation [41];
2) the derivation of an iterative non-linear kernel least mean
square (KLMS) based estimation technique for the estimation
of target range [42]; 3) the development of an ML method,
based on a kinematic model of detected targets, for estimating
target speed [44].

8This is true in the absence of fully correlated targets, i.e. when the span
of the useful signal subspace is K̂ -dimensional.

In the following, we first take into consideration the
approximateMLmethods recently proposed in [41] and show
how they can be adapted to our signal model9 (16); the result-
ing algorithms, are dubbedmodified ZhangML (MZML) and
modified alternating projection ML (MAP-ML). Both these
algorithms are iterative; however, the first one maximizes
a 2D cost function, whereas the second one exploits the
method of alternating projections to turn a 2D optimization
problem into a couple of simpler 1D sub-problems in order to
mitigate the overall computational effort. Finally, we take into
consideration themodifiedWax&Leshem (MWL) algorithm
developed in [35] and [36] for joint range and azimuth esti-
mation of multiple targets in FMCW radar systems, and the
expectation maximization (EM) algorithm developed in [36]
and [41]. In particular, the last algorithm is exploited as
follows. It is initialized be means of the 2D-FFT technique.
Then, in each of its iterations, it accomplishes leakage com-
pensation in the same way as the MZML algorithm. The
resulting algorithm is denotedModified Zhang EM (MZEM)
in the following.

1) MODIFIED ZHANG MAXIMUM LIKELIHOOD ALGORITHM
This algorithm operates in an iterative fashion; in each of its
iterations, the estimates of the detected targets are refined.
It is initialized by: 1) setting the iteration index i to 1;
2) selecting the initial estimate of the normalized Doppler
frequency FDk and that of the normalized delay Frk as F̂

(0)
Dk =

FD[l̂
(0)
k ] and F̂ (0)

rk = Fr [p̂
(0)
k ], respectively (see (20) and (21)),

where (l̂(0)k , p̂(0)k ) is computed on the basis of (24) (with k =

0, 1, . . . , K̂ − 1, where K̂ denotes our prior estimate of K ).
Then, its iterations are started. The input of the ith iteration
(with i = 1, 2, . . . ,NREF, where NREF denotes the overall
number of iterations) is represented by the K̂ -dimensional
vectors

F̂(i−1)
D =

[
F̂ (i−1)
D0

, F̂ (i−1)
D1

, . . . , F̂ (i−1)
DK̂−1

]T
(59)

and

F̂(i−1)
r =

[
F̂ (i−1)
r0 , F̂ (i−1)

r1 , . . . , F̂ (i−1)
rK̂−1

]T
, (60)

that collect the estimates of the normalized Doppler fre-
quency and the normalized delay, respectively, of the K̂ tones
estimated in the previous (i− 1) iterations, and produces the
new estimates F̂(i)

D and F̂(i)
r . Moreover, in the ith iteration, two

distinct steps, that are repeated sequentially for each target
(i.e., for k = 0, 1, . . . , K̂ − 1), are executed; the description
of these steps is provided below for the kth target.

1) Computation of the cost function— In this step, the cost
function

J (i)k
(
F̃Dk , F̃rk

)
≜ H̄H P(i)

k

(
F̃Dk , F̃rk

)
H̄ (61)

9Note that, in our model, unlike the one considered in [41], inter-pulse
and inter-subcarrier Doppler effects are neglected.
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is evaluated for (F̃Dk , F̃rk ) ∈ I(i)D (M0)×I(i)r (N0); here, I(i)X (Y )
denotes the set10 of Y trial values selected for F̃Xk (with X =

D and r) in the ith iteration, H̄ is the (MN )-dimensional vector
resulting from the ordered concatenation of the columns of
the M × N matrix Ĥm,n = [Ĥm,n] (see (16)),

P(i)
k

(
F̃Dk , F̃rk

)
≜ M̆(i)

k

((
M̆(i)

k

)HM̆(i)
k

)−1 (
M̆(i)

k

)H (62)

is the (MN ) × (MN ) orthogonal projection matrix,

M̆(i)
k ≜

[
M(i−1)

0 ,M(i−1)
1 , . . . ,M(i−1)

k−1 ,M(i−1)
k+1 ,

. . . ,M(i−1)
K̂−1

, Ṁ(i)
k

]
(63)

is a (MN ) × K̂ matrix.11 The uth element of the last
matrix, namely M(i−1)

u = M(i−1)
u (F̂ (i−1)

Du , F̂ (i−1)
ru ) is an

(MN )-dimensional column vector that results from the
ordered concatenation of the columns of the M × N matrix
M̂(i−1)

u , whose element (m, n) is expressed by the product
am(F̂

(i−1)
Du ) an(−F̂

(i−1)
ru ) for any u ̸= k (see (5)), and Ṁ(i)

k is an
(MN )-dimensional column vector generated by the ordered
concatenation of the columns of theM×N matrix M̃(i)

k , whose
element (m, n) is expressed by the product am(F̃Dk ) an(−F̃rk ).
It is worth pointing out that: 1) the vector M(i−1)

u represents
the contribution of the uth target (with u ̸= k), evaluated
on the basis of its parameters estimated in the (i − 1)th
iteration, to the vector Ṁ(i)

k (computed for the kth target in
the ith iteration); 2) evaluating the matrix M̆(i)

k on the basis of
(63) allows to compensate for the spectral leakage affecting
the projection matrix P(i)

k (·, ·) (62); 3) the sets I(i)D (M0) and
I(i)r (N0) are generated by means of the same procedure illus-
trated for the CLEAN algorithm [35] in Section III-A2 (see
(33)-(35), in Table 1).
2) Target parameter estimation — In this step, the esti-

mates F̂ (i)
Dk and F̂

(i)
rk of FDk and Frk are computed as(

F̂ (i)
Dk , F̂

(i)
rk

)
= argmax

(F̃Dk ,F̃rk )∈I
(i)
D (M0)×I(i)r (N0)

∣∣∣J (i)k (
F̃Dk , F̃rk

)∣∣∣ , (64)

Then, the new estimate Â(i)k of the complex amplitude Ak is
evaluated as

Â(i)k =

((
M̆(i)

k

(
F̂ (i)
Dk , F̂

(i)
rk

))H
M̆(i)

k

(
F̂ (i)
Dk , F̂

(i)
rk

))−1

·

(
M̆(i)

k

(
F̂ (i)
Dk , F̂

(i)
rk

))H
. (65)

At the end of the last iteration, the vectors F̂(NREF)
D , F̂(NREF)

r

and Â(NREF), collecting the normalized frequencies, the nor-
malized delays and the complex amplitudes of the K̂ targets
are available.

10Once again, the dependence of I(i)X (Y ) on the target index k is omitted
for simplicity. This consideration also applies to the set of trial values
employed by the MZML and the MZEM algorithms.

11The dependence of the matrices M̆(i)
k , M̃(i)

k and of the vector Ṁ(i)
k (see

below) on the trial variables F̃Dk and F̃rk is not always explicitly shown for

simplicity. For the same reason, the dependence of M̂(i−1)
u (see below) on

F̂ (i−1)
Du

and F̂ (i−1)
ru is not indicated.

The overall computational cost ofMZML algorithm can be
expressed as

CMZML ≜ C0,MZML + NREF Ci,MZML, (66)

where C0,MZML is the cost of its initialization (i.e., the same
cost as the 2D-FFT method; see (26)), whereas

Ci,MZML ≜ CP + CJ + Copt (67)

represents the cost of a single iteration; here, we have that: 1)
CP ≈ 8M0 N0 K̂ 2M2N 2 (CJ ≈ 8M0 N0 K̂ M2N 2) is the cost
due to the evaluation of the projection matrix P(i)

k (·, ·) (62)
(of the function J (i)k (·, ·) (61)) for all the M0 N0 nodes of the
grid and all the K̂ targets; 2) Copt = 4M0 N0 K̂ is the cost due
to solving the optimization problem in (64). Based on these
results, it can be shown that the computational cost of MZML
algorithm is O(NMZML), where

NMZML = NREF 8M0 N0

(
K̂ 2

+ K̂
)
M2N 2. (68)

2) MODIFIED ALTERNATING PROJECTION MAXIMUM
LIKELIHOOD ALGORITHM
TheMAP-ML algorithm is initialized exactly in the sameway
as theMZML algorithm (see [41]) and employs the cost func-
tion J (i)k (F̃Dk , F̃rk ) (61) in the estimation of the parameters of
the kth target; however, the method of alternating projection
is exploited for themaximization of that cost function in order
to replace the 2D optimization problem (64) with two 1D
optimization problems. In practice, in its ith iteration, the
frequency estimates F̂ (i)

Dk and F̂ (i)
rk appearing in the left-hand

side of (64) are evaluated as

F̂ (i)
rk = arg max

F̃rk ∈I(i)r (N0)

∣∣∣J (i)k (
F̂ (i−1)
Dk , F̃rk

)∣∣∣ (69)

and

F̂ (i)
Dk = arg max

F̃Dk ∈I(i)D (M0)

∣∣∣J (i)k (
F̃Dk , F̂

(i)
rk

)∣∣∣ , (70)

respectively (the sets I(i)r (N0) and I(i)D (M0) have been already
defined for the MZML algorithm). It is important to note
that: 1) the evaluation of J (i)k (F̂ (i−1)

Dk , F̃rk ) and J
(i)
k (F̃Dk , F̂

(i)
rk )

in the RHSs (69) and (70) requires computing the matrices
M̆(i)

k (F̂ (i−1)
Dk , F̃rk ) and M̆(i)

k (F̃Dk , F̂
(i)
rk ) (see (63)), respectively;

2) in the first iteration (i.e., for i = 1), F̂ (0)
Dk is computed

according to (20), with l = l̂(0)k , where l̂(0)k results from solv-
ing (24) (the value of p, p̂(0)k , associated with l̂(0)k is discarded);
3) the estimate of the complex amplitude Â(i)k is computed on
the basis of (65).

The overall computational cost CMAP−ML of the MAP-ML
algorithm can be expressed as

CMAP−ML = C0,MAP−ML + NREF Ci,MAP−ML, (71)

where C0,MAP−ML is the contribution due to its initialization
(equal to C0,MZML; see (66)), whereas

Ci,MAP−ML = CPr + CPD + CJr + CJD + Cr + CD (72)
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is the contribution due to each of its iterations. Moreover,
in the last formula, we have that: 1) CPr ≈ 8N0K̂ 2M2N 2

and CPD ≈ 8M0K̂ 2M2N 2 are the costs due to the evaluation
of the projection matrix P(i)

k (·, ·) (62) in the first and second
1D optimization, respectively; 2) CJr ≈ 8N0K̂M2N 2 and
CJD ≈ 8M0K̂M2N 2 are the costs due to the evaluation of the
function J (i)k (·, ·) (61) in the first and second 1D optimization,
respectively; 3) Cr = 4N0 and CD = 4M0 are the costs
required by solving the 1D maximization in (69) and (70),
respectively.

Based on (71)-(72), it can be shown that the computational
cost of MAP-ML algorithm is O(NMAP−ML), where

NMAP−ML = NREF 8(M0 + N0) (K̂ 2
+ K̂ )M2N 2. (73)

3) MWL ALGORITHM
Similarly as the CLEAN algorithm [35], the MWL algorithm
operates in an iterative fashion and, in each of its itera-
tions, estimates the parameters of a new target, and performs
cancellation and leakage compensation in the time domain.
However, unlike the CLEAN algorithm, the MWL algorithm
requires solving 1D optimization problems only. Moreover,
it can achieve similar and even better accuracy than the
CLEAN algorithm with a smaller computational effort [36].

The MWL algorithm is initialized by setting the iteration
index k to 0 and Ĥm,n[0] = Ĥm,n (see (16)), with m =

0, 1, . . . ,M − 1 and n = 0, 1, . . . ,N − 1. Then, its iterations
are started; the processing accomplished in the kth iteration
evolves through the four steps described below.

1) Coarse estimation of the Doppler of a new target — In
this step, the coarse estimate F̆Dk of the Doppler frequency
FDk of a new (namely, of the kth) target is computed by
solving the 1D optimization problem

l̆k ≜ arg max
l̃∈SM0

aH
(
FD[l̃]

)
R [k] a

(
FD[l̃]

)
, (74)

where FD[l̃] is defined by (20), a(FD[l̃]) is anM -dimensional
column vector whose mth element (with m = 0, 1, . . . ,M −

1) is am(FD[l̃]) (see (5)), R[k] = [Rm,m′ [k]] is an M × M
autocorrelation matrix such that

Rm,m′ [k] ≜
1
N

N−1∑
n=0

Ĥm,n [k]
(
Ĥm′,n [k]

)H
, (75)

where Ĥm,n[k] is evaluated on the basis of (29) if k > 0, with
m = 0, 1, . . . ,M−1 andm′

= 0, 1, . . . ,M−1. Given l̆k (74),
the coarse estimate of FDk is computed as F̆Dk = FD[l̆k ] (see
(20)).

2) Estimation of target delay—In this step, an estimate F̂rk
of the normalized delay Frk characterizing the kth target is
evaluated by solving another 1D optimization problem. This
requires:

a) Computing the N -dimensional column vector

v̂k ≜
[
v̂k [0], v̂k [1], . . . , v̂k [N − 1]

]T , (76)

where

v̂k [n] ≜
[
aH

(
F̆Dk

)
a
(
F̆Dk

)]T
aH

(
F̆Dk

)
Hn [k] , (77)

with n = 0, 1, . . . ,N−1, andHn[k] ≜ [Ĥ0,n[k], Ĥ1,n[k], . . .,
ĤM−1,n[k]]T is an M -dimensional vector.

b) Evaluating

p̂k = arg max
p̃∈SN0

∥∥∥aH (
−Fr

[
p̃
])

v̂k
∥∥∥2 , (78)

where Fr [p̃] is defined by (21), and a(−Fr [p̃]) is an
N -dimensional column vector whose n-element (with n =

0, 1, . . . ,N − 1) is an(−Fr [p̃]) (see (5)). Given p̂k (78), the
final estimate F̂rk of the target delay is evaluated according to
(21) with p = p̂k .
3) Fine estimation of target Doppler—In this step, the fine

estimate F̂Dk of the normalized Doppler FDk characterizing
the kth target is evaluated by solving the last 1D optimization
problem and, in particular, as F̂Dk = FD[l̂k ] (see (20)), where

l̂k ≜ arg max
l̃∈SM0

∣∣∣aH (
FD[l̃]

)
B̂

(
F̂rk

)∣∣∣2 , (79)

B̂(F̂rk ) is an M -dimensional row vector, whose mth element
is defined as

B̂m
(
F̂rk

)
≜

[
N−1∑
n=0

Ĥm,n a∗
n
(
−F̂rk

)]
Ĉ−1(F̂rk ), (80)

and

Ĉ
(
F̂rk

)
≜

N−1∑
n=0

an
(
−F̂rk

)
a∗
n
(
−F̂rk

)
. (81)

4) Estimation of target complex amplitude— In this step,
the estimate

Âk =

∥∥∥a(F̂Dk )∥∥∥−2
aH

(
F̂Dk

)
B̂

(
F̂rk

)
, (82)

of the complex amplitude Ak is evaluated.
Similarly as the CLEAN algorithm [35], at the end of

the last step a false target is detected if |Âk | < TMWL,
where TMWL denotes a proper (positive) threshold. When this
occurs, the execution is stopped; otherwise, a new iteration is
started going back to step 1).

An iterative procedure can be employed to refine the target
estimates generated by the MWL algorithm. Similarly as the
CLEAN algorithm, this procedure is based on: 1) estimat-
ing again the parameters of each target after removing the
spectral contribution of the other (K̂ − 1) targets, i.e. their
leakage; 2) shrinking the search grid as iterations evolve (see
(33)-(35), in Table 1). In the ith iteration of the refinement
(with i = 1, 2, . . . ,NREF), the finer estimates {(F̂ (i)

Dk , F̂
(i)
rk ,

Â(i)k ); k = 0, 1, . . . , K̂ − 1} of the parameters of the K̂ targets
detected by the MWL algorithm are computed as follows.
First, we compute the coarse estimate

F̆ (i)
Dk ≜ arg max

F̃Dk ∈I(i)D
(
M̃0

) aH (
F̃Dk

)
R(i) [k] a

(
F̃Dk

)
(83)
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of the normalized Doppler frequency for the kth target; here,
I(i)D (M̃0) denotes the set of M̃0 trial values selected for F̃Dk in
the ith iteration andR(i)[k] is anM×M matrix whose element
(m,m′) is still defined by (75), where, however, Ĥm,n[k] is
replaced by

Ȟ (i)
m,n [k] = Ĥm,n[0] −

K̂−1∑
j=0, j̸=k

Â(i−1)
j

· am
(
F̂ (i−1)
Dj

)
an

(
−F̂ (i−1)

rj

)
. (84)

Then, we compute

F̂ (i)
rk = arg max

F̃rk ∈I(i)r
(
Ñ0

) ∥∥∥aH (
−F̃rk

)
v̂(i)k

∥∥∥2 , (85)

where I(i)r (Ñ0) denotes the set of Ñ0 trial values selected for
F̃rk in the ith iteration, a(−F̃rk ) is an N -dimensional column
vector whose nth element is an(−F̃rk ) (see (5)), v̂

(i)
k plays the

same role as v̂k in (78), but its nth element is defined as (see
(77))

v̂(i)k [n] ≜
[
aH

(
F̆ (i)
Dk

)
a
(
F̆ (i)
Dk

)]T
aH

(
F̆ (i)
Dk

)
H(i)
n [k], (86)

where H(i)
n [k] ≜ [Ĥ (i)

0,n[k], Ĥ
(i)
1,n[k], . . . , Ĥ

(i)
M−1,n[k]]

T .
Finally, the new estimate

F̂ (i)
Dk ≜ arg max

F̃Dk ∈I(i)
M̃0

∣∣∣aH (
F̃Dk

)
B̂

(
F̂ (i)
rk

)∣∣∣2 (87)

of FDk is evaluated; here, B̂(F̂ (i)
rk ) is a M -dimensional row

vector, whose mth element (with m = 0, 1, . . . ,M − 1) is
still defined by (80) with F̂ (i)

rk in place of F̂rk . This concludes
the ith iteration.

The estimates {(F̂ (NREF)
Dk , F̂ (NREF)

rk , Â(NREF)
k ); k = 0, 1, . . . ,

K̂ − 1} available at the end of the last (i.e., of the NREFth)
iteration represent the output of the refinement algorithm.

It can be shown that the computational cost of the MWL
algorithm is O(NMW), where (see [36, Sec. III-E, eq.(44)])

NMW = N̄MW(M0,N0) + KNREF N̄MW(M̃0, Ñ0) (88)

and

N̄MW(M0,N0) = M2 (6N + 8M0) + 30MN

+ 8N0 N + 30M0M (89)

represents the cost due to a single iteration of the algorithm;
note that the parameters (M0,N0) and (M̃0, Ñ0) define the
grid size for the initialization and for the refinement step,
respectively.

4) EM-BASED ALGORITHM
The EM algorithm [45] can be employed jointly with each
of the algorithms described above to refine its estimates
of target parameters [36], [41]. For this reason, we can
assume that, in general, the EM algorithm is fed by the K̂ -
dimensional vectors F̂D = [F̂D0 , F̂D1 , . . . , F̂DK̂−1

], F̂r =

[F̂r0 , F̂r1 , . . . , F̂rK̂−1
] and Â = [Â0, Â1, . . . , ÂK̂−1], col-

lecting the initial estimates of the normalized Doppler,
normalized delay and the complex amplitude of the K̂
detected targets.

The EM algorithm operates in an iterative fashion;
in each of its iterations, it executes an expectation step
(E-step) followed by a maximization step (M-step). In our
description of such steps, we focus on the ith iteration (with
i = 1, . . . ,NREF, where NREF denotes the overall num-
ber of iterations) and consider the kth target (with k =

0, 1, . . . , K̂ − 1). At the beginning of this iteration, the
estimates (F̂ (i−1)

Dk , F̂ (i−1)
rk , Â(i−1)

k ) are available for the nor-
malized Doppler, the normalized delay and the complex
amplitude, respectively, of the considered target (if i = 1,
(F̂ (0)

Dk , F̂
(0)
rk , Â(0)k ) = (F̂Dk , F̂rk , Âk )). The two steps accom-

plished within the considered iteration are described below.
1) E step— In this step, the cost function

J (i)
EMk

(
F̃Dk , F̃rk

)
=

1
MN

∥∥∥∥(
M̆(i)

k

(
F̃Dk , F̃rk

))H
Ĥ(i)
k

∥∥∥∥2 , (90)

where (F̃Dk , F̃rk ) ∈ I(i)D (M0)×I(i)r (N0); here, I(i)X (Y ) denotes
the set of Y trial values selected for F̃Xk (with X = D
and r) in the ith iteration. Moreover, the (MN × K̂ ) matrix
M̆(i)

k (F̃Dk , F̃rk ) is defined by (63),

Ĥ(i)
k = Ĥ(i−1)

k + β
(i)
k

H̄ −

K̂−1∑
k ′=0

Ĥ(i−1)
k ′

 (91)

is the reconstructed (MN )-dimensional vector of channel
gains evaluated for the kth target in the ith iteration, H̄
is the (MN )-dimensional vector resulting from the ordered
concatenation of the columns of the channel measurement
matrix Ĥm,n ≜ [Ĥm,n] (16), Ĥ

(i−1)
k ≜ Â(i−1)

k M(i−1)
k , where

M(i−1)
k is the (MN )-dimensional vector defined after (63)

(with u = k). Moreover, for any i, the K̂ parameters {β
(i)
k ; k =

0, 1, . . . , K̂ − 1} are the so called mixing coefficients and
satisfy the inequalities 0 ⩽ β

(i)
k ⩽ 1 for any k (e.g., see [36,

Sec. III-D]).
2)M step—The new (and, hopefully, finer) estimates F̂ (i)

Dk
and F̂ (i)

rk of FDk and Frk , respectively, are computed as(
F̂ (i)
Dk , F̂

(i)
rk

)
= argmax

(F̃Dk ,F̃rk )∈I
(i)
D (M0)×I(i)r (N0)

J (i)
EMk

(
F̃Dk , F̃rk

)
. (92)

In the equation above, the term J (i)EMk
(·, ·) evaluated through

(90) represents the cost function computed over a specific
rectangular grid, defined by the trial values (F̃Dk , F̃rk ), whose
center depends on both F̂ (i−1)

Dk and F̂ (i−1)
rk , and whose step

sizes gets smaller as i increases. The grid employed in this
case is generated according to the same criteria illustrated
for the refinement procedure developed for the CLEAN
algorithm (see (33)-(35), in Table 1 and the comments related
to them).
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TABLE 2. Computational complexity order of various estimation algorithms.

Finally, the complex amplitude Â(i)k is evaluated as (e.g.,
see [41, Sec IV, eq. (48)]):

Â(i)
k =

1
MN

(
Ṁ(i)

k

(
F̂ (i)
Dk , F̂

(i)
rk

))T
Ĥ(i)
k , (93)

where Ṁ(i)
k (·, ·) is defined right after (63). This concludes the

M step.
At the end of the last iteration (i.e., for i = NREF), the

final estimates (F̂ (NREF)
Dk , F̂ (NREF)

rk , Â(NREF)
k ) are available, with

k = 0, 1, . . . K̂ − 1.
The overall computational cost of a single iteration of the

EM algorithm in the presence of K̂ targets can be expressed
in a similar way as [36, Appendix C], i.e. as

NEM = K̂
(
CH + CM̆ + CJ + Copt + CA

)
, (94)

where: 1) CH = 2(K̂ + 2)M N is the contribution due to the
computation of (MN )-dimensional vectors {Ĥ(i)

k } (see (91));
2) CM̆ = 6MNM0N0 is the contribution due to the evaluation
of the matrix M̆(i)

k (·, ·) appearing in (90); 3) CJ = 8MNM0N0

is the cost due to the computation of J (i)EMk
(·, ·) (90), whereas

Copt = 4M0N0 is the cost of its optimization; 4) CA = 8MN
is the cost due to the computation of Â(i)k on the basis of
(93). In our work, as already mentioned in Subsection III-C,
the EM algorithm has been employed to refine the estimates
generated by the 2D-FFT algorithm. The overall computa-
tional complexity of the resulting algorithm, called MZEM,
is O(NMZEM), where NMZEM = N2D−FFT + NEM (see (26)
and (94)).

The computational complexity orders of the estimation
algorithms described above and considered in our simulations
are listed in Table 2.

IV. NUMERICAL RESULTS
The estimation algorithms described in the previous section
have been compared, in terms of accuracy and computational
effort, in four distinct scenarios for different values of the
signal-to-noise ratio

SNR ≜
K∑
k=1

|Ak |2/σ 2
W , (95)

where σ 2
W represents the variance of each element of the com-

plex noise sequence {W̄m(n)} (see (17)). The first scenario
(S1) is characterized by a single target (i.e., byK = 1), whose

FIGURE 1. The targets are indicated by a cross. Range-Doppler map
referring to the fourth scenario considered in our simulations.

range and velocity are uniformly distributed in the intervals
[0, 10] m and [0, 2.78] m/s, respectively; the complex ampli-
tude A0 of its echo, instead, is set to one. The second scenario
(S2) is characterized by four targets (i.e., by K = 4). The
range and velocity of the kth target (with k = 0, 1, . . . ,K−1)
are evaluated as

Rk = R0 + k R̄ Rbin (96)

and

vk = v0 + k v̄ vbin, (97)

respectively, and its amplitude Ak is set to 1 for any k; here,
R0 and v0 are uniformly distributed in the interval [0, 10] m
and [0, 2.78] m/s, respectively. Moreover, R̄ = 1.65 and v̄ =

1.65 represent the spacing of adjacent bins for normalized
range and normalized velocity, whereas Rbin ≜ c/(2N 1f )
and vbin ≜ c/(2M fc Ts) denote the size of range and velocity
bins that characterizes FFT processing in the absence of
oversampling, respectively. In both S1 and S2, the accuracy
of eight different algorithms (namely, the 2D-FFT, CSFDEC,
2D-MUSIC, CLEAN, MWL, MZML, MAP-ML and MZEM
algorithms) has been assessed in terms of root mean
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FIGURE 2. Root mean square error performance achieved in range and velocity estimation (first scenario). The 2D-FFT, CSFDEC, CLEAN,
MWL, 2D-MUSIC, MZML, MAP-ML and MZEM algorithms are considered.

FIGURE 3. Root mean square error performance achieved in range and velocity estimation (second scenario). The 2D-FFT, CSFDEC, CLEAN,
MWL, 2D-MUSIC, MZML, MAP-ML and MZEM algorithms are considered.

square error

RMSEX ≜
1
Nmc

Nmc−1∑
t=0

√√√√ 1
K

K−1∑
k=0

(X̂k [t] − Xk )2, (98)

where X̂k [t] denotes the estimate of the parameter Xk evalu-
ated for the kth target in the tth Monte Carlo run, Nmc is the
overall number of runs and X = r (X = v) if target range (tar-
get velocity) is considered. Moreover, the following choices
have beenmade: 1) in the evaluation of the RMSEr , the vector
collecting target ranges and the one collecting their estimates
have been organized according to an ascending order (from
minimum to maximum range); 2) in the evaluation of the
RMSEv, the vector collecting target velocities and the one
collecting their estimates are sorted in the same way as the
vectors referring to target ranges; 3) an SNR belonging to the
interval [−20, 20] dB has been considered; 4) the number
of targets (K ) has been always assumed to be known (so
that events of missed detection are avoided). Note that the

knowledge of K does not prevent all the algorithms from
identifying false targets; in our work, unwanted detections
contribute to the evaluation of the RMSE.

In the third scenario (S3), the range and velocity of the
targets are computed according to the same strategy adopted
in S2, but the SNR is fixed to 0 dB and the value of K ranges
from 1 to 10. In this case, we focus on the computational effort
required by all the algorithms considered in S1 and S2 and,
in particular, we assess both their computation time (CT) and
the overall number of FLOPs they require.12

The fourth scenario (S4) is characterized by the same
number of targets as S2 (i.e., K = 4) and by an SNR equal
to 0 dB. Moreover, target ranges and speeds are computed
according to (96) and (97), but smaller bin spacings (more
precisely, R̄ = 1 and v̄ = 1) are assumed. For this reason,
in this scenario, spectral leakage may substantially affect tar-
get estimation; this can be easily inferred from Fig. 1, where

12All the algorithms have been executed on a desktop computer equipped
with an i7 processor.
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TABLE 3. Main parameters of the search grid selected for the 2D-MUSIC
algorithm (range is expressed in m, velocity in m/s).

TABLE 4. Main parameters of the initial search grid selected for the
CLEAN and MWL algorithms (range is expressed in m, velocity in m/s).

the range-Doppler map (or ambiguity function) is shown for
the considered case. In our analysis of S4, we assess the
convergence speed of six iterative algorithms (namely, the
CSFDEC, CLEAN, MWL, MZML, MAP-ML and MZEM
algorithms) and, in particular, we analyze how their accuracy
changes as the overall number of their iterations13 ranges
from 1 to 5.

Our interest in the four scenarios defined above can moti-
vated as follows. The numerical results obtained in the first
two scenarios show how the considered algorithms perform in
the presence of a single tone and of multiple (but adequately
spaced14) tones, respectively, whereas those obtained in the
third scenario allow us to assess the trend of their com-
putational requirements when the overall number of targets
increases. Finally, the fourth scenario sheds some light on
the trade-off between estimation accuracy and computational
effort of the considered iterative algorithms in the presence
of closely spaced targets.
In our simulations, the following choices have been made.

First of all, prior knowledge about K has been assumed
and, unless differently stated, the following values have been
selected for the parameters of the OFDM modulation15:
1) overall number of subcarriers N = 32; 2) overall number
of OFDM symbols/frame M = 32; 3) subcarrier spacing
1f = 250 kHz; 4) cyclic prefix duration TG = 0.25 T = 1µs
(consequently, the OFDM symbol duration is Ts = 1/1f +

TG = 5 µs); 5) carrier frequency fc = 79 GHz. These values
entail that Rbin = 18.7 m and vbin = 12 m/s.
Secondly, the following values have been selected for the

parameters of the considered algorithms: 1) the oversampling
factor LD = 16 and Lr = 16 have been chosen for Doppler
and range estimation, respectively, in both the 2D-FFT and

13In the case of the CSFDEC algorithm, each iteration corresponds to the
execution of the re-estimation procedure described in Subsection III-A3.

14This means that the spectral leakage affecting each tone and originating
from all the other tones is limited; therefore, the frequency estimation error
due to this phenomenon is negligible.

15The choices we made for the following parameters have been dictated
by the technical literature on OFDM-based JCAS systems (e.g., see [41]).

FIGURE 4. Root mean square error performance achieved in range
estimation (second scenario) with N = 256 subcarriers. The 2D-FFT,
CSFDEC, CLEAN, MWL and MZEM algorithms are considered.

FIGURE 5. Computational time of the 2D-FFT, CSFDEC, CLEAN, MWL,
2D-MUSIC, MZML, MAP-ML and MZEM algorithms versus overall number
of targets. The third scenario is considered.

FIGURE 6. Estimated number of FLOPs of the 2D-FFT, CSFDEC, CLEAN,
MWL, 2D-MUSIC, MZML, MAP-ML and MZEM algorithms versus overall
number of targets (third scenario).

CSFDEC algorithms (so that M0 = MLD = 512 and N0 =

NLr = 512; see (22) and (23), respectively); 2) the 2D-
FFT method has been used to compute the initial estimates
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FIGURE 7. Root mean square error performance achieved in range and velocity estimation (fourth scenario). The CSFDEC, CLEAN, MWL,
MZML, MAP-ML and MZEM algorithms are considered.

of the MZML, MAP-ML and MZEM algorithms; 3) in the
CSFDEC algorithm, Nit = 20 refinement steps have been
accomplished in the computation of the residuals and the
interpolation16 orders ID = Ir = 7 have been selected; 4) a
unit value has been assigned to the coefficient β(i)

k (with k =

0, 1, . . . ,K −1 and i = 1, 2, . . . ,NREF) in the EM algorithm
(see (91)); 5) NREF = 5 (NREF = 3) re-estimations have
been executed by the CSFDEC, CLEAN and MWL (MZML,
MAP-ML andMZEM) algorithms in the first three scenarios.
Substantial attention has been paid to the selection of search
grids. A brief description of the search grid adopted for the
2D-MUSIC is provided in Table 3, whereas that of the initial
search grid employed for the CLEAN and MWL algorithms
in Table 4. In both tables, the grid chosen for a specific
scenario is described by the triplet [Xmin, Xmax,Q0], where
Xmin (Xmax) denotes the minimum (maximum) trial value
for the variable X , and Q0 represents the overall number of
(uniformly spaced) trial values17 (Q = M if X represents the
target range R, whereasQ = N if X represents target velocity
v). Moreover, in our simulations, M0 = N0 = 11 (M0 =

N0 = 9) have been chosen for the grid size in the CLEAN and
MWL (MZML,MAP-ML andMZEM) algorithms during the
re-estimation steps. Some numerical results about the RMSEr
and RMSEv characterizing all the considered algorithms in
S1 are illustrated in Fig. 2, where the Cramer-Rao lower
bound18 (CRLB) for the considered estimation problem is
also shown. Note that: 1) most of the algorithms achieve poor
estimation accuracy when the SNR drops below a threshold,
which is algorithm dependent; 2) the threshold of the 2D-
MUSIC, CLEAN and MWL algorithms is not visible in the

16In all our simulations, the barycentric interpolation technique described
in [46] has been always used.

17This entails that the step size between adjacent trial values selected in
the interval [Xmin, Xmax] is Xstep = (Xmax − Xmin)/(Q0 − 1).

18The expression of the CRLB for range and velocity estimation in the
case of single target can be found in [33, Appendix D]. The CRLB in the case
of multiple targets, instead, can be easily derived following the procedure
illustrated in [47].

considered SNR range; 3) the accuracy of each algorithm
attains the CRLB above its SNR threshold, but, at high SNRs,
may reach a floor. The last phenomenon, observed for the
2D-FFT and 2D-MUSIC algorithms, is due to their limited
accuracy19 (which depends on the overall number of FFT
bins and on the overall number of trial points employed in the
computation of the steering vectors, respectively). The other
algorithms, instead, take advantage of their refinement cycles,
which improve the accuracy of their final estimates.

In addition, in analyzing the results shown in Fig. 2, readers
should keep in mind that: 1) the computational complexity
of the CSFDEC, CLEAN and MZEM algorithms is approx-
imately 13, 2.3 and 1.35 times higher, respectively, than that
of the 2D-FFT, whereas that of the MWL algorithm is very
close to it; 2) the complexity of the 2D-MUSIC, MAP-ML
and MZML algorithms is 352, 183 and 819 times higher,
respectively, than that of the 2D-FFT.

Most of the considerations illustrated above for Fig. 2 also
apply to the results shown in Fig. 3 for N = 32 and in Fig. 4
for N = 256. In both cases S2 is considered, but the results
illustrated in Fig. 4 concern range estimation only and refer
to a subset of the considered algorithms (2D-MUSIC,MZML
and MAP-ML are ignored because of their huge memory
requirements). Note that:

1) Unlike S1, an SNR threshold is visible in Fig. 3 for all
the algorithms, mainly because of the presence of spectral
leakage.

2) Independently of the considered algorithm, an higher
number of subcarriers allows to achieve a lower RMSEr and
reduce the SNR threshold.

3) In analyzing the results shown in Fig. 3, it should
be kept into account that the computational complexity of
the CSFDEC, CLEAN, MWL and MZEM algorithms is
approximately 34, 177, 2.7 and 4.7 times higher, respectively,
than that of the 2D-FFT. Moreover, the complexity of the

19In the case of the 2D-FFT algorithm, this phenomenon can be mitigated
by interpolating its cost function to improve the accuracy in peak detection.
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FIGURE 8. Computational time of the CSFDEC, CLEAN, MWL, MZML,
MAP-ML and MZEM algorithms versus overall number of iterations
(fourth scenario).

2D-MUSIC, MAP-ML and MZML algorithms is 7532,
1518 and 7070 times higher, respectively, than that of the
2D-FFT.

The CT20 and the overall number of FLOPs assessed in
S3 are shown in Fig. 5 and Fig. 6, respectively. From these
results and from those illustrated in S1 and S2, it can be
easily inferred that: 1) the gap, in terms of CT, between
the CLEAN, MAP-ML and 2D-MUSIC algorithms is small;
2) the MAP-ML algorithm takes advantage of the alternating
projections method to reduce the computational effort of the
MZML algorithm; 3) the CT of the MWL algorithm is the
closest to that of the 2D-FFT algorithm, but, as shown in
Fig. 3, the former algorithm achieves a poorer estimation
accuracy than the latter one for SNR ∈ [−15, 3] dB; 4) the
CSFDEC algorithm stays in the middle between high and
low complexity algorithms, but is able to achieve excellent
estimation accuracy, as evidenced by the RMSE results illus-
trated for the previous scenarios.

Some numerical results21 referring to S4 are shown in
Fig. 7 for RMSEr and RMSEv and in Fig. 8 for the CT.
These results deserve the following comments: 1) the esti-
mation accuracy of most of the considered algorithms does
not improve after the first three iterations; 2) the CLEAN,
MZEM and CSFDEC algorithms exhibit similar CTs if three
iterations are carried out for each of them; 3) the MWL
algorithm requires a lower CT, but generates poorer range and
velocity estimates.

V. CONCLUSION
In this manuscript, eight different algorithms for detecting
multiple targets, and for jointly estimating their range and
velocity in a SISO OFDM-based JCAS system have been
described. All belong to the class of indirect methods and are
deterministic; moreover, three of them (namely, the CLEAN,

20The values shown for this parameter represent averages computed over
one thousand runs for each algorithm.

21Please note that a linear scale is adopted on the ordinate axis of Fig. 7,
since the interval which the estimated RMSEs belong to is narrow.

MWL and CSFDEC algorithms) exploit an iterative can-
cellation procedure in the estimation of target parameters.
Our numerical results evidence that, in the presence of a
single target or of multiple well spaced targets, all the consid-
ered algorithms achieve reasonable accuracy. However, their
behavior substantially changes in the presence of multiple
closely spaced targets; in such conditions, our attention has
focused on how accuracy and computational effort are influ-
enced by the overall number of a) targets and b) refinement
cycles employed to improve the quality of the final estimates
of target parameters. The following conclusions can be for-
mulated in the light of our simulation results: 1) the CLEAN
and CSFDEC algorithms require a limited complexity and
achieve excellent performance thanks to the use of a target
cancellation procedure; 2) the MZML and MAP-ML algo-
rithms achieve better accuracy than subspace-based method
(i.e., than the 2D MUSIC algorithm) at the price of similar
(and really high) computational complexities; 3) the MWL
algorithm achieves a better accuracy-complexity trade-off
than the MAP-ML algorithm. Therefore, in future OFDM-
based JCAS system, the selection of a target detection and
estimation algorithm requires a careful assessment of the pros
and cons characterizing the various options available in the
technical literature. Our ongoing work concerns the possible
extensions of the considered algorithms to MIMO OFDM-
based radars.
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