
UNIVERSITY OF MODENA AND REGGIO EMILIA

PH.D THESIS

Doctoral Course in Labour, Development and Innovation

XXXV cycle

SCHOOL OF DOCTORATE E4E
(Engineering for Economics - Economics for Engineering)

Department of Economics Marco Biagi

Marco Biagi Foundation

Design and development of optimization
methods to support decisions in distributed

logistics systems

PhD candidate:
Dott. Giorgio Zucchi

Advisor:
Prof. Manuel Iori

co-Advisor:
Prof. Carlo Alberto Magni

PhD coordinator:
Prof. Tindara Addabbo

2021/2022

i

UNIVERSITY OF MODENA AND REGGIO EMILIA

Corso di Dottorato in Lavoro, sviluppo ed innovazione
Dipartimento di economia Marco Biagi - Fondazione Marco Biagi

Doctor of Philosophy

Design and development of optimization methods to support decisions in distributed
logistics systems

by Giorgio Zucchi

Abstract

In the last years, due to technological progress, optimization methods based on mathe-
matical programming and heuristic algorithms have consistently improved their efficiency.
It is now possible to obtain, in a large variety of problems, optimal or sub-optimal solutions
in acceptable computational time. Emerging trends, driven by Industry 4.0 and Big Data
revolutions, are pushing to combine optimization, at its purest mathematical level, with data
science and decision support systems. The research conducted in this PhD thesis investigates
the creation of decision support systems for the selection of optimal or sub-optimal solutions
to optimize distributes services. The research presents the use of mathematical models and
heuristic techniques to solve issues related to relevant problems, such as Personnel Schedul-
ing and Vehicle Routing. The addressed case studies are derived from real business cases
from Coopservice scpa, a large provider of services in relevant sectors, including healthcare
and industry.

ii

Introduction
In the last years, due to technological progress, the Optimization Methods (OM) based

on mathematical programming and optimization algorithms have improved their efficiency
and it is now possible to obtain, in a large variety of problems, optimal or sub-optimal so-
lutions in acceptable CPU time. However, OMs individually could be fragile when changes
in input conditions or into established constraints occur, therefore a great effort is required
to use them in an operational context. Emerging trends, driven by industry 4.0 and Big Data
revolutions, are pushing to combine optimization, at its purest mathematical level, with Data
Science (DS) and Decision Support Systems (DSS). The increasing power of Personal Com-
puters, the development of larger networks and databases, and the consequent application
of mathematical models and methods represent the technological developments that stimu-
late the interest, on the part of companies, in the use of an algorithm as a Decision Support
System to reduce the risk of uncertainty in making decisions (Averweg, 2010).

Nowadays large companies collect a substantial amount of data. These data are not of-
ten used in their potential, but only stored and archived. Without a system of models and
methods that allow the analysis and processing, it is essentially impossible for a strategic
decision-maker to make the best decision in the best possible conditions. In complex strate-
gic decision-making situations, decisions often have to be made within a finite set of feasible
alternatives that meet multiple conflicting objectives (Belton and Stewart, 2002).

Using a DSS is different from the traditional Decision Maker approach, as the Decision
Makers must know and understand the DSS that has been developed for them to take into
consideration the advantages and limitations of the system. On the other hand, those who
design the DSS must know and understand what functions and data need to be integrated into
the system and how to do it. Due to this complexity, two levels of knowledge are needed to
develop models and methods for decision support: it is important to have knowledge of the
approach and the strategy of Decision Makers to build an effective DSS.

As mentioned above, for years, large companies have begun to archive all the data that
can be collected from a Big Data perspective, especially oriented towards the application of
Industry 4.0. As a result of this availability, a Decision Maker may find herself displaced and
unable to analyze or understand it; consequently, it is necessary to create systems to synthe-
size them (Ishizaka and Nemery, 2013); furthermore, after making a decision in conditions
of uncertainty, a person can discover, by learning from the relevant results, that another alter-
native would have been preferable (Bell, 1982).

The integration with the traditional approach of Operations Research is that the DSS does
not aim to provide an optimal or definitive solution. The DSS combines the use of models
and methods, Data Analytics techniques, and traditional data processing functions, allowing
the use of this system to people who do not necessarily have a mathematical, computer, or
programming basis. These systems, to be fully and robustly developed, need algorithms that
must be tested on real cases and with a large database. This is why in recent years it is
possible to develop ever more effective DSS. Examples can be found in (Bruck et al., 2017)
and in (Alonso et al., 2019).

The application of DSS, therefore, can reduce the risk of uncertainty of the decision-
maker for what concerns the economic feasibility of a project, the budgeting of an offer, and
the technical design. In addition, it is possible to improve business processes. Today, in order
to support the Digital Transformation of a company and to guarantee a competitive advantage,
it is necessary that decisions are not made merely based on some empirical and experiential
observations; conversely, they should exploit digital transformations and the employment of
Industry 4.0, so as to get an idea of the bigger picture.

In this thesis, we focus on the development of models and methods regarding Decision
Support Systems, by using a mathematical approach and heuristic algorithms. The aim is to

iii

reduce the time necessary for the generation of solutions and to optimize costs. In the past,
solutions were normally generated manually and took longer time for this reason. The case
studies presented are all derived from real business cases to create data-driven algorithms.

The remainder of the thesis is organized as follows. Chapter 1 presents a combined
algorithm based on an Iterated Local Search and a mathematical model to solve the Time
Window Assignment Vehicle Routing Problem (this work has been published in Martins et
al., 2021). Chapter 2 presents a mathematical model to solve a scheduling problem during the
Covid-19 pandemic (this work has been published as Zucchi, Iori, and Subramanian, 2021).
Chapter 3 addresses a real-life task and personnel scheduling problem arising in Coopservice
to provide cleaning services inside a hospital (the work has been published as Campana
et al., 2021, and won the best paper award at the International Conference on Enterprise
Information Systems (ICEIS). In Chapter 4, the reader can find a case study regarding lead
time prediction in the pharmaceutical logistics sector of the company (published as Oliveira
et al., 2021). In Chapter 5, a real-life multi-period orienteering problem related to the activity
of patrolling a vast area in order to provide security services is discussed. Preliminary results
were presented as Zucchi et al., 2022 and the full version of the paper is now submitted for
publication to Networks, an international journal.

iv

Contents

Abstract i

Introduction ii

1 On solving the time window assignment vehicle routing problem 1
1.1 Introduction . 1
1.2 Brief Literature Review . 2
1.3 Formal Problem Definition . 3
1.4 An Iterated Local Search-based Algorithm 3

1.4.1 Iterated Local Search (ILS) . 4
1.4.2 Route Selector Model . 5

1.5 Computational Experiments . 6
1.5.1 Instances . 7
1.5.2 Results . 8

1.6 Conclusions and Future Research Avenues 10

2 Personnel scheduling during Covid-19 pandemic 11
2.1 Introduction . 11
2.2 Problem description . 12
2.3 Personnel scheduling in a normal scenario and during Covid-19 pandemic . . 13
2.4 Proposed mathematical formulation . 14
2.5 Computational results . 16
2.6 Concluding remarks . 19

3 Scheduling problem for distributed services in hospitals 20
3.1 Introduction . 20
3.2 Problem definition . 22
3.3 Literature Review . 23
3.4 Proposed algorithm . 24

3.4.1 First step: generating a weekly pattern 25
3.4.2 Second step: generating the cleaning schedule 26
3.4.3 Third step: personnel scheduling . 27

3.5 Computational experiments . 28
3.5.1 Parameters . 28
3.5.2 Instances . 28
3.5.3 Results for the real-life instance . 31
3.5.4 Results for the artificial instances 31

3.6 Conclusions . 32

4 Lead time forecasting for a pharmaceutical supply chain 34
4.1 Introduction . 34
4.2 Related works . 36
4.3 Methodology . 37

v

4.3.1 Linear regression . 37
4.3.2 Linear support vector machines . 37
4.3.3 Random forests . 38
4.3.4 k-nearest neighbors . 38
4.3.5 Multi-layer perceptron . 38

4.4 Dataset . 38
4.5 Experimental Results . 40
4.6 Conclusions . 41

5 A Metaheuristic Algorithm for a Multi-period Orienteering Problem 43
5.1 Introduction . 43
5.2 Brief Literature Review . 45
5.3 Problem description . 47
5.4 Mathematical Model . 49
5.5 Iterated Local Search . 50
5.6 Computational evaluation . 53

5.6.1 Instances . 53
5.6.2 ILS results . 54
5.6.3 Comparison with the mathematical model 55
5.6.4 Comparison with the company solutions 56
5.6.5 Evaluation of the ILS components 57

5.7 Conclusions . 58

Conclusion 60

Bibliography 62

vi

List of Figures

2.1 Network of relationships between employees 15
2.2 Influence of cea on the objective function . 19

3.1 Three-step approach . 21
3.2 An overview of the proposed algorithm . 29
3.3 An overview of the hospital . 30
3.4 A detailed view of a department in the hospital 30
3.5 Variation of z for each iteration τ in the instance number 18 33

4.1 Distribution of the number of samples in the dataset, for each different category. 39
4.2 Lead time distribution, as a function of the month. 40

5.1 Customers in the Emilia Romagna region, divided by province 44
5.2 Customers in the Reggio Emilia province, divided by clusters 45
5.3 Depicting example for the Relocate inter-period perturbation movement . . . 53
5.4 Four KPIs by Gurobi and ILS (on subset F of instances for which MILP

found a solution) . 56
5.5 Relevant KPIs for company and ILS (on the entire set of instances) 57

vii

List of Tables

1.1 Average results aggregated by number of customers (10 instances per line, 5
ILS executions per instance) . 8

1.2 Results for instances with 45-50 customers (best UB values appear in bold) . 9

2.1 Personnel scheduling for sector 1 before and after Covid-19 pandemic 14
2.2 Weekly working hours before and after Covid-19 pandemic 15
2.3 R values before and after Covid-19 pandemic in a company solution 15
2.4 Comparison between the solutions produced by the company and by the model 17
2.5 Personnel scheduling for sector 1 in scenario I and scenario II 18
2.6 Results found by the proposed model on 27 randomly generated instances . . 18

3.1 Results obtained for the real-life instance 31
3.2 Best results found on the artificial instances with the best configuration of η

and ξ . 32

4.1 Mean squared error obtained per each different category (best results in bold). 41
4.2 Mean squared error obtained per each different month (best results in bold). . 42

5.1 Details of the real-world instances . 54
5.2 Average computational results obtained by the ILS 54
5.3 Comparison between Gurobi and ILS (on subset F of instances for which

MILP found a feasible solution) . 55
5.4 Comparison between company and ILS solutions (on the entire set of instances) 57
5.5 Impact of the ILS components on the solution value 58

viii

No regrets, no matter what

1

Chapter 1

On solving the time window
assignment vehicle routing problem1

In this chapter we propose a combined algorithm based on an Iterated Local Search (ILS)
and a mathematical model to solve the Time Window Assignment Vehicle Routing Problem
(TWAVRP). The TWAVRP appears when the volume of customer demands is uncertain and
time windows should be allocated to customers so as to minimize expected travel costs.
Our goal is to find a heuristic strategy that can efficiently improve the current TWAVRP
solution methods in the literature. For this purpose, we first use an ILS algorithm to generate
feasible sets of routes. Then, we invoke a Mixed Integer Linear Programming formulation
that assigns time windows to customers and selects the subset of routes of minimum expected
cost. Computational results performed on benchmark instances show that our algorithm is
competitive with respect to the literature, especially for instances with more than 45 clients.

1.1 Introduction

Vehicle routing is a class of problems that appears in several combinatorial optimization stud-
ies due to their practical relevance, mainly in the areas of retail and transport (Toth and Vigo,
2014). The classical Vehicle Routing Problem (VRP) calls for shipping freight to customers
located along a distribution network by means of a fleet of capacitated vehicles, with the aim
of minimizing the delivery costs. Since its introduction in the 1950s, several variations of the
VRP have become prominent in the literature. Among these, we mention the Vehicle Routing
Problem with Time Windows (VRPTW), where a given interval of time in which deliveries
should occur is associated with each customer.

Inspired by retail distribution networks, Spliet and Gabor, 2014 introduced the Time
Window Assignment Vehicle Routing Problem (TWAVRP). The TWAVRP appears when
the volume of customer demands is uncertain and time windows should be allocated to the
customers located along a distribution network, so as to minimize the expected travel costs.
In the TWAVRP, each endogenous time window, that has a fixed-width, must be associated
within the exogenous time window of the client. The exogenous time windows is represented
by the arrival and departure limits of a client. According to Neves-Moreira et al., 2018, the
TWAVRP can be defined as a two-stage stochastic optimization problem. Given a set of
customers to be visited within a regular period, the first stage decisions are to assign a set
of time windows to customers, before demand is known. In the second stage, after requests
are revealed for each day, delivery schedules respecting the assigned time windows must be
designed.

1This work has been published as: Martins, L. B., Iori, M., Moreira, M. C. O. & Zucchi, G. (2021). “On
Solving the Time Window Assignment Vehicle Routing Problem via Iterated Local Search”. In Graphs and
Combinatorial Optimization: from Theory to Applications, CTW2020 Proceedings, pp. 223–235.

Chapter 1. On solving the time window assignment vehicle routing problem 2

The TWAVRP faced in this work is part of a research whose focus is to give an efficient
and accurate solution for a routing problem faced by an Italian company providing logistics
services in several distribution fields. One of the characteristics presented in the particular
routing problem faced by the company is the presence of a time window assignment decision
phase. Our purpose is to help the company to minimize the actual delivery time and the
total cost of the service they offer. We decided to start our research by first looking at the
combinatorial aspect of the TWAVRP, with the aim of focusing later on its application to
the company case study. In particular, the main contribution of this paper is to provide an
answer to the following question: “Is there a heuristic strategy that can efficiently solve the
TWAVRP as defined by Dalmeijer and Spliet, 2018; Spliet and Gabor, 2014?”. For this
purpose, we propose an algorithm that generates a set of routes by invoking an Iterated Local
Search (ILS) metaheuristic, and then selects the most appropriate routes through an auxiliary
mathematical formulation.

The remainder of the paper is structured as follows. Section 1.2 presents a brief liter-
ature review concerning the VRPTW and the TWAVRP. Section 1.3 formally describes the
TWAVRP and presents a mathematical model. Section 1.4 reports the methodology that we
developed to solve the TWAVRP. Section 1.5 shows the computational experiments that we
performed. Finally, Section 1.6 presents some conclusions and some future research perspec-
tives.

1.2 Brief Literature Review

Due to the academic interest in VRP variants and to the need of solving difficult real-world
problems, researchers have been focusing more and more on realistic VRP, studying the class
of so-called Rich Vehicle Routing Problems (RVRP). The RVRP class deals with realistic
objective functions, uncertainty, dynamism, and a variety of practical constraints related to
time, distance, heterogeneous fleet, inventory and scheduling problems, to mention a few.
The reader is referred to (Caceres-Cruz et al., 2014; Vidal et al., 2013; Vidal et al., 2014) for
more details about RVRP variants.

In this work, we deal with the TWAVRP, a problem that has characteristics resembling the
VRPTW. The VRPTW is a generalization of the VRP involving appropriate time intervals
for performing services, called time windows. In this class of problems, customer service
can only be started within the time window defined by the customer (Desrochers, Desrosiers,
and Solomon, 1992). Recently, several interesting VRPTW applications have been addressed
in the literature. Among these, we mention the delivery of food (Amorim et al., 2014), the
electric vehicle recharging problem (Keskin and Çatay, 2018), and the use of anticipated
deliveries in pharmaceutical distribution (Kramer, Cordeau, and Iori, 2019).

In literature, we found some examples of classical approaches of VRPTW that consider
Branch-and-Price (Azi, Gendreau, and Potvin, 2010; Desrochers, Desrosiers, and Solomon,
1992) and Tabu Search algorithms (Ceschia, Gaspero, and Schaerf, 2011; Cordeau, Laporte,
and Mercier, 2001), and also more recent studies with applications at delivery food (Amorim
et al., 2014) and electric vehicles recharging problem (Keskin and Çatay, 2018).

The TWAVRP has characteristics that make it even harder to solve in practice than the
VRPTW (Spliet, Dabia, and Woensel, 2018). Several methods have been developed for
its solution in recent years. The problem was formally introduced by Spliet and Gabor,
2014. They considered a finite number of scenarios with given realization probabilities.
They proposed a mathematical model involving a large number of variables, and solved it by
a branch-cut-and-price algorithm. Computational experiments on 40 instances involving 10,
15, 20, and 25 customers proved the efficiency of the proposed algorithm.

Chapter 1. On solving the time window assignment vehicle routing problem 3

Moreover, Spliet and Desaulniers, 2015 tackled a variant of the TWAVRP where, for
each customer, a time window is selected from a set of possibilities. To solve the problem,
they implemented a Branch-Price-and-Cut and a Tabu Search. The results they obtained on
a new set of instances showed that an approach considering five scenarios led to an average
cost reduction of about 3.6% compared to a single-scenario approach.

In their paper, Dalmeijer and Spliet, 2018 addressed the TWAVRP through a Branch-and-
Cut algorithm. They considered branching strategies based on a set of precedence inequal-
ities. The effectiveness of the algorithm was demonstrated through numerical experiments
and comparisons with the literature.

Inspired by an European food retailer, Neves-Moreira et al., 2018 applied the TWAVRP
to a real food distribution case study, involving around 200 customers, with time windows de-
fined according to the product segments. Their problem considers both traveled distances and
fleet requirements costs in the objective function. Their solution method uses three phases:
route generation; initial solution construction; and improvement by a matheuristic.

Finally, Spliet, Dabia, and Woensel, 2018 proposed a mathematical formulation for a
TWAVRP variant that includes time-dependent travel times. To deal with this new problem,
they applied a Branch-Price-and-Cut algorithm. Computational tests were run on artificial
instances having up to 25 customers. The best solution value they found was only 0.55%
higher, on average, than the optimal solution value.

1.3 Formal Problem Definition

We deal with the same problem described by Dalmeijer and Spliet, 2018. Consider a set
of clients denoted by H = {1,2, . . . ,n}. A graph G = (N,A) models the network of this
problem, where N = H ∪{0,n+ 1} is the overall set of nodes and 0 and n+ 1 represent,
respectively, the departure and arrival depot nodes of all routes. A set AH of arcs indicates
the connections between any pair of customer nodes i, j ∈ H. Similar to set N, we denote
A = AH ∪{(0, j)∪ (j,n+ 1) for all j ∈ H}, as the overall set of arcs connecting customers
and depot nodes. Each arc (i, j) ∈ A has an associated travel time ti j and a travel cost ci j. The
travel times are non-negative and respect the triangular inequality (ti j ≤ tik + tk j for all i, j,
and k), and the same applies to travel costs.

An unlimited set of homogeneous vehicles with capacity Q is available at the departure
depot. We consider a set Ω of demand scenarios, each having probability of occurrence pω,
for ω ∈Ω, in such a way that ∑ω∈Ω pω = 1. Each customer j ∈ H has a demand in scenario
ω ∈Ω given by 0≤ qω

j ≤ Q.
Each client j ∈ H has to be assigned to an endogenous time window of width w j, which

must be selected in a fixed exogenous time window [e j, l j] provided in input, where l j−e j ≥
w j. A time window [e0, l0] represents the opening hours of the departure depot. Similarly,
a time window [en+1, ln+1] represents the opening hours of the arrival depot. The objective
function consists in minimizing the expected traveled cost over all scenarios, which is given
by min∑ω∈Ω pω ∑(i, j)∈A ci jxω

i j, where xω
i j is a binary variable that takes the value 1 if arc

(i, j) ∈ A is traveled in scenario ω, 0 otherwise. For each scenario ω ∈Ω, a route is feasible
if the exogenous time window constraints are satisfied, the capacity constraints are satisfied
and the customer j must be visited after the service time at customer i added to the travel
time ti j in the case that the customer j is visited after i.

1.4 An Iterated Local Search-based Algorithm

The heuristic method proposed in this paper is outlined in Algorithm 1. It is based on two
successive phases, the first used to generate routes and the second used to select a subset of

Chapter 1. On solving the time window assignment vehicle routing problem 4

routes having minimum cost. A similar idea was adopted by Moreira and Costa, 2013, who
efficiently solved a quite different combinatorial optimization problem involving job rotation
schedules in assembly lines with heterogeneous workers. Our method is composed of two
parts. First, we generate a pool of feasible routes, minimizing the total cost of each scenario
(Lines 3−5), subject to vehicle capacity constraints and exogenous time windows. Then, we
call an auxiliary Mixed Integer Linear Programming (MILP) formulation to select the most
appropriate routes of the set, so as to optimize the total cost over all scenarios (Line 6) by
respecting the generated endogenous time windows. The reference framework of Phase 1
is the ILS introduced by Lourenço, Martin, and Stützle, 2003. Such ILS has four compo-
nents: (i) initial solution generator; (ii) local search procedure; (iii) perturbation; and (iv)
acceptance criterion. The choice of this metaheuristic derives from the fact that it has been
successfully applied in several combinatorial optimization problems (Avci and Topaloglu,
2017; Gunawan, Lau, and Lu, 2015a; Nogueira, Pinheiro, and Subramanian, 2018), includ-
ing a number of VRP variants (Haddadene, Labadie, and Prodhon, 2016; Subramanian and
Anjos Formiga Cabral, 2008). Moreover, it contains fewer parameters to be fine-tuned with
respect to other metaheuristics. In Line 4, we represent the ILS by function ILS(Iω, α, niter),
which returns the set of routes obtained by the execution of the metaheuristic after receiving
in input data Iω, that is all the data from scenario ω. Note that parameter α corresponds to the
perturbation factor, whereas niter gives the number of iterations without improvements. Next,
we explain each component of the ILS and of the subsequent mathematical formulation used
to select the final set of routes.

Algorithm 1 Main algorithm
1: procedure MAIN ALGORITHM(I:instance)
2: P← /0 ▷ Empty pool of routes
3: for ω ∈Ω do
4: P← P∪ ILS(Iω,α,niter) ▷ Generating the set of routes for each scenario
5: end for
6: s← RSM(P, I) ▷ Route Selector Model (RSM)
7: return (s, f (s)) ▷ solution, and its objective function
8: end procedure

1.4.1 Iterated Local Search (ILS)

Algorithm 2 gives the heuristic invoked to create the initial solution for the proposed ILS. The
algorithm is inspired by the greedy strategy presented by Zhigalov, 2018. Let H̃ω be the set
of all customers in scenario ω ∈Ω, that is, all customers demands in that scenario and let Hω

be the set of all available clients for a data set I on scenario ω. First, H̃ω is sorted according
to the earliest start time of the exogenous time window (i.e., ei, for i ∈ H̃ω) of the customers
(Line 3). The main loop consists of Lines 4–15, and terminates when all customers have
been assigned. In each iteration, an empty route is opened (Line 5), and the highest priority
customers (according to the sorting in Line 3) are appended to the route, one at a time, if such
assignment respects vehicle capacity and time window constraints (Lines 8–11). Feasibility
is checked by invoking the infeasible(R) procedure. If the current route is feasible, customer
j is included in the route (R) under construction and then removed from H̃ω (Line 14).

The Local Search (LS) method is composed of six elementary neighborhoods:

N1 Relocate intra-route: change position of a customer in a route;

N2 Swap intra-route: swap two customer positions in a route;

Chapter 1. On solving the time window assignment vehicle routing problem 5

Algorithm 2 Constructive Heuristic (CH)
1: procedure CONSTRUCTIVE HEURISTIC (CH)(I,Hω)
2: s← /0

3: H̃ ← sort(Hω) ▷ sort clients in non-descending order of earliest exogenous time
window

4: while H̃ ̸= /0 do
5: R ← /0

6: for j ∈ H̃ do
7: R ← R ∪{ j}
8: if infeasible(R) = true then
9: R ← R \{ j}

10: else
11: H̃ ← H̃ \{ j}
12: end if
13: end for
14: s← s∪R
15: end while
16: return s ▷ feasible solution
17: end procedure

N3 2-opt: invert a sequence of customers allocated to the same route;

N4 Relocate inter-route: relocate a customer to a different route in the same scenario;

N5 Swap inter-route: exchange two customers allocated in different routes, in the same
scenario;

N6 Cross inter-route: split two routes at given points and exchange their remaining parts.

The LS method invokes the neighborhoods according to the procedure shown in Algo-
rithm 3. Given a solution s, a list NL(s) of neighborhoods is initialized according to the
inter-route neighborhoods (N4, N5, and N6). If s

′
is feasible and the distance performed,

represented by function f (s
′
), decreases compared to the current solution (Line 6), an intra-

route search procedure (N1, N2, and N3) is performed over s′. If the intra-route procedure
improves s′, the current solution s̃ is used to replace s∗ (Line 10). The process terminates
when no inter-neighborhood can return an improvement.

Starting from a solution s∗, the Perturbation method invokes a list NL(s∗) of possible
neighborhood moves according to the inter-route neighborhoods (N4, N5, and N6). A per-
centage α of neighborhoods in NI(s∗) is randomly chosen and applied to s∗. Regarding the
Acceptance criterion, we accept only solutions that are better than the current one. Algorithm
4 summarizes the ILS that is applied to each scenario of Phase 1.

1.4.2 Route Selector Model

The ILS algorithm generates a set P of viable routes for each scenario ω ∈Ω (see Algorithm
1). Note that all routes in P respect the capacity and time-windows constraints. We built
a MILP formulation, called Route Selector Model (RSM), whose aim is to choose the most
appropriate subset of routes from P, assigning an endogenous time window to each client,
over all scenarios.

To present the RSM, we take from P: (i) f ω
jr as the starting time of service on client j

on the route r in scenario ω; (ii) cω
r as the cost to choose a route r ∈ P in scenario ω; and

(iii) xω
jr as a binary parameter equal to one if client j belongs to route r ∈ Rω in scenario

Chapter 1. On solving the time window assignment vehicle routing problem 6

Algorithm 3 Local Search method (LS)
1: procedure LOCAL SEARCH METHOD (LS)(s)
2: s∗← s
3: for N ∈ NL(s∗) do ▷ NL(s∗): list of inter-neighborhoods of solution s∗

4: for s′ ∈ N do
5: if f (s′) < f (s∗) and feasible(s′) = true then
6: s∗← s′

7: for N ∈ NI(s∗) do ▷ NI(s∗): list of intra-neighborhoods of solution s′

8: for s̃ ∈ N do
9: if f (s̃) < f (s∗) and feasible(s̃) = true then

10: s∗← s̃
11: end if
12: end for
13: end for
14: end if
15: end for
16: end for
17: return s∗ ▷ best feasible solution found
18: end procedure

ω, 0 otherwise. Consider uω
r as a binary variable equal to one if route r ∈ P is selected, 0

otherwise, and yi as a continuous variable that measures the starting time of the endogenous
time window of customer i ∈ H̃ω. Recall that, as indicated above, wi gives the time window
width of customer i. The RSM is as follows:

min ∑
ω∈Ω

pωcω
r uω

r (1.1)

subject to

∑
r∈Rω

xω
jru

ω
r = 1 ∀ j ∈ H,ω ∈Ω (1.2)

∑
r∈Rω

f ω
jrx

ω
jru

ω
r ≥ y j ∀ j ∈ H,ω ∈Ω (1.3)

∑
r∈Rω

f ω
jrx

ω
jru

ω
r ≤ y j +wi ∀ j ∈ H,ω ∈Ω (1.4)

y j ∈ [e j, l j−w j] ∀ j ∈ H,ω ∈Ω (1.5)

uω
r ∈ {0,1} ∀ω ∈Ω,r ∈ Rω. (1.6)

The model optimizes the total cost of the selected routes. Constraints (1.2) indicate that
each customer has to be served in all scenarios by a single route. Constraints (1.3)–(1.4) es-
tablish the endogenous time windows. Domain variables are presented by Constraints (1.5)–
(1.6).

1.5 Computational Experiments

We performed a set of computational experiments aimed at assessing the performance of the
ILS-based algorithm that we developed for the TWAVRP. The algorithms were implemented
in Python 3.7.4, using the MILP solver Gurobi 8.1.1 for the development of the RSM (Sec-
tion 1.4.2), running a single thread for a time limit of 3600 seconds on each instance. All

Chapter 1. On solving the time window assignment vehicle routing problem 7

Algorithm 4 Iterated Local Search (ILS)
1: procedure ITERATED LOCAL SEARCH (ILS)(Hω, α, niter)
2: s∗← /0 ▷ Best solution found so far (take f (s∗) = +∞)
3: s← CH(H,H→) ▷ H→: set of available customers of data set H
4: sls← LS(s)
5: P ← sls∪ s ▷ Initializing the set of feasible solutions
6: s∗← sls
7: count← 0
8: while count ̸= niter do
9: s′← Perturbation(s∗, α)

10: sls← LS(s′)
11: P ← P ∪ s′∪ sls
12: if f (s′) < f (s∗) then
13: s∗← s′

14: count← 0
15: else
16: count← count + 1
17: end if
18: end while
19: return P ▷ Set of feasible solutions found
20: end procedure

experiments were performed on a PC Intel i7, 3.5 GHz with 16 GB RAM, which is similar
to the computer used by Dalmeijer and Spliet, 2018.

To generate the pool of routes, Algorithm 8 was executed five times on each instance.
This number was tuned through preliminary tests in which we obtained a good trade-off
between quality and computational effort. Furthermore, this value allowed the algorithm to
make good use of its stochastic components. The number of iterations without improvements
(niter) and the perturbation percentage (α) were fine-tuned through the Irace package (López-
Ibáñez et al., 2016). For that purpose, we generated 200 training instances by using the
instance generator proposed by Dalmeijer and Spliet, 2018. The values returned by the Irace
package at the end of this test were niter = 100 and α = 0.35.

1.5.1 Instances

We use the set of TWAVRP instances proposed by Spliet, Dabia, and Woensel, 2018. Each
instance considers a different combination of number of customers, vehicle capacity, demand
for each scenario, probability of each scenario, size of exogenous and endogenous time win-
dows, travel costs, and travel times. In this way, the data set comprises ninety instances
divided into two classes: small instances and large ones. Small instances contain four sets of
ten instances each, having 10, 15, 20, and 25 customers, respectively. Large instances con-
tain five sets of ten instances each, with 30, 35, 40, 45, and 50 customers, respectively. The
customer’s coordinates were generated as uniformly distributed over a square with sides of
length five. The depot is located in the center of the square. Each instance includes demands
for each customer in three scenarios with equal probability of occurrence. Exogenous time
windows are distributed as follows: a time window [10,16] is given to 10% of the customers;
[7,21] to 30% of the customers; and [8,18] to the remaining 60%. The width of the endoge-
nous time window is set to wi = 2 for all customers. The costs and the travel times between
the nodes were obtained by calculating the Euclidean distances between their coordinates.

Chapter 1. On solving the time window assignment vehicle routing problem 8

TABLE 1.1: Average results aggregated by number of customers (10 in-
stances per line, 5 ILS executions per instance)

Instance CPU time (seconds) Gaps

N. customers B&C ILS ILS+RSM Gap∗(%) Gap(%)

10 0.1 4.50 ± 0.29 6.61 ± 0.56 0.34 ± 1.00 0.41 ± 1.02
15 4.5 16.50 ± 1.17 26.25 ± 1.86 0.00 ± 0.18 0.11 ± 0.25
20 2.2 39.06 ± 2.01 80.30 ± 7.49 0.02 ± 0.05 0.06 ± 0.10
25 12.4 68.48 ± 2.03 153.29 ± 18.56 0.06 ± 0.14 0.27 ± 0.78
30 544.0 107.27 ± 3.40 284.38 ± 12.62 0.04 ± 0.10 0.28 ± 0.39
35 1,531.7 161.59 ± 9.48 501.77 ± 97.94 0.02 ± 0.13 0.29 ± 0.42
40 3,252.0 224.33 ± 6.11 749.92 ± 41.11 0.10 ± 0.52 0.72 ± 0.73
45 3,600.0 289.34 ± 28.78 990.15 ± 172.79 -0.69 ± 0.83 -0.18 ± 1.61
50 3,600.0 372.98 ± 24.41 1,743.16 ± 261.71 -1.89 ± 0.12 -1.62 ± 1.31

1.5.2 Results

The experiments compare our ILS based-algorithm with the Branch-and-Cut (B&C) pro-
posed by Dalmeijer and Spliet, 2018, which can be considered the state-of-art method for the
solution of the TWAVRP. The results that we obtained are summarized in Table 1.1. They are
aggregated for instances having the same quantity of clients (first column). The remaining
columns contain the average and the standard deviation of each measure, with the exception
of the B&C time as it was executed just once. Columns B&C, ILS, and ILS+RSM, under
the group CPU time (seconds), give the computational times spent by, respectively, the algo-
rithm by Dalmeijer and Spliet, 2018, the ILS for the construction of the pool of routes, and
the overall Algorithm 1 including ILS and RSM. The columns named Gap∗(%) and Gap(%)
indicate the percentage deviation of the average solution value found over all repetitions with
respect to the best solution value, and with respect to the best-known values obtained by the
B&C method, respectively.

Regarding instances that have between 10 to 35 clients, we can observe that our method
found relative average deviations from 1.5% to 0.16% compared with the B&C solutions
in the worst case, and that the total time of the five executions of ILS+RSM is higher than
the B&C execution time. In the group of larger instances (45- 50 clients), the ILS+RSM
outperforms the results found in literature concerning both best-found and average solution
values of the five performed tests.

Table 1.2 highlights the behavior of our method on the 20 larger instances having 45 and
50 customers. We report the lower bound and upper bound obtained in Dalmeijer and Spliet,
2018 (columns LB and UB, respectively), and the best (column Best) and average (column
Avg) solution values found by our ILS+RSM method. In the problems with 45 clients, both
methods were competitive, each finding the best results for about half of the cases. Our
method improved the solution cost obtained by the B&C for all instances with 50 clients,
both considering columns Best and Avg. We estimate that the diversity of routes caused by
different local search operators was beneficial for the performance of the ILS+RSM algo-
rithm for these most difficult instances. Overall, we can conclude that the ILS+RSM is a
good heuristic method for moderate and large size instances of the TWAVRP. Our research
will now focus on adapting it to the real-world case study that motivated our study, so as to
embed possible complicating constraints and solve even larger instances.

Chapter 1. On solving the time window assignment vehicle routing problem 9

TABLE 1.2: Results for instances with 45-50 customers (best UB values
appear in bold)

Instance B&C by Dalmeijer and Spliet, 2018 ILS + RSM

N. customers LB UB Best UB Avg UB

71 45 49.52 51.78 51.22 51.41
72 45 50.73 52.13 51.86 52.94
73 45 41.50 41.70 41.95 42.24
74 45 47.25 47.84 47.96 48.16
75 45 48.77 49.86 49.47 50.02
76 45 48.38 52.09 49.90 50.03
77 45 50.09 51.18 51.18 51.25
78 45 52.02 53.95 53.35 53.74
79 45 47.45 48.21 48.27 48.69
80 45 49.57 50.57 50.61 50.78
81 50 56.81 58.85 58.16 58.29
82 50 51.50 53.20 52.98 53.03
83 50 57.45 60.67 58.77 58.89
84 50 52.31 56.38 54.09 54.23
85 50 53.74 56.07 55.06 55.26
86 50 51.68 54.76 53.02 53.16
87 50 52.47 54.14 53.81 53.87
88 50 54.82 56.91 56.27 56.36
89 50 59.23 61.51 60.32 60.62
90 50 57.68 59.55 58.95 59.23

Chapter 1. On solving the time window assignment vehicle routing problem 10

1.6 Conclusions and Future Research Avenues

We studied the Time Windows Assignment Vehicle Routing Problem (TWAVRP), a VRP vari-
ant that appears when the volume of customer demands is uncertain and visits over multiple
days should be planned. The objective is to create routes that minimize expected travel costs,
assigning a time window over all scenarios to each customer, and respecting the vehicle ca-
pacity. Our interest in this problem derives from a real-world case study. We decided to begin
our research with the development of a good and flexible metaheuristic, and to test it on the
benchmark TWAVRP instances, so as to check if good-quality solutions can be found within
reasonable computational efforts.

To this aim, we proposed an Iterated Local Search (ILS) algorithm that generates a pool
of feasible routes for each scenario, and a mathematical model, called Route Selector Model
(RSM), that chooses the most appropriate routes, among those created, in order to minimize
total costs and indicate the time windows for the customers. We compared the results of our
algorithm (ILS+RSM) with the Branch-and-Cut proposed by Dalmeijer and Spliet, 2018. The
ILS+RSM presented competitive results, concerning both solution quality and computational
effort, in particular for the larger size instances involving 45 and 50 customers.

Interesting avenues of further research concern: (i) incorporating new complicating
constraints deriving from the real-world case study in the metaheuristic; (ii) testing other
neighborhood-based metaheuristics as generators of routes; (iii) testing multiple calls to the
RSM with different pools of routes. This last avenue is motivated by the fact that in our tests
the RSM converged quickly to the incumbent solution, so there is hope to find good solution
values by invoking it multiple times.

11

Chapter 2

Personnel scheduling during
Covid-19 pandemic1

This chapter addresses a real-life personnel scheduling problem in the context of Covid-19
pandemic, arising in Coopservice. In this case study, the challenge is to determine a schedule
that attempts to meet the contractual working time of the employees, considering the fact
that they must be divided into mutually exclusive groups to reduce the risk of contagion. To
solve the problem, we propose a mixed integer linear programming formulation (MILP). The
solution obtained indicates that optimal schedule attained by our model is better than the one
generated by the company. In addition, we performed tests on random instances of larger
size to evaluate the scalability of the formulation. In most cases, the results found using
an open-source MILP solver suggest that high quality solutions can be achieved within an
acceptable CPU time. We also project that our findings can be of general interest for other
personnel scheduling problems, especially during emergency scenarios such as those related
to Covid-19 pandemic.

2.1 Introduction

Personnel scheduling problems traditionally consist of optimizing work timetables, i.e., de-
termining the appropriate times and shifts the employees of a company should work. Several
objectives can be considered, such as minimizing duty costs, maximizing productivity, or
minimizing the number of employees. The solutions generated must meet different criteria,
for example, maximum number of working days, maximum amount of working hours, and
so on. Due to the recent Covid-19 pandemic, we introduce a novel and emerging aspect: the
risk of contagion among the workers. Covid-19 is now widely known to be highly conta-
gious, and the interested reader may refer to, e.g., (Harapan et al., 2020; Li et al., 2020) and
(Shereen et al., 2020) for further information regarding the transmission of the virus and the
source of the disease, respectively.

On the one hand, there is a rich body of literature on how governments can avoid the
spread of pandemic diseases (e.g., Aledort et al., 2007; Flahault et al., 2006; Fang, Nie, and
Penny, 2020), or how physicians can deal with certain scenarios arising in medical centers,
where they are faced with a growing, sometimes even uncertain, demand for emergency care
(Marchesi, Hamacher, and Fleck, 2020; Tohidi, Kazemi Zanjani, and Contreras, 2020). On
the other hand, the same does not happen when it comes to investigating optimized personnel
scheduling policies that take into account the risk of disease spreading in specific environ-
ments. This is the case of companies that must remain open to provide essential services dur-
ing a possible quarantine period. In this work, we attempt to start filling this gap by studying
and solving a real-world personnel scheduling problem during Covid-19 pandemic, arising

1This work has been published as: Zucchi, G., Iori, M., & Subramanian, A. (2021). Personnel scheduling
during Covid-19 pandemic. Optimization Letters, 15(4), 1385-1396.

Chapter 2. Personnel scheduling during Covid-19 pandemic 12

in a large Italian pharmaceutical distribution warehouse operated by Coopservice (Coopser-
vice Scpa, 2020). It consists of a large service company operating in several fields such as
transportation, logistics, cleaning and security services.

There is a vast literature on personnel scheduling and we refer to Ernst et al., 2004a; Ernst
et al., 2004b; Van den Bergh et al., 2013 for detailed surveys and to Brucker, Qu, and Burke,
2011 for models and complexity results. According to the classification scheme presented in
Ernst et al., 2004a, we can categorize the scheduling made by the company before and after
Covid-19 pandemic as demand-based and shift-based, respectively. The latter is extensively
adopted in nurse scheduling studies (e.g., El-Rifai, Garaix, and Xie, 2016; Ozkarahan and
Bailey, 1988). In particular, a variant of the problem was tackled in Vanden Berghe, 2002, in
which nurses with the same skills, or that are married to each other and with children, were
not allowed to work together during the same shift. This situation somewhat resembles the
one found in our problem (see Section 2.2), where an employee originally assigned to a sector
can no longer be reassigned to another one during the workday, as it often happened before
the pandemic. More recently, the study described in Seccia, 2020 proposed and solved a nurse
rostering problem arising in Covid-19 pandemic, where the author considered an emergency
scenario by allowing nurses to work in multiple shifts during a workday. The objective was
to decrease the occurrences of shifts with an insufficient number of nurses, and to balance
the schedules by minimizing the working hours of the nurses.

To solve the problem introduced in this work, we propose a mathematical formulation
based on mixed integer linear programming (MILP). The results obtained show that our opti-
mized solution is capable of improving the manual one produced by the company by 37.3%,
while keeping the same number of workers. In addition, we demonstrate that the model is ca-
pable of obtaining, on average, high quality solutions on larger instances generated at random
within an acceptable CPU time.

The remainder of the chapter is organized as follows. Section 2.2 formally introduces
our personnel scheduling problem. Section 2.3 shows the solutions adopted by the company
before and after Covid-19 pandemic, as well as the performance measures used to evaluate
the solutions. Section 2.4 describes the proposed mathematical model. Section 2.5 contains
the results of the computational experiments. Finally, Section 2.6 presents the concluding
remarks.

2.2 Problem description

The activities that Coopservice need to perform are to receive, organize and distribute phar-
maceutical products to hospitals. The company manages large regional warehouses in Italy,
where goods are received, stored, picked-up, and finally delivered to the hospitals, according
to their demand. Therefore, Coopservice is responsible for managing the last phase of the
pharmaceutical supply chain: from the inbound activity to the last-mile delivery (Kramer,
Cordeau, and Iori, 2019). The interest reader may refer to (Pazour and Meller, 2013) for
an overview on how to manage the supply chain between a distribution center (as the one
considered in this work) and a hospital pharmacy.

In this work, we study the case of a regional warehouse located in Tuscany, one of the
largest regions in Italy. The warehouse is composed of two floors: the top floor stores all
pharmacological items (e.g., antiblastic, fridge drugs, toxic and inflammable), whereas the
ground floor the non-pharmacological ones (food, paper, plastic, masks, gloves, syringes,
etc.). Each floor has two working sectors, thus leading to a total of four sectors. There are 23
employees working in the warehouse. In the following, we use E and A to define the sets of
employees and sectors, respectively.

Chapter 2. Personnel scheduling during Covid-19 pandemic 13

The arise of Covid-19 brought into light a new issue that affected the movement of work-
ers in the warehouse. Before the pandemic, all of them could move from one sector to the
other, when required, during the workday. This became no longer possible during the pan-
demic period, meaning that each employee e ∈ E should work in exactly one sector a ∈ A
during the workday, with a view of avoiding contagion. As a result, the company was forced
to modify the personnel scheduling policy by creating groups of employees that must always
work together, both in the same shift and in the same sector.

In our problem, we also consider a set of shifts S where the employees can work. We
denote by s = 1 and s = 2 the morning and afternoon shifts, respectively, from Monday to
Friday. Because of the emergency scenario, employees must also work in sector a = 1 on
Saturday morning, here referred to as shift s = 3. Each shift s ∈ S has a maximum amount of
weekly working hours for each sector a ∈ A, represented by λsa.

To balance the activities, each group of employees alternate their shift every week, i.e.,
if a group works on the morning shift during a week, in the next week the same group will
have to work on the afternoon shift. Moreover, for each sector a ∈ A and each shift s ∈ S,
we define by τsa the weekly minimum amount of working hours imposed by the company
to ensure the required productivity level. In addition, each employee e ∈ E has a contractual
amount of working hours hmax

e per week. Finally, we define cea as a binary input parameter
indicating whether employee e ∈ E can work in sector a ∈ A (cea = 1) or not (cea = 0). This
corresponds to the skill matrix of employees.

Let W be the set of weeks. The aim of this work is to solve the personnel scheduling
problem for 2 consecutive weeks (i.e., W = {1,2}), satisfying the new shift regulation for the
emergency period issued by the authorities. The objective of the problem is to minimize the
sum of the deviations from the contractual amount of working hours of each worker formally
given by the absolute difference between the weekly working time in the solution and hmax

e .
Both positive and negative deviations imply in additional costs for the company (if negative,
the missing hours need to be paid nevertheless to the worker, if positive, the extra hours
impose an extra cost).

Table 2.1 shows the schedule manually built by the company to solve the problem for
sector 1 before and after the pandemic. Note that the morning shift starts at 06:00 and finishes
at 12:00, while the afternoon shift starts at 12:00 and finishes at 20:00. For each employee
e ∈ E, we report the sum of weekly working hours ∑he and the deviation ∆ew in each w ∈W
with respect to hmax

e . It can be seen that before the pandemic there was no deviation at all
(∆ew = 0 ∀e ∈ E,w ∈W), whereas the same did not occur after the pandemic (where, e.g.,
employee 5 has a deviation of 10 working hours in week 2).

2.3 Personnel scheduling in a normal scenario and during Covid-
19 pandemic

In this section, we analyze the schedules adopted by the company before and after the pan-
demic. Table 2.2 reports the weekly value of ∆ew for each employee. One can clearly ob-
serve that the schedule determined by the company in a normal scenario successfully met the
amount of contractual working hours for all employees but 11, 18 and 21. The new schedule
generated by the company led, however, to many deviations, as highlighted in the bottom
part of the table.

In addition to the evaluation of ∆ew, we also need to evaluate the contagion risk. To this
aim, Figure 2.1 depicts a network graph, before and after the pandemic, where the vertices
denote the employees and the edges indicate whether a pair of employees worked together in
the same shift and in the same sector (for at least one hour). From this graph representation,
we introduced a contagion risk factor R to measure the risk of infection, based on the average

Chapter 2. Personnel scheduling during Covid-19 pandemic 14

TABLE 2.1: Personnel scheduling for sector 1 before and after Covid-19
pandemic

Personnel scheduling for sector 1 before Covid-19 pandemic
Week 1

e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax
e ∆e1

1 30 30 0
2 30 30 0
3 40 40 0
4 40 40 0
5 30 30 0
6 30 30 0

Week 2
e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax

e ∆e2

1 30 30 0
2 30 30 0
3 40 40 0
4 40 40 0
5 30 30 0
6 30 30 0

Personnel scheduling for sector 1 after Covid-19 pandemic
Week 1

e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax
e ∆e1

1 6 h 31 30 1
2 30 30 0
3 40 40 0
4 40 40 0
5 30 30 0
6 30 30 0

Week 2
e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax

e ∆e2

1 30 30 0
2 30 30 0
3 6 h 36 40 4
4 6 h 36 40 4
5 40 30 10
6 40 30 10

vertex degree of the graph. Let Gaw be a graph associated with each sector a ∈ A and each
week w ∈W . Every graph has a vertex-set V (Gaw) and edge-set E(Gaw). For each vertex
u ∈ V (Gaw) we define Ω(u) as its corresponding degree (number of first neighbors). The
risk factor Raw for each sector a and for each week w is thus formally defined as:

Raw =
∑u∈V (Gaw) Ω(u)
|V (Gaw)|

. (2.1)

We can then determine the value of the risk factor Ra for each sector a as follows:

Ra =
∑w∈W Raw

|Raw|
. (2.2)

For example, when considering Sector 2, we can observe that the average vertex degree
(i.e., the risk factor R) before and after the pandemic were 3 and 1, respectively.

Table 2.3 shows the average values of R for each sector before and after the pandemic.
It can be seen that the new schedule visibly decreases the risk of disease spreading, as the
values of R are considerably smaller, when compared to the previous situation.

2.4 Proposed mathematical formulation

Let xwa
se be a binary variable assuming the value one if employee e ∈ E is assigned to shift

s ∈ S to work in sector a ∈ A in week w ∈W , 0 otherwise. In addition, let ywa
se be the amount

of working hours spent in sector a ∈ A by employee e ∈ E assigned to shift s ∈ S in week
w ∈W . Finally, the excess and lack of working hours associated with employee e ∈ E in
week w ∈W are defined by variables δ+ew and δ−ew, respectively. The MILP formulation can
be written as follows.

Chapter 2. Personnel scheduling during Covid-19 pandemic 15

TABLE 2.2: Weekly working hours before and after Covid-19 pandemic

Weekly working hours before Covid-19 pandemic
Sector 1 Sector 2 Sector 3 Sector 4

e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2
1 0 0 7 0 0 11 1 1 18 1 1
2 0 0 8 0 0 12 0 0 19 0 0
3 0 0 9 0 0 13 0 0 20 0 0
4 0 0 10 0 0 14 0 0 21 1 1
5 0 0 15 0 0 22 0 0
6 0 0 16 0 0 23 0 0

17 0 0
Weekly working hours after Covid-19 pandemic

Sector 1 Sector 2 Sector 3 Sector 4
e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2
1 1 0 7 10 0 11 1 4 18 6 1
2 0 0 8 0 10 12 0 0 19 0 5
3 0 4 9 0 10 13 5 0 20 5 0
4 0 4 10 0 10 14 5 0 21 4 1
5 0 10 15 5 0 22 5 0
6 0 10 16 0 5 23 0 5

17 0 0

FIGURE 2.1: Network of relationships between employees

TABLE 2.3: R values before and after Covid-19 pandemic in a company
solution

Sector 1 Sector 2 Sector 3 Sector 4
Rbe f ore 3.7 3.0 5.7 5.0
Ra f ter 2.0 1.0 2.5 2.0

min ∆: ∑
e∈E

∑
w∈W

δ
−
ew + δ

+
ew (2.3)

Chapter 2. Personnel scheduling during Covid-19 pandemic 16

s.t. ∑
a∈A

∑
s∈{1,2}

xwa
se = 1 w ∈W ,e ∈ E (2.4)

∑
s∈{1,2}

x1a
se = ∑

s∈{1,2}
x2a

se a ∈ A,e ∈ E (2.5)

∑
a∈A

∑
w∈W

xwa
se = 1 e ∈ E,s ∈ {1,2} (2.6)

xw1
3e ≤ xw1

1e e ∈ E,w ∈W (2.7)

xwa
3e = 0 w ∈W ,a ∈ {2,3,4},e ∈ E (2.8)

ywa
se ≤ λsaxwa

se w ∈W ,e ∈ E,a ∈ A,s ∈ S (2.9)

∑
e∈E

ywa
se ≥ τsa w ∈W ,a ∈ A,s ∈ S (2.10)

∑
a∈A

∑
s∈S

ywa
se + δ

−
ew−δ

+
ew = hmax

e w ∈W ,e ∈ E (2.11)

xwa
se ≤ cea w ∈W ,e ∈ E,a ∈ A,s ∈ S (2.12)

xwa
se ∈ {0,1} w ∈W ,e ∈ E,a ∈ a,s ∈ S (2.13)

ywa
se ≥ 0 w ∈W ,e ∈ E,a ∈ A,s ∈ S (2.14)

δ
+
ew,δ−ew ≥ 0 e ∈ E,w ∈W . (2.15)

Objective function (2.3) minimizes the total deviation ∆ between the amount of weekly
contractual hours for each worker (hmax

e) and the actual working hours (ywa
se). Constraints

(2.4) impose that each employee must be weekly assigned to exactly one shift s ∈ {1,2} and
one sector a ∈ A. Constraints (2.5) ensure that if an employee e ∈ E is designated to sector
a∈ A in the first week (w = 1), he/she must work in the same sector in the next week (w = 2).
Constraints (2.6) impose each employee to work in exactly one sector per shift. Constraints
(2.7) state that an employee can only work on the Saturday shift (s = 3) if he/she is assigned
to the morning shift s = 1 to work in sector a = 1. Constraints (2.8) forbid all employees
to work in sectors 2, 3 and 4 on the Saturday shift. Constraints (2.9) enforce a maximum
amount of weekly working hours, whereas constraints (2.10) ensure that the working hours
requested for every shift in each sector are respected. Moreover, constraints (2.11) indicate
the contractual amount of weekly working hours for each employee. Constraints (2.12) en-
sure the compatibility of designating an employee e ∈ E to work in sector a ∈ A. Finally,
constraints (2.13)–(2.15) define the domain of the variables.

2.5 Computational results

The model was coded in Python using PuLP (Mitchell, O’Sullivan, and Dunning, 2011) and
executed on an Intel i5-8250U 1.60 GHz with 8 GB of RAM running Windows 10. CBC
(https://github.com/coin-or/Cbc) from COIN-OR (Lougee-Heimer, 2003) was used
as a MILP solver. A time limit of 600 seconds was imposed for each execution of the model.

Two scenarios were considered in our testing. Scenario I assumes that the employees
are only eligible to work on the same sectors associated with the solution generated by the
company, i.e., the values of cea are taken directly from such solution. The goal is to verify
whether it is possible to obtain an improved solution while keeping the same groups of em-
ployees per sector. In Scenario II, we use the values of cea provided by the company, which
were determined according to the ability of a given employee e ∈ E to work on a specific
sector a ∈ A, thus allowing new groups of employees to be formed.

Table 2.4 compares the results produced by the company with those obtained in each of
the two scenarios. It can be verified that solution found in Scenario I yielded an improvement
of 9% with respect to the solution generated by the company after the pandemic. This can

https://github.com/coin-or/Cbc

Chapter 2. Personnel scheduling during Covid-19 pandemic 17

be considered a very good result, given that the groups of employees are the same in both
solutions. Nevertheless, the gains in Scenario II were way more substantial. More precisely,
allowing the model to form new groups of employees, while respecting their corresponding
skills, led to an improvement of 37.3% on the value of ∆. We also mention that the CPU time
in seconds spent by CBC in Scenarios I and II were 0.58 and 0.91, respectively, so the model
was very quick in solving the instance.

The average values of R are the same for all scenarios, equaling the one obtained by
the solution generated by the company after the pandemic. Note that it is not possible to
improve the value of R any further because of constraints (2.10), which in turn impose a
certain amount of working hours for each shift s ∈ S and each sector a ∈ A.

TABLE 2.4: Comparison between the solutions produced by the company
and by the model

Before After Scenario I Scenario II
a w ∆ R ∆ R ∆ R ∆ R

1
1 0

3.70
1

2.00
14

2.00
8

1.83
2 0 28 14 8

2
1 0

3.00
10

1.00
30

1.00
10

1.50
2 0 30 10 20

3
1 1

5.70
16

2.50
5

2.50
5

2.00
2 1 9 16 6

4
1 2

5.00
12

2.00
11

2.00
11

2.00
2 2 20 11 11

Tot = 6 Avg = 4.4 Tot=126 Avg = 1.9 Tot = 111 Avg = 1.9 Tot = 79 Avg = 1.9

Table 2.5 shows the optimized solution found for sector 1, considering scenarios I and
II. Note that the solution obtained is used in a cyclic fashion, i.e., one first determines the
schedule for 2 weeks and then one repeatedly uses this periodically as long as there are no
changes in the personnel. We remark that the company did not face any difficulties during
the practical implementation of the optimized solution.

We also conducted experiments on 27 randomly generated instances by varying the num-
ber of employees (25, 35, and 45) and sectors (3, 4, and 5), as well as by considering different
probabilities for having cea = 1, namely, 65%, 75% and 85%. In this case, the goal is to mea-
sure the performance of the model in terms of scalability, solution quality and risk factor
when trying to solve larger instances with different characteristics.

Table 2.6 presents the results found on these instances, where for each of them we report
the CPU time in seconds, together with the gap, ∆ and R values, respectively. One can see
that only 18 instances were solved to optimality, but the average gaps were, in most cases,
relatively small (below of equal to 5%), with the exception of instances E25-A5-85, E35-A5-
65, E35-A5-75, E35-A5-85, E45-A5-75 and E45-A5-85.

We also performed a further analysis on how the value of ∆ varies as the density of the
skill matrix increases. For this testing, we have generated more instances with other proba-
bility values for cea, considering the case involving 4 sectors. The results of the experiments
are presented in Figure 2.2. In the x-axis we report the probability for cea to assume value 1,
while in the y-axis we provide the corresponding ∆ values obtained. The graph shows how
the value of ∆ decreases as the skill matrix becomes more dense. When considering 25 and
35 employees, the reduction is more prominent for up to 75%, whereas the reduction is more
consistent for 45 employees.

It is important to highlight that, for practical reasons, we decided to use CBC as a MILP
solver, which is open-source and so easily adoptable in many applications. Nonetheless, for
the sake of comparison, we also performed tests using Gurobi 9.02 (Gurobi Optimization,

Chapter 2. Personnel scheduling during Covid-19 pandemic 18

TABLE 2.5: Personnel scheduling for sector 1 in scenario I and scenario II

Personnel scheduling for sector 1 - Scenario I
Week 1

e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax
e ∆e1

1 40 30 10
2 30 30 0
3 6 36 40 4
4 40 40 0
5 30 30 0
6 30 30 0

Week 2
e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax

e ∆e2

1 30 30 0
2 40 30 10
3 40 40 0
4 6 36 40 4
5 30 30 0
6 30 30 0

Personnel scheduling for sector 1 - Scenario II
Week 1

e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax
e ∆e1

2 30 30 0
3 6 36 40 4
4 6 36 40 4
6 30 30 0
8 40 40 0
16 40 40 0

Week 2
e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3 ∑he hmax

e ∆e2

2 30 30 0
3 40 40 0
4 40 40 0
6 30 30 0
8 6 36 40 4
16 6 36 40 4

TABLE 2.6: Results found by the proposed model on 27 randomly generated
instances

Intance Time Gap ∆ R Intance Time Gap ∆ R
E25-A3-65 0.21 0.00 63 3.17 E35-A4-85 1.07 0.00 47 3.38
E25-A3-75 0.24 0.00 60 3.17 E35-A5-65 600 0.27 74 2.50
E25-A3-85 0.49 0.00 59 3.17 E35-A5-75 600 0.10 66 2.50
E25-A4-65 0.58 0.00 29 2.13 E35-A5-85 600 0.09 54 2.50
E25-A4-75 0.24 0.00 29 2.13 E45-A3-65 0.36 0.00 106 6.50
E25-A4-85 0.31 0.00 29 2.13 E45-A3-75 0.80 0.00 93 6.50
E25-A5-65 600 0.03 73 1.50 E45-A3-85 0.54 0.00 84 6.50
E25-A5-75 600 0.05 73 1.50 E45-A4-65 0.99 0.00 63 4.63
E25-A5-85 600 0.19 37 1.50 E45-A4-75 1.65 0.00 60 4.63
E35-A3-65 0.33 0.00 48 4.83 E45-A4-85 3.13 0.00 58 4.63
E35-A3-75 0.38 0.00 47 4.83 E45-A5-65 600 0.03 92 3.50
E35-A3-85 1.80 0.00 38 4.83 E45-A5-75 600 0.07 92 3.50
E35-A4-65 0.50 0.00 57 3.38 E45-A5-85 600 0.06 77 3.50
E35-A4-75 1.52 0.00 50 3.38

Chapter 2. Personnel scheduling during Covid-19 pandemic 19

FIGURE 2.2: Influence of cea on the objective function

50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

cea (%)

∆
va

lu
es

45 employees
35 employees
25 employees

2020), and it was observed that the optimal solutions for all instances were found in up to
two seconds.

2.6 Concluding remarks

This chapter studied a real-life personnel scheduling problem, motivated by Covid-19 pan-
demic, from a large Italian pharmaceutical distribution warehouse operated by Coopservice.
A MILP formulation was proposed for the problem, which was solved using an open-source
optimization software, namely CBC from COIN-OR. The optimal solution obtained by our
formulation was capable of considerably improving the schedule adopted by the company,
which has started to create a plan to exchange operators using the holiday plan starting from
June 2020, in order to maintain the distance of at least 15 days between new contacts. Tests
were also performed on larger and randomly generated instances to measure the scalability
of CBC when solving our model, and the results found were of high quality for the vast ma-
jority of the cases. In addition, we conducted experiments using Gurobi 9.02, which quickly
managed to find the optimal solutions for all instances. Nevertheless, for larger warehouses
with a considerable amount of employees, one may consider using heuristics if the model is
not able to scale up.

Because Coopservice spends a large part of its budget on human resources (more than
20,000 employees), it is crucial to have a strategy to properly manage the personnel, espe-
cially during emergency situations such as epidemic crises. In general, this problem faces
the issue of reducing the risk of contagion, and of organizing the schedule of the shifts in
these type of scenarios. Therefore, our findings can be of general interest, especially under
the circumstances related to pandemics. The solution of this problem in the specific case of
Coopservice is not only relevant for demonstrating a successful case study, but is also inter-
esting for many related applications. For example, the problem of organizing activities in
close spaces or in warehouses with aisles containing highly skilled employees that are not
allowed to work together.

Other promising research avenues may include the development of a bi-objective model
by adding the risk of contagion in the objective function. Moreover, we believe that the
model can be extended to produce a fair work-shift distribution. Since in the warehouse
there are people with more expertise than others, which is an attribute that goes beyond the
skill matrix, one may consider inserting a factor to balance the expertise within a shift in the
objective function (Fırat and Hurkens, 2012).

20

Chapter 3

Scheduling problem for distributed
services in hospitals1

This chapter addresses a real-life task and personnel scheduling problem arising in Coopser-
vice that needs to provide cleaning services inside a hospital. In this case study, the challenge
is to determine a schedule of the employees to clean the whole hospital aiming to minimize
the total labor cost, taking into account the fact that the building is a complex structure with
multiple levels and each room has different peculiarity. To solve the problem, we propose a
three-step approach using mathematical models and metaheuristic algorithms. The solution
obtained indicates that the schedule attained by our method is better than the one generated
by the company. In addition, to test and validate our approach more thoroughly, a set of
artificial instances have been created. The results indicate that our method can help organiza-
tions to quickly generate and test a large variety of solutions. Our findings can be of general
interest for other personnel scheduling problems involving distributed services.

3.1 Introduction

One of the key operational processes in hospitals is the organization of the cleaning tasks
that need to be performed by employees regularly, to maintain the necessary level of clean-
liness and sanitary security. Scheduling cleaning tasks is a complex problem (Bartolini,
Dell’Amico, and Iori, 2017) that belongs to the general field of personnel scheduling (Bergh
et al., 2013); it is a very crucial activity for hospitals, especially in this moment, in which
we are facing the Covid-19 pandemic, which calls for an additional level of sanification. Our
interest originates from the activity of Coopservice, a large third-party service provider that
is responsible for the cleanliness and sanitary security of a large number of hospitals in Italy.
However, the problem can be generalized to a large variety of services that should be car-
ried out in a distributed manner across large facilities. To provide their services, third-party
companies must take part in tender processes for cleaning services. To achieve success, they
have to submit cost-efficient offers. In a hospital, there are often many costs that cannot
be influenced substantially by the company. This means that personnel costs and personnel
management become the critical factor. Therefore, an efficient and automated planning of
personnel schedules enables one to create a competitive advantage in tender processes.

To solve the problem, we need to create cleaning schedules for a specific planning period
(e.g., a month), and then allocate the available employees to the schedules by minimizing
the total labor cost while satisfying given services requirements. In view of this, we pro-
pose a hybrid three-step approach based on the combined use of heuristics and mathematical
models.

1This work has been published as: Campana, N. P., Zucchi, G., Iori, M., Magni, C. A., & Subramanian, A.
(2021). An integrated task and personnel scheduling problem to optimize distributed services in hospitals. In
Proceedings of the 23th International Conference on Enterprise Information Systems (ICEIS 2021), 1, 461-470.

Chapter 3. Scheduling problem for distributed services in hospitals 21

As inputs, we are given a set of employees, as well as a set of locations, each with an as-
sociated set of cleaning tasks with some physical characteristics, such as the level of sanitary
risk, location size and time windows. The first step focuses on a standard one-week period
of work. In this period, we first allocate the cleaning tasks to the days so as to balance the
workloads. This is achieved by solving a mixed-integer linear programming (MILP) model.
Secondly, for each day in the period, we create a set of cleaning routes by solving a vehicle
scheduling problem with time windows (VSPTW). The cleaning routes are sequences of vis-
its to locations within the given time windows. Due to its NP-Hardness, we solve the VSPTW
by means of an adapted variable neighborhood descent approach, using some well-known lo-
cal search procedures (Bräysy and Gendreau, 2005a; Bräysy and Gendreau, 2005b). At the
third step, we solve a personnel scheduling problem (PSP). Considering a larger one-month
period and incorporating further operational constraints to solve the problem, we develop
constructive and local search heuristics aimed at assigning the cleaning schedules to the em-
ployees and minimizing the total labor cost.

An overview of the three-step approach is presented in Figure 3.1.

FIGURE 3.1: Three-step approach

Optimal allocation of cleaning tasks to days

Step 1

Creation of cleaning routes minimizing travel distance

Step 2

Personnel scheduling minimizing total labor cost

Step 3

Our three-step approach was used to solve a real instance derived from a real-world Ital-
ian hospital operated by Coopservice, and the results obtained were positively confirmed
by the company’s managers. Moreover, to test and validate our approach a set of artificial
instances have been created. For all instances, we attained full coverage of the cleanliness
requirements of the hospital, thus satisfying the needed sanitary level.

The main contribution of this work is to propose a decomposition method to solve a
case-study that can help companies to quickly generate and test a large variety of solutions
for integrated task and personnel scheduling for distributed services, ensuring the minimiza-
tion of the costs, in terms of working hours, for the company. In addition, it could enable
companies to reorganize cleaning activities, as entire departments and locations can change
their risk level because of the COVID-19 emergency. Moreover, it can be used to quickly
reorganize the scheduling of employees in case some workers are subjected to quarantine
periods due to the infection.

The remainder of this chapter is organized as follows. Section 3.2 gives a formal problem
definition. Section 3.3 provides a brief literature review. Section 3.4 describes our three-step
approach. Section 3.5 reports the results of our algorithm and, finally, Section 3.6 presents
the concluding remarks.

Chapter 3. Scheduling problem for distributed services in hospitals 22

3.2 Problem definition

In a hospital complex, we have a set of buildings B, and every building b ∈ B also has an
internal floor division Lb. For each floor l ∈ Lb, there is a set Ub

l of locations to be cleaned.
Each location v ∈Ub

l on a floor l of a building b has an associated type (e.g., elevator, office,
toilet, etc.) and risk level, which can be classified as low, medium, or high. These two
attributes have an impact on both the weekly cleaning frequency and effort. For example, a
toilet has to be cleaned more often than a simple office.

Let D = {1, . . . ,7} be the set of days. The weekly frequency fv for cleanness of each
location v is provided by the hospital, in other words, fv gives the number of days in the
week in which v has to be cleaned. The company generates a set Pv of feasible patterns,
which are the possible combinations for the weekly assignment at location v. When a pattern
p is assigned to the location v, all the cleaning tasks of v must be executed in each of the days
in the pattern. For example, assuming that fv = 3, we could have the following pattern set:
Pv = {{1,3,5},{2,4,6},{3,5,7}}. In this case, if the company selects the first pattern, then
the cleaning tasks at location v are scheduled to be performed on days 1, 3 and 5.

The problem is rather complex; thus, we describe it by using three steps, which also
correspond to the main steps of our solution algorithm described later in Section 3.4.

Step 1. For each location v, we define a set of cleaning tasks Tv; each task k ∈ Tv has a
total duration of qvk minutes. In practice, the duration varies according to the type of task,
which can be either a complete cleaning or a fast cleaning, and with the size of the location
(expressed in m2) and its type. Moreover, each task k ∈ Tv also has a time window [avk,
uvk], which determines the earliest and latest times to execute task k. The company wishes
to decrease the total amount of cleaning time during weekends (e.g., on days d = 6 and d
= 7) by a factor βd , due to contractual constraints with the employees, and also because the
activities of the physicians are usually reduced.

Step 2. For each building b ∈ B, we are given a graph Gb = (Nb,Ab), where the set of
nodes Nb is composed of its starting and ending node where all personnel starts and ends the
routes, here defined as ρb, and the corresponding cleaning locations of b. More precisely,
Nb = {ρb}∪{v : v ∈Ub

l , l ∈ Lb}. Each ρb of a corresponding block b ∈ B has an associated
time window [aρb ,uρb], where aρb and uρb are the earliest and latest departure and arrival
times in the day, respectively. The maximum schedule duration was defined, along with the
company, as a target duration τ.

Moreover, we assume that all locations on the same floor l ∈ Lb are interconnected, mean-
ing that there is an arc connecting each pair of nodes located at l. The floors are connected
through elevators, which are also cleaning locations. Thus, we define a subset N̂b ⊂ Nb com-
posed of all locations that are elevators in the building b. We can then define the arc set
as Ab = {(i, j) : i, j ∈ Ub

l , i ̸= j, l ∈ Lb} ∪ {(i, j) : i, j ∈ N̂b, i ̸= j}. Furthermore, each arc
(i, j) ∈ Ab has an associated traveling distance di j and time ti j.

Step 3. Regarding the personnel scheduling, the company provides a set of heterogeneous
employees E. Each employee e∈E has a contract type Ce, determining the maximum number
of days he/she can work in a week (as in our case, where it is set to a month). There are two
types of work patterns: (i) “5+2”, which means five days of work and two days of rest; and
(ii) “6+1”, which consists of six days of work and the Sunday of rest. Note that in the first
pattern the days can be arranged in any permutation, whereas in the second one there is only
one possible option.

The company also specifies a maximum amount of days C
′

that any employee can work
consecutively without a rest day. This value is useful when the rostering period is longer
than a week. In addition, each employee has a maximum amount of working hours per week,
defined by Me. Furthermore, let M

′
be the maximum working hours in a day, defined by

Chapter 3. Scheduling problem for distributed services in hospitals 23

the Italian law, and WT
′

be the maximum waiting time between two sequences of cleaning
routes. Also, let δ be the number of days associated with the scheduling period.

The objective of the firm is to minimize the total labor cost. Taking the average historic
unit cost h (as provided by the hospital) as a proxy for the unit cost of all workers, the
objective function is:

min Z = h · z (3.1)

where z is the total working time. Let λe be the total working time of an employee e ∈ E.
Then, minimization of (3.1) boils down to minimization of (3.2) below:

min z = ∑
e∈E

λe (3.2)

The Integrated Task and Personnel Scheduling Problem (ITPSP) aims at optimize (3.2)
while meeting the operational constraints defined at steps 1, 2 and 3.

3.3 Literature Review

The literature on complex OR problems arising in the fields of logistics and scheduling is vast
and it is not our goal here to provide a comprehensive review. Instead, we turn our attention
to decomposition-based methods closely related to our work.

Considering that we face an integrated task and personnel scheduling problem, we focus
our review on approaches that integrate these two aspects. Smet, Ernst, and Berghe, 2016 in-
troduced a problem called Task Scheduling and Personal Rostering Problem (TSRP), which
they solved by means of a very Large Neighborhood Search and a column generation algo-
rithm. The TSRP considers non-preemptive tasks, fixed tasks, fixed shifts and qualifications,
and aims at minimizing the weighted sum of constraint violations. Indeed, in the TSRP it
is often impossible to obey to all the contractual constraints, as they are often imposed by
authorities with conflicting priorities. The TSRP differs from the ITPSP that we face for two
reasons: (i) the TSRP has five shifts rather than a task demand shift (see Ernst et al., 2004c,
for the problem terminology); (ii) in the TSRP only one task can be assigned to a shift. In
Lapègue, Bellenguez-Morineau, and Prot, 2013, the authors introduced a very similar prob-
lem, the Personnel Task Scheduling Problem (PTSP), and a variant known as Shift Minimiza-
tion Personnel Task Scheduling problem (SMPTSP) in which the shifts are not fixed and are
deduced from the task assignment. The PTSP is a problem in which a set of tasks with fixed
start and ending times have to be allocated to a heterogeneous workforce. In Guyon et al.,
2010, the authors proposed a decomposition method to solve an integration of the employee
timetabling and production scheduling problems. At the first level, they solved a traditional
timetabling problem. At the second level, they aimed at supplying feasible schedules for a
set of uninterruptible tasks. In Maenhout and Vanhoucke, 2018, the authors proposed a per-
turbation meta-heuristic for the integrated personnel shift and task re-scheduling problem. In
that context, some schedule disruptions can arise as a result of some operational variability,
creating the necessity of re-scheduling the already planned roster. More recently, Kletzander
and Musliu, 2020 proposed a framework to solve a General Employee Scheduling Problem
(GESP), in which a wide range of different constraints needs to be considered to allow the
specification of different requirements without the need to introduce a new problem formu-
lation for each variant of the problem. They used an XML format to specify the formulation
in a human and machine readable way. The GESP deals with the scheduling of shifts as well
as optional tasks and breaks for a set of employees over a certain period of days. Elahipanah,
Desaulniers, and Lacasse-Guay, 2013 introduced the Flexible Activity and Task Assignment
Problem (FATAP), which takes place in a flexible environment where the detailed activity

Chapter 3. Scheduling problem for distributed services in hospitals 24

and task demands are uncertain, allowing the decision maker to use additional temporary
employees, scheduling overtime for regular employees and moving meals break. The au-
thors used a two-phase approach, firstly solving an approximate MILP model and a column
generation heuristic embedded into a rolling horizon procedure. In Doi, Nishi, and Voß,
2018, the authors proposed a decomposition-based meta-heuristic algorithm for practical air-
line crew rostering problems with fair working time. Another interesting paper is the one
by Salazar-González, 2014, in which the author developed an arc-flow variable formulation
to solve an integrated fleet-assignment, aircraft-routing, crew-pairing problem, and a MILP
formulation to solve a crew rostering problem of a Spanish air carrier company.

The ITPSP that we face differs from the problems analyzed in the previous literature
because it contains a very general combination of constraints derived from the real-world
application at hand. The tasks have an interval time to be executed, but no fixed start time.
The shifts are not fixed, and the tasks are non-preemptive. In addition, in the third step, we
consider employees with no qualification differences and use the historic average unit cost
as a proxy for the unit cost of each worker, so that minimization of total personnel cost is
equivalent to minimization of total working time. Lastly, we need to solve this problem for a
planning horizon of one month using a standard weekly plan for the tasks to execute.

3.4 Proposed algorithm

Decomposing the problem into multiple steps can be considered a very useful alternative for
huge and complex problems (Vance et al., 1997; Juette and Thonemann, 2012; Hoffmann
et al., 2017). Therefore, we propose a three-step approach to solve the TPSP, as described in
the following.

In the first step, we solve a MILP model that seeks to minimize the maximum number of
daily working hours (see Section 3.4.1) to determine a weekly pattern p for each location v.
In this phase, one defines all locations that must be cleaned on each day. For convenience,
we denote this problem as location scheduling (LS).

Next, for each day, we solve the VSPTW using a local search procedure based on Ran-
domized Variable Neighborhood Descent (RVND), as described in Section 3.4.2. More pre-
cisely, the second step aims at minimizing the total travel distance, while respecting the time
windows of each location, generating a cleaning schedule for all days.

In the last step, we solve a personnel scheduling problem (PSP), explained in detail in
Section 3.4.3. The objective is to organize the available personnel to execute the cleaning
schedule generated in the previous step, for a given scheduling period (usually one month),
minimizing the total working time of the employees according to (3.2) (and, therefore, mini-
mizing the total cost).

Algorithm 5 provides an overview of the proposed approach.
Our algorithm iteratively executes the three steps mentioned above until a time limit

ε is achieved. At each iteration, the method builds a new assignment problem using the
information of all previous assignments (line 6). The idea is to generate diversified-yet-
efficient weekly patterns, as described in Section 3.4.1. The solution found in the first step
is then provided to the second step, where one aims at determining the cleaning schedule by
solving a VSPTW (line 7). The third step is responsible for obtaining a personnel schedule
using the VSPTW solution as in input (line 8), thus generating a final solution for the TPSP.
In case of improvement, the best TPSP solution found is updated (lines 9–11). Finally, the
set of weekly patterns is updated before the next iteration (line 12).

Chapter 3. Scheduling problem for distributed services in hospitals 25

Algorithm 5 Iterative three-step algorithm
1: procedure 3-STEP(U ,E,ε,η,φ)
2: s∗←∅ ▷ Final solution
3: H←∅ ▷ Set of weekly patterns
4: while time limit ε not reached do
5: m← buildNewMILPModel(H,U)
6: WeeklyPattern← LS(m);
7: C_Schedule← VSPTW(WeeklyPattern,η,φ)
8: P_Schedule← PSP(C_Schedule,E)
9: if f (P_Schedule) ≤ f (s∗) then

10: s∗← P_Schedule
11: end if
12: H← H ∪WeeklyPattern
13: end while
14: return s∗

15: end procedure

3.4.1 First step: generating a weekly pattern

In periodic routing problems, choosing a visiting pattern for the customers can be a very
useful strategy (Cordeau, Gendreau, and Laporte, 1997). In our case, we are interested in
selecting a weekly pattern from Pv for each location v, assigning locations to days. The
objective is to minimize the maximum working time across all days.

Let Qpd be equal to 1 if the pattern p contains day d, 0 otherwise. Since some days may
have less amounts of work (e.g., at the weekends) we denote as βd as the balance factor for
each day d ∈ D. Let θvd the time to execute all the tasks of location v in the day d, given by
θvd = βd ∑k∈Tv qvk,∀v∈U ,∀d ∈D. Note that this value does not inform if the day d is present
in the patterns of v. Let xvp be the binary variable assuming value 1 if pattern p is assigned to
location v, 0 otherwise. In addition, let variable z1 denote the maximum daily working time.
The MILP formulation can be written as follows:

min z1 (3.3)

∑
p∈Pv

xvp = 1 ∀v ∈U (3.4)

∑
v∈U

θvdQpdxvp ≤ z1 ∀d ∈ D (3.5)

xvp ∈ {0,1} ∀v ∈U ,∀p ∈ Pv (3.6)

z1 ≥ 0. (3.7)

The objective function (3.3) aims at finding a balanced solution by minimizing the max-
imum working time across all days. Constraints (3.4) impose that exactly one pattern must
be selected for each location v. Constraints (3.5) compute the maximum daily working time.
Finally, constraints (3.6) and (3.7) define the domain of the variables.

At each iteration τ of Algorithm 5, the MILP model is modified by inserting a hamming-
distance constraint (3.8), which is based on the optimal cuts for two-stage stochastic linear
programs with recourse Laporte and Louveaux, 1993. We define ξ as a percentage of how
many variables must change with respect to the previous solutions generated. In order to
obtain different solutions at every execution of the algorithm, we add the following constraint

Chapter 3. Scheduling problem for distributed services in hospitals 26

to model (3.3)-(3.7)

∑
(v,p)∈sτ

(1− xvp)+ ∑
(v,p)/∈sτ

xvp ≥ ξ sτ ∈ T (3.8)

where sτ denotes the solution obtained at iteration τ and T denotes the set of solutions gen-
erated during all iterations.

3.4.2 Second step: generating the cleaning schedule

In this step, one has to determine the daily sequence and start time of the visits to loca-
tions that the employees have to perform, here called cleaning schedule. In our case, this is
achieved by solving a VSPTW for each day, where the customers are the locations and the
depot is the starting and ending point ρb, each of them with an associated time window (see
Section 3.2).

To solve the VSPTW, we have designed a heuristic procedure whose pseudocode is de-
scribed in Algorithm 6. Let Nd be the subset of locations that should be visited on day d,
and let N =

⋃
d∈D Nd . In addition, let T be the set containing the VSPTW solutions obtained

on each day. Parameters η and φ are related to the local procedure, and are described fur-
ther in this section. For each day, the algorithm generates an initial solution using a greedy
approach (line 4), which is possibly improved by a local search procedure (line 5) based on
RVND (Subramanian et al., 2010). The solution found after the local search step is then
appended to T (line 6).

Algorithm 6 VSPTW
1: procedure VSPTW(N,η,φ)
2: T ←∅
3: for d ∈ D do
4: s← GreedyAlgorithm(Nd)
5: s← RV ND(s,η,φ)
6: T ← T ∪ s
7: end for
8: return T
9: end procedure

The constructive procedure generates an initial solution starting from the lowest to the
highest floor, with a view of minimizing the displacement of employees inside the building.
At each floor, the task with minimum latest time window is inserted at the last position of
the sequence. In case of tie, the algorithm selects the task whose location is the nearest
with respect to the last task inserted. If there are no more tasks on the given floor, then
one continues the insertion from the next floor. When it is no longer possible to add a task
without violating the constraints, a sequence (or a cleaning route) is created and the procedure
is repeated until no more tasks are left to be inserted. Note that a daily cleaning schedule is
composed of all cleaning routes associated with that day.

The local search engine consists of an adaptation of the RVND procedure. Three classical
inter-route neighborhood structures were considered, in particular, cross-exchange, relocate
and swap. Whenever an improving move is found, an intra-route local search is applied,
also in a RVND-like fashion, using 2-opt and swap neighborhoods. The first improvement
strategy is adopted, and the algorithm performs the search in φ percent of neighborhood size.
The local procedure is iteratively called for up to η times. Furthermore, since a local search
move between two floors that are considered far enough is not likely to yield an improving
move (e.g., a swap between tasks of the first and ninth floors), we have defined a floor vicinity
rule, which only allows moves involving floors l−1, l and l + 1.

Chapter 3. Scheduling problem for distributed services in hospitals 27

Finally, in order to build the cleaning schedule, one should define the optimal start times
of the visits by minimizing the total duration of each cleaning route. The timing problem
considered here was introduced and solved using the so-called forward slack time procedure
by Savelsbergh, 1992. Let k ∈ σ be a task, where σ is a cleaning route composed of n tasks.
We are given the following for each task k: (i) qk is the service time; (ii) STk is the earliest
feasible start time; (iii) WTk is the cumulative idle time; and (iv) FDk is the partial forward
slack time. We begin with the following values: ST1 = a1, WT1 = 0, and FD1 = u1− a1.
Next, we compute the remaining values:

STk = max(STk−1 + qk−1,ak) k ∈ σ (3.9)

WTk =WTk−1 +(STk−STk−1−qk−1) k ∈ σ (3.10)

FDk = min(FDk−1,uk−STk +WTk) k ∈ σ. (3.11)

Finally, the start time of the cleaning route is given by st∗σ = a1 +min(FDn,WTn).
(The reader is referred to Vidal et al., 2012, for a comprehensive review on timing prob-

lems.)

3.4.3 Third step: personnel scheduling

In the personnel scheduling phase, the objective is to minimize the total working time (and,
therefore, the total cost) by assigning employees to duties, which is in turn derived from the
cleaning routes generated in the second step. Algorithm 7 describes the procedure developed
to the referred subproblem.

Algorithm 7 Overall Heuristic
1: procedure PSP(T ,E)
2: C←CreateDailyDuties(T)

3: E
′ ← AssignEmployeesToDuties(E,C

′
)

4: E∗← LocalSearch(E
′
)

5: return E∗

6: end procedure

Firstly, one determines the duties associated with a day of work, which is composed of a
set of one or more cleaning routes (line 2). In particular, the algorithm employs the best fit
strategy by maximizing the number of tasks in the duty, always satisfying the constraints of
the problem, and avoiding intersections between the times specified in the cleaning schedule.
Note that a duty may comprise more than one cleaning route, and the process of putting them
together can be seen as a packing problem Krishnamoorthy, Ernst, and Baatar, 2012. The
total time of a duty is given by the sum of the execution times of all cleaning routes plus the
possible waiting times between them.

Secondly, the algorithm assigns the employees to the duties (line 3). More precisely,
the available employees are sorted in non-ascending order according to the their contractual
working time. A first-fit policy is then applied for each day, assigning employees to the duties,
followed by a local search (line 4). The procedure first tries to interchange the weekly duties
between two different employees (as long as they have different Me). If this change fails
to yield a feasible improvement, the algorithm attempts to perform another move involving
same pair of employees. In this case, a day is chosen at random, and the respective duties
from that day are interchanged between the employees. The procedure terminates when no
improving move is obtained.

Chapter 3. Scheduling problem for distributed services in hospitals 28

In Figure 3.2, we present a graphical representation of the proposed algorithm in order to
help the reader understand the presented methodology.

3.5 Computational experiments

To validate the proposed algorithm, we solved a real-life instance of the company, and to
evaluate the robustness of the method, we created 20 random instances based on real data.
The algorithm was coded in Python 3.7.3 and executed on an Intel(R) Xeon(R) CPU E3-1245
v5 3.50GHz with 32GB of memory, running Linux Ubuntu 18.04 LTS 64-bits.

The CBC (https://github.com/coin-or/Cbc) solver from COIN-OR was used to
solve the MILP model presented in Section 3.4.1 (Lougee-Heimer, 2003). A limit of 10
seconds was imposed for the solver. Regarding the overall procedure, a time limit of 1,800
seconds was imposed. To improve performance, we have parallelized the implementation
of Algorithm 6 using 4 cores, benefiting from the fact that the VSPTW can be addressed
independently for each day.

3.5.1 Parameters

For all experiments, we used the following parameter values, as defined by the company:

• β: 50%;

• µ: 50 meters per minute;

• τ: 480 minutes;

• WT
′
: 20 minutes;

• C
′
: 6 days;

• δ: 14 days.

Moreover, we adopted ε = 1,800 seconds, and φ = 10% after conducting preliminary
experiments. In addition, the values of the two remaining parameters, η and ξ, were chosen
after comparing the results obtained by different combinations with the one provided by the
company on the real-life instance, as described in Section 3.5.3.

3.5.2 Instances

The real-life instance was created using BIM (Building Information Modeling), which is a
data model that stores different types of information and consists of parametric objects rep-
resenting building components. Objects may have non-geometric attributes with functional,
semantic or topological information (Volk, Stengel, and Schultmann, 2014). In the hospital
associated with the real-life instance (see Figure 3.3 and 3.4), there is a building containing
15 floors with a total of 2,422 locations, not uniformly distributed, and divided into 47 types.
The instance has 227 locations referred to as elevators. Each location has a coordinate (x,y)
in a normalized Cartesian plane.

In addition, we generated 20 artificial instances by simply combining the floors of the
real-life instance. More precisely, we randomly chose a subset of floors, always keeping the
original information regarding the existing locations on the respective floor, and built a new
instance by sorting such selected floors in an arbitrary fashion.

In vehicle routing and scheduling problems, the distance between two locations is often
computed using the Euclidean distance. In our problem, we have a three-dimensional build-
ing, so we compute the distance between two locations by considering floors and elevators

https://github.com/coin-or/Cbc

Chapter 3. Scheduling problem for distributed services in hospitals 29

FIGURE 3.2: An overview of the proposed algorithm

Step I: allocation of cleaning tasks to days

Let Nd be the set of locations that should be visited on day d

N1

Set of
locations v

N2

Set of
locations v

N7

Set of
locations v ...

N3

Set of
locations v

Step II: creation of cleaning routes for all days

Let Td be the subset of cleaning routes on day d

T1

Set of
cleaning
routes

T2

Set of
cleaning
routes

T7

Set of
cleaning
routes

...
T3

Set of
cleaning
routes

N = ∪d∈D Nd

Step III: personnel scheduling
Let E be the set of heterogeneous employees

1. Creation of the daily
duties with the routes

2. Assign employees to
duties

Day 1

...

C1

C2

C3

T1 T2

T3

T4

e1

e2

Let D={1,...,7} be the set of days. For each location v we have a
set of cleaning task Tv and a set Pv of feasible patterns

T = ∪d∈D Td

C1 C2

C3

e3 C4

Chapter 3. Scheduling problem for distributed services in hospitals 30

FIGURE 3.3: An overview of the hospital

FIGURE 3.4: A detailed view of a department in the hospital

Chapter 3. Scheduling problem for distributed services in hospitals 31

as follows. If the two locations i and j are on the same floor, their distance di j is computed
by the shortest path. Otherwise, we calculate the distance matching the closest elevators on
both floors that minimizes the total distance of traveling from i to j. This is done by taking
the distance from i to the closest elevator plus the distance from that elevator to j. Let L be
the function that returns the location v of the floor and κ denote an elevator. Function SP in
(3.12) calculates the shortest path from i to j:

SP(i, j) = min
κ1,κ2∈N̂b

dL(i)
iκ1

+ dL(j)
κ2 j . (3.12)

The cost ci j is therefore given by:

ci j =

{
SP(i, j) if L(i) ̸= L(j)
di j otherwise

(3.13)

Let µ be the standard walking speed which was empirically observed by the company.
The travel time from i to j is given by ti j = ci j/µ.

3.5.3 Results for the real-life instance

The two parameters in which we experimented with different values were η and ξ (η indi-
cates the number of times in which the local procedure is iteratively called and ξ defines a
percentage of how many variables must change with respect to the previous solutions gener-
ated). We conducted tests for all combinations of the following values: η ∈ {20,30,40} and
ξ∈ {1,20%,50%}. The main objective in testing these combinations is to define the standard
parameters for the company to run the algorithm. Table 3.1 shows the results achieved on the
real-life instance. For each tested combination of η and ξ, we report the best solution found
z computed as in (3.2) and the percentage gain over the solution provided by the company,
whose value is zc = 135780. It can be observed that the setting η = 40 and ξ = 1 yields the
best improvement of 5.83%. The percentage gain is computed as 100(zc− z)/zc.

TABLE 3.1: Results obtained for the real-life instance

η ξ z %gain
20 1 128,323 5.81
20 20 128,330 5.81
20 50 128,324 5.81
30 1 128,309 5.82
30 20 128,328 5.81
30 50 128,327 5.81
40 1 128,302 5.83
40 20 128,320 5.81
40 50 128,335 5.80

3.5.4 Results for the artificial instances

We also carried out a similar experiment for the artificial instances. For each instance, we
considered the same values of η and ξ specified in the previous section.

Each instance created has been run for all the possible combination and by observing
the results obtained, and computing the frequency of the parameter setting for which the
best solution was found, we found that the best configuration of η and ξ are 20 and 50,
respectively.

Chapter 3. Scheduling problem for distributed services in hospitals 32

Table 3.2 reports the information of each instances, namely, the number of floors and
locations. In the last two columns, we provide the value of the objective function obtained
with the best configuration and the CPU time required to find the best solution. The results
show that, on average, 920 seconds are necessary for the method to obtain the best solution.

TABLE 3.2: Best results found on the artificial instances with the best con-
figuration of η and ξ

Instance Floor Locations z t∗

1 4 534 46326 266
2 11 1678 126496 667
3 6 857 66012 1095
4 3 483 38706 309
5 14 2020 164338 152
6 5 743 50978 979
7 10 1451 106266 1726
8 3 494 40432 741
9 3 439 31564 53

10 11 1613 132760 1620
11 11 1643 128074 730
12 3 399 43854 1776
13 9 1226 105810 86
14 5 777 81802 865
15 15 2191 180734 1624
16 2 223 23732 1800
17 11 1645 126346 261
18 6 897 70277 346
19 13 1915 165054 1509
20 13 1875 150448 1800

Figure 3.5 depicts an example of the behavior of the proposed algorithm on instance 18,
when considering the best configuration of parameters found, i.e., ηbest = 20 and ξbest = 50.
The plot shows the importance and effectiveness of using an iterative approach, as illustrated
by the results obtained in the last step of each iteration. In this case, it can be observed that
the best result is achieved at iteration 21.

3.6 Conclusions

In this work, we proposed an iterative three-step procedure to solve a real-life problem of
integrated task and personnel scheduling aiming to minimize the total labor cost. By imple-
menting this approach, the solution obtained by our formulation was capable of improving
the schedule adopted by the company in an acceptable CPU time for this very complex prob-
lem. Tests were also performed on larger and randomly generated instances to measure the
scalability of the proposed method and to find a combination of η and ξ that can produce
the best results based on the dimension of the building. The results are preliminary and yet
they are very positive from the company perspective, which is now able to generate and sim-
ulate many different scenarios. Because Coopservice spends a large part of its revenues on
human resources (more than 20,000 employees), it is crucial to have a strategy to properly
manage the personnel, especially during emergency situations such as epidemic crises (Zuc-
chi, Iori, and Subramanian, 2021). Future research might include: (i) the insertion of more
complex cost functions in (3.1) that could take account of different employees’ levels; (ii)

Chapter 3. Scheduling problem for distributed services in hospitals 33

FIGURE 3.5: Variation of z for each iteration τ in the instance number 18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8
·104

τ

z

z

a sensitivity analysis for the many parameters used in models and algorithms; (iii) a deeper
evaluation of the importance of each key parameter making use of the Finite Change Sensi-
tivity Index (FCSI) (Borgonovo, 2010a; Borgonovo, 2010b); (iv) a more profound economic
cost analysis related to the labor cost assuming it differs across workers and changes over
time, meaning that one should take into account a possible evolution of h, and consider the
total profit (or the total value) as the objective function for a given (sufficiently large) span of
time. Moreover, to improve performance in terms of solution quality, one could incorporate
metaheuristic strategies, such as perturbation schemes in Algorithms 6 and 7, with a view of
obtaining better local optimal solutions.

34

Chapter 4

Lead time forecasting for a
pharmaceutical supply chain1

Purchasing lead time is the time elapsed between the moment in which an order for a good
is sent to a supplier and the moment in which the order is delivered to the company that
requested it. Forecasting of purchasing lead time is an essential task in the planning, man-
agement and control of industrial processes. It is of particular importance in the context of
pharmaceutical supply chain, where avoiding long waiting times is essential to provide effi-
cient healthcare services. The forecasting of lead times is, however, a very difficult task, due
to the complexity of the production processes and the significant heterogeneity in the data. In
this paper, we use machine learning regression algorithms to forecast purchasing lead times
in a pharmaceutical supply chain, using a real-world industrial database. We compare five
algorithms, namely k-nearest neighbors, support vector machines, random forests, linear re-
gression and multilayer perceptrons. The support vector machines approach obtained the
best performance overall, with an average error lower than two days. The dataset used in our
experiments is made publicly available for future research.

4.1 Introduction

Long waiting times for service interventions are a recurring feature in the health sector, es-
pecially for public services. Clearly, timely treatments and drug administrations are cru-
cial factors for improving the quality of healthcare services, and often also for saving the
lives of patients, mainly in emergencies (Brown et al., 2016; Tetteh, 2019). The delay for
medical interventions, whether through medication, diagnosis or surgical procedures, can in-
deed aggravate pathologies, given the possibility of deterioration of health conditions over
time. Longer waiting times for medical intervention can increase readmission rates as well
(Moscelli, Siciliani, and Tonei, 2016). Nowadays, this is even more crucial because of the
recent COVID-19 pandemic, which is causing an increase in the number of pharmaceuti-
cal products urgently required by the many patients affected by the disease (“Coronavirus
disease 2019 (COVID-19): A literature review” 2020).

Among other factors, long waiting times for receiving medicines can be associated with
delay in the administrative packaging, logistic problems with tracking and delivery (Haugh,
2014) and several other factors that could be outside the control of patients or healthcare pro-
fessionals. Within this scenario, the analysis and proposition of measures to reduce waiting
times for all possible related factors is important in healthcare policy guidelines (Moscelli,
Siciliani, and Tonei, 2016). The availability of medicines in healthcare service networks,

1This work has been published as: de Oliveira, M. B., Zucchi, G., Lippi, M., Cordeiro, D. F., da Silva, N.
R., & Iori, M. (2021). Lead Time Forecasting with Machine Learning Techniques for a Pharmaceutical Supply
Chain. In International Conference on Enterprise Information Systems (ICEIS 2021), 1, 634-641.

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 35

pharmacies and hospitals is directly related to the lead time of the supply chain (Tetteh,
2019).

Our work is motivated by the activity of a logistic company, Coopservice group, that
receives the pharmaceutical products from the suppliers and then organizes the shipping,
when needed, to the healthcare facilities. To organize the service in the best possible way,
it is crucial for the company to correctly estimate the purchasing lead time, that is, the time
that is elapsed between the moment in which an order for a good is sent to a supplier and the
moment in which the good is delivered to the company. Correctly forecasting this purchasing
lead time (lead time for short, in the following) in the supply chain of the pharmaceutical
sector is a crucial task, as it largely affects the whole industrial process of the healthcare
services. In addition, proper estimation of lead time is a critical parameter in the relationship
between the management process and the customer (Noori-Daryan, Taleizadeh, and Jolai,
2019), being lead time one of the most important performance indicators for the management
of manufacturing and service production processes (Kim, Kim, and Lee, 2014). Furthermore,
accurate forecasting of lead times can assist in optimizing the production processes, by more
accurately selecting the needed quantities and thus shortening the overall production times
(Gyulai et al., 2018).

Besides, lead time prediction is a crucial aspect to keep under control in the pharmaceu-
tical supply chain, because sometimes having the medicine available at the right time can
save lives. Lead time forecasting could allow the pharmaceutical companies to predict and
to avoid possible out of stock, caused by a supplier. Besides, based on the lead time, it is
possible to evaluate the different suppliers and select the best ones. In addition, with a good
prediction it is possible for the pharmaceutical companies to define different level of security
stock of the goods for each month, making the procurement process leaner and more cost
effective.

However, lead time forecasting is an extremely challenging task. In general, the estima-
tion of lead times from historical data has been a recurrent issue in the literature since the
1960s, and even in recent years some traditional systems simply obtain lead time by com-
puting average values based on historical data, with the result of deficiencies in production
planning and control (Lingitz et al., 2018). The proposed approaches in this research field
can be divided into conventional methods and intelligent methods, with the former not us-
ing artificial intelligence and the latter exploiting data mining and machine learning. In both
cases, data used for experimental evaluation can be real and/or simulated. In this research,
we exploit intelligent methods, leaving conventional methods to an analysis of the literature.

Recently, there have been significant advances in this research field using artificial intel-
ligence (Ioannou and Dimitriou, 2012; Gyulai et al., 2018). This process is mainly due to
the growing availability of large data collections in different fields of manufacturing, that can
enable data-driven technologies such as machine learning, data mining, knowledge discovery
in databases, and big data analytical tools Fayyad, Piatetsky-Shapiro, and Smyth, 1996; Tsai,
Lin, and Ke, 2016; Frank, Dalenogare, and Ayala, 2019; Kabugo et al., 2020). Neverthe-
less, most of the intelligent techniques used in recent research do not make use of real data
(Öztürk, Kayalıgil, and Özdemirel, 2006), while using computer simulations to generate data
and considering many simplifying assumptions for the internal manufacturing process.

Given the limitations of the methods mentioned so far, in this paper we aim to use in-
telligent methods to predict the delivery times of suppliers who have to deliver the goods
to a company that manages the pharmaceutical supply-chain of hospitals. To this aim, we
compared five different machine learning regression approaches, namely: k-nearest neigh-
bors (KNN), support vector machines (SVM), random forests (RF), linear regression (LR)
and multilayer perceptrons (MLP).

The use of accurate lead time forecast can be highly beneficial in the planning of both
production and logistic services in the pharmaceutical field. We mention, to this regard,

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 36

the work by Gatica, Shah, and Papageorgiou, 2001, who studied stochastic aspects related
to product development and capacity planning in the pharmaceutical sector, by proposing a
multistage stochastic programming approach, and that of Kramer, Cordeau, and Iori, 2019,
who proposed a metaheuristic algorithm for the delivery of pharmaceutical products in the
region of Tuscany (operated by the Coopservice group). In the former work, accurate predic-
tion of the lead time for purchasing the products could be used within the what-if analysis,
while in the latter work, accurate predictions could be used to define the starting points of the
deliveries, as multiple depots are available, and the possible use of temporary depots at the
hospitals, so as to reduce transportation costs and times.

The reminder of the paper is organized as follows. In Section 4.2 we present the related
works and compare our work with the literature. In Section 4.3 we briefly present the classic
techniques that we used to predict the lead time. In Section 4.4 we describe the dataset used
in the experiments, which are illustrated in Section 5.6. Finally, Section 5.7 concludes.

4.2 Related works

In an Industry 4.0 scenario, big data analytics can be divided into five different categories:
predictive, descriptive, inquisitive, preventive and prescriptive analytics. Predictive analytics
aims to anticipate what will happen in the future: descriptive analytics instead provides infor-
mation and explanations about what has happened; inquisitive analytics tries to answer why
it has happened, and preventive analytics provides insight to understand what is necessary to
be done. Finally, prescriptive analytics provides information for decision-making (Sivarajah
et al., 2017; Cabrera-Sánchez and Villarejo-Ramos, 2020). Big data analytics is very often
associated with artificial intelligence, data mining, and machine learning instruments (Dean,
2014), with the aim to develop systems that can automatically extract information and dis-
covery patterns in large data collections (Lu et al., 2015; Kuo, Lin, and Lee, 2018), so as to
provide beneficial insights to decision makers (Chamikara et al., 2020).

By mid-1980s, many studies on operating and lead time estimation through mathematical
formulations, as well as statistical methods with analysis of variance (ANOVA) were pro-
posed (Chang, 1997; Tatsiopoulos and Kingsman, 1983). Forecasting through mathematical
modeling approaches has also been recently proposed for a custom system disregarding the
current system workload (Vandaele, Boeck, and Callewier, 2002). In a more complex product
development scenario, a heuristic approach was proposed, by explicitly modeling networks
of operating system activities (Jun, Park, and Suh, 2006). Other research has proposed the
use of queuing networks for lead time analysis and prediction (Ioannou and Dimitriou, 2012;
Berling and Farvid, 2014) with the use of discrete event simulation through mathematical
expressions, assuming a continuous demand and studying the variance of the lead time. Con-
versely, a case-based reasoning approach was proposed in Mourtzis et al., 2014 to predict the
lead time of complex engineered-to-order products. Pfeiffer et al., 2016 made use of multi-
variate regression statistical methods using simulated data to obtain the production lead time
of a flow-shop system.

Mathematical and statistical formulas were reformulated and proposed for production
lead time estimates in chemical sector modular production plants (Sievers et al., 2017).
However, the main disadvantage of all the methods cited so far is that they consider that
past trends could possibly be repeated in the future (Öztürk, Kayalıgil, and Özdemirel, 2006;
Ioannou and Dimitriou, 2012). Moreover, there are few researches evaluating the interactions
of supply chain elements such as lead times and forecasting procedures (Sievers et al., 2017;
Hosoda and Disney, 2018; Lingitz et al., 2018; Goltsos et al., 2019). Additionally, databases
generated by simulation often consider a perfect production system, without introducing ma-
chine breakdowns, maintenance downtime and raw material delays (Lingitz et al., 2018).

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 37

When performing lead time analysis and forecasting, it is important to consider external fac-
tors too, such as relationships and interactions between different supply chains (Hosoda and
Disney, 2018; Ponte et al., 2018; Goltsos et al., 2019; Noori-Daryan, Taleizadeh, and Jolai,
2019). Chung, Talluri, and Kovács, 2018 showed that lead time prediction is a key factor
because the lead time uncertainties can affect service level and order lead time performance.
Understanding these dynamics allows companies to reduce their exposure to different types
of delivery risk and to better manage their supply chain.

Despite the large amount of works in this area, we could not find comprehensive stud-
ies on machine learning algorithms for lead time forecasting in the field of pharmaceutical
distributions. Related works are limited to the use of Monte Carlo simulation to predict the
production lead time (Eberle, Sugiyama, and Schmidt, 2014), and to the proposal of cyclic
production plans combined with outsourcing in the packaging of medicines in the Nether-
lands (Strijbosch, Heuts, and Luijten, 2002). With this paper we aim at filling this research
gap.

4.3 Methodology

As already stated in Section 5.1, we employ a machine learning approach for purchasing lead
time forecasting of pharmaceutical services. We formulate the task as a regression problem,
where the aim is to predict a single real number y ∈ R as a function of a set of features
x∈Rd . Supervised machine learning approaches are able to learn a function f that computes
a value ŷ from a given input vector x̂. Such a function is learned from a dataset D , which
consists of a collection of N pairs (xi,yi) where each input example xi is associated with the
corresponding target yi, that is the target of the forecasting system. In this work, we compare
several simple, classic regression algorithms, largely used in statistics and machine learning
applications, with the aim of finding the one that performs the best on our real-world data
set, without resorting to more sophisticated approaches. We compare two efficient linear
methods, namely linear regression and linear support vector machines, against three simple
non-linear ones, namely random forests, k-nearest neighbors, and multi-layer perceptron. We
leave the use of more advanced machine learning approaches for future research.

4.3.1 Linear regression

Linear regression (LR) is a widely employed parametric regression technique (Montgomery,
Peck, and Vining, 2012), where function f is computed as a linear combination of input
features: f (x) = βT x+β0. The vector of parameters β is typically learned by minimizing the
sum of squared errors on the training set. Clearly, this approach achieves good results when
a linear function results to be a reasonable approximation of the dependency relation holding
between input and output variables, while suffering when such dependency is strongly non-
linear.

4.3.2 Linear support vector machines

Support vector machines (SVM) are a classic machine learning approach that can be used
both for classification and for regression. In the regression setting, the goal is to find a func-
tion f for which the forecasting error with respect to target y is at most equal to a predefined
tolerance threshold ε for the elements in the training set (Drucker et al., 1997). In its linear
formulation, which is the one we employ in this paper, the function to be learned is still a
linear combination of the features. The optimal (or close to optimal) parameters are found
by heuristically solving a constrained quadratic optimization problem (Albers, Critchley, and
Gower, 2011).

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 38

4.3.3 Random forests

A random forest (RF) is an ensemble classifier that consists in a collection of n different deci-
sion trees (Breiman et al., 1984). A decision tree is an interpretable classifier that inductively
learns classification rules by testing the informativeness of the attributes (features) with re-
spect to the category (in case of classification) or the target value (in case of regression) to be
predicted. Several different decision trees can be obtained either considering different sets of
features, or by subsampling different sets of training examples. In the regression setting, the
output prediction of the RF is computed as the average of the predictions of individual trees.

4.3.4 k-nearest neighbors

Based on the concept of distance (or similarity) between examples, k-nearest neighbors
(KNN) is not properly a learning algorithm. Given a test example x, the KNN algorithm
looks for the k examples in the training set that are the most similar to x, i.e., the nearest ones
according to a given metric, such as the Euclidean distance, which we use in our experimen-
tal evaluation. Once the k nearest neighbors are found, the algorithm computes the prediction
as an average, or voting procedure, among them. In a regression setting, the predicted target
value ŷ is simply computed as the weighted average of the targets y j of all k neighbors.

4.3.5 Multi-layer perceptron

A multi-layer perceptron (MLP) is a very simple artificial neural network that can learn non-
linear functions between input and output variables (Rumelhart and McClelland, 1987). An
MLP consists in a stack of layers, each consisting of a certain number m of neurons. The
first layer consists of input variables. In the second layer, named hidden layer, the output of
each neuron is computed as a non-linear combination of input variables, whose weights are
learned during a training phase. Finally, the last layer computes the output of the network as a
non-linear combination of the output of the hidden neurons, again with adjustable, learnable
weights.

4.4 Dataset

A crucial ingredient of any machine learning application is the preparation of the dataset used
for training and evaluation (Ristoski and Paulheim, 2016). The database used in this research
was made available by an integrated service company, the Coopservice Group. Founded in
1992, the Coopservice Group provides specialised services to private companies and public
entities. The Group operates worldwide, with its headquarters in Italy, and counts around
20,000 employees. It offers a variety of facility services, especially the ones that are not
part of the core businesses of the clients, including: industrial, commercial and healthcare
cleaning; management and maintenance of buildings and systems; management of energy
supplies; security and surveillance; transport and handling of goods; industrial and commer-
cial moving; collection and transport of special waste. With 18 logistic warehouses and a
storage area of over 150,000 squared meters, Coopservice Group is the leader in healthcare
and pharmaceutical logistics in Italy, and a key provider of management and distribution ser-
vices for pharmaceuticals, medical-surgical devices and non-medical consumables. The key
aspects for the services are relying on a large workforce, working at client-sites, maintaining
consistent quality and monitoring performance.

Forecasting lead times is a crucial task for Coopservice, because with an accurate pre-
diction it is possible to optimize and manage the scheduling of the truck deliveries, as well

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 39

FIGURE 4.1: Distribution of the number of samples in the dataset, for each
different category.

as predict the unloading process schedule for the inbound area. Thanks to this, it is possi-
ble to better organize the shifts of the employees in the warehouse. In addition, lead time
prediction allows the company to have a better knowledge of the supplier and to evaluate
its performance. In order to do this, a supplier rating system can be created, considering
the historical data and the prediction. Finally, with an accurate forecasting of lead times,
the management of safety stock in the warehouse can be safer, avoiding negative events like
overstock and stockout.

In the pharmaceutical database provided by Coopservice, the total number of samples
was 42,753 collected during 2018.

All pharmaceutical products in the database are associated with some specific categories,
namely: tumoral, diagnostic, medicine, nutritional, prostatic, sanitary, dialysis, heavy items,
toxic, narcotic, and economale (that are all the non-medical items like pens, papers...). All
these categories were used in our study, although most of the data belong to economale,
medicine, or sanitary categories, as shown in Figure 4.1.

For each sample in the database, eight independent variables were considered as the input
vector x for our machine learning systems used to forecast lead times:

• day of the month of the customer order (1 to 31);

• weekday of the customer order (1 to 5, from Monday to Friday);

• month (1 to 12) of the customer order;

• supplier code identifier;

• product name identifier;

• pharmaceutical product type category;

• ordered quantity (pills);

• distance between supplier and the pharmacy warehouse (km).

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 40

10 0 10 20 30 40
Days

0.00

0.02

0.04

0.06

0.08

0.10
De

ns
ity

January
February
March
April
May
June
July
August
September
October
November
December

FIGURE 4.2: Lead time distribution, as a function of the month.

A standard pre-processing phase was applied to the database, including explorative data
visualization, cleaning and removal of duplicates and corrupted data, outlier detection, ma-
nipulation of missing values (Ristoski and Paulheim, 2016). In particular, we used boxplots
to identify outliers and extreme values (Hu, Pedrycz, and Wang, 2018; Sagaert et al., 2019)
to remove corrupted data. Figure 4.2 shows the distribution of the lead time for each month.
It can be noticed that the trend is quite similar for all the months, with a peak between 3 and 7
days, and very few values exceeding 32 days. After a detailed analysis of the cases with such
a large lead time, we noticed they were due to insertion errors in the original database, and
hence we discarded them. Overall, around 5% of data were removed following the whole pre-
processing and cleaning procedure. The resulting dataset is available for research at https:
//github.com/regor-unimore/Pharmaceutical-Lead-Time-Forecasting.git.

4.5 Experimental Results

To compare the machine learning systems employed in our analysis, we performed two dif-
ferent experiments, splitting the whole corpus by category, as well as by month.

Initially, in order to select the best hyper-parameters of each algorithm, we employed
a standard 10-fold cross-validation procedure, where the whole dataset is partitioned into
10 different groups, named folds. In turn, each fold is considered as test set, whereas the
remaining folds were split into 2/3 for the training set, and 1/3 for the validation set. The
training set is the set of examples used during the learning phase to find the optimal model
parameters, whereas the validation set is the set of examples that is employed to evaluate the
performance of the learned model. In this way, we selected the following hyper-parameters
for our machine learning systems: 100 estimators (i.e., number of trees) for the RF, linear
kernel and a regularization term C = 1 for SVM, a value of k=13 for the number of neighbors
in KNN, and a single hidden layer with 3 neurons for MLP.

Then, we performed two distinct experiments. As a first experiment, we partitioned the
dataset by category, and we split each portion into 2/3 to be used for training, and 1/3 to be
used for test. As a second experiment, we partitioned the dataset by month, and again we

https://github.com/regor-unimore/Pharmaceutical-Lead-Time-Forecasting.git
https://github.com/regor-unimore/Pharmaceutical-Lead-Time-Forecasting.git

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 41

KNN LR RF MLP SVM
Tumors 3.37 2.23 2.39 3.87 1.94

Diagnosis 4.98 2.37 3.40 7.41 2.51
General 4.59 2.22 3.48 8.12 2.30

Medicine 4.10 2.22 2.71 5.51 2.02
Nutritional 2.90 2.21 2.28 4.60 2.28
Prostatic 3.11 1.75 3.07 3.15 3.38
Sanitary 3.11 2.22 2.49 6.98 2.30
Dialysis 3.23 1.50 2.49 2.34 1.83

Heavy Goods 2.66 1.79 2.40 5.40 1.86
Toxic 3.73 1.70 2.68 2.03 1.73

Narcotics 3.72 5.16 5.44 4.29 4.81
Average 3.59 2.31 2.99 4.88 2.45

TABLE 4.1: Mean squared error obtained per each different category (best
results in bold).

split the data of each month into 2/3 for training, and 1/3 for test. In both experiments, as a
standard performance metric, we considered the mean squared error (MSE) as the average of
the squared difference between true and predicted lead time: MSE = ∑

n
i=1(yi− ŷi)2 where yi

is the true lead time, and ŷi is the forecast value.
The two experiments have different goals. In the first case, one full year of data for

each category is used both for training and for test, thus we can evaluate the performance
of a forecasting approach when a long period of data is available, for each single category.
Conversely, in the second experiment, we take into account all the categories, by partitioning
the data by month: in this way, we can evaluate whether data from different categories can
help in forecasting the lead times of each product.

As for the first experiment, in Table 4.1 we report the performance achieved by all the
competitors on each distinct category. The results show that LR is the best performing
method. A very similar performance is also obtained by the SVM approach, that achieves
the lowest error in two categories (Tumors and Medicine). Narcotics results to be the most
difficult category to forecast, which is not surprising, as it contains very few examples. For
that category, KNN is the best-performing algorithm.

In our second setting, the samples of all the categories are used within the training and test
set of each month. As shown in Table 4.2, in this case SVM is clearly the best performing
algorithm, achieving the lowest MSE in every month, with an average error equal to 1.89
days, which is largely better than the second best approach, which is RF, that achieves an
MSE equal to 3.07 days only. Overall, the results of both settings suggest that the use of
non-linear approaches does not significantly lower the forecasting error.

4.6 Conclusions

This paper presented a methodology for lead time forecasting in the pharmaceutical supply
chain with machine learning techniques. In particular, we compared support vector machines,
random forests, multi-layer perceptron, linear regression, and k-nearest neighbors on a very
large collection of examples provided by a large company with headquarters in Italy. Our
experimental results are very encouraging, showing how the purchasing lead time can be
forecast with high accuracy, especially for linear support vector regression. In particular, the
use of simple non-linear approaches does not seem to yield significant improvements in the
forecasting.

The research described in this paper aims to fill a gap in the scientific literature regarding
lead time forecasting for the purchase of pharmaceutical products. An accurate forecast of

Chapter 4. Lead time forecasting for a pharmaceutical supply chain 42

KNN LR RF MLP SVM
January 3.43 5.13 2.62 5.60 1.86

February 2.77 4.20 2.05 5.46 1.58
March 3.88 2.83 6.14 6.94 1.80
April 3.96 9.51 2.94 8.03 1.87
May 3.57 5.74 2.54 7.69 1.55
June 3.79 5.91 2.71 7.01 1.58
July 3.84 2.69 3.00 8.75 2.09

August 4.01 2.43 3.15 13.47 2.02
September 3.49 5.47 2.55 6.44 1.55

October 3.87 2.36 2.95 7.36 1.76
November 3.91 2.72 2.95 6.95 2.21
December 4.09 7.01 3.25 10.33 2.86
Average 3.72 4.67 3.07 7.84 1.89

TABLE 4.2: Mean squared error obtained per each different month (best
results in bold).

such lead time can be crucial for decision making, optimization, and planning in the overall
pharmaceutical supply chain. Waiting times for drugs and medicines could in fact be reduced,
and hospitals and pharmacies could choose the most convenient supplier at every moment on
the basis of accurate predictions. This can be very relevant when treating patients with urgent
needs, as well is fast-changing medical conditions, as the ones we are currently facing in the
COVID-19 pandemic.

Future research will incorporate forecasting of internal supply chain lead times of real
service processes. In this way, the forecast of lead time for purchasing products will be
coupled with the forecast of the entire supply chain lead time, providing decision makers
with a larger instrument of analysis. In addition, more sophisticated approaches to lead
time forecasting could be exploited, with simulation of nonlinear systems to investigate how
machine faults and maintenance procedures can influence lead time.

43

Chapter 5

A Metaheuristic Algorithm for a
Multi-period Orienteering Problem1

This chapter addresses a real-world multi-period orienteering problem arising in a large Ital-
ian company that needs to patrol an area in order to provide security services to a set of
customers. Each customer requires different services on a weekly basis. Some services are
mandatory, while others are optional. It might be impossible to perform all optional services,
and each of them is assigned a score when performed. The challenge is to determine a set
of routes, one per day, that maximizes a weighted sum of the total collected score and total
working time, while meeting several operational constraints, including hard time windows,
maximum riding time, minimum number of services performed, and minimum time between
two consecutive visits for the same service at the same customer. To solve the problem, we
propose an iterated local search that invokes at each iteration an inner variable neighborhood
descent procedure. Computational tests performed on a large number of real-world instances
prove that the developed algorithm is very efficient, and finds in a short time solutions that
are consistently better than those produced by a mathematical model, and those in use at the
company.

5.1 Introduction

Every day, private security guards need to inspect structures, parks, buildings, and many
other facilities, in order to counter potential criminal actions or simply restore normal safe
conditions after breakdowns. In this paper, we study a real-world security problem in which
patrols are required to perform a set of services at customers located in a vast area. Some
services are mandatory, while others are optional. The optional services, when performed,
induce a score. The goal is to maximize the total collected score and minimize the total
working time, while meeting a number of operational constraints.

The problem originates from the everyday activity of Coopservice, a large service provider
company located in Italy (https://www.coopservice.it/). Counting on more than 25 000
employees, Coopservice operates a number of different services, including logistics, trans-
portation, cleaning, maintenance and security. The company also operates all around Italy
car patrolling services for customers who booked their service. Figure 5.1 shows the current
customers of the Emilia Romagna region, divided by province.

The customers are geographically dispersed in the area and are consequently divided into
clusters. Each cluster is assigned to a patrol, which performs every day a route to visit cus-
tomers and execute the required services. Figure 5.2 provides better details for the province

1Preliminary results of this work appears in: Zucchi, G., Correa, V., Iori, M., dos Santos, A., Yagiura,
M. (2022). A Metaheuristic Algorithm for a Multi-period Orienteering Problem Arising in a Car Patrolling
Application. In International Network Optimization Conference (INOC 2022), 99–104.
The full version of the paper is now submitted to Networks, an internation journal.

https://www.coopservice.it/

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 44

FIGURE 5.1: Customers in the Emilia Romagna region, divided by province

of Reggio Emilia, showing the customers divided into patrolling clusters. The cluster config-
uration does not change from a day to the other, but the routes performed inside the clusters
may change according to the daily demand for services. Indeed, customers may require dif-
ferent services according to the day of the week, following the contract stipulated with the
company. More in detail, each customer may require multiple services and, for each such
service, multiple visits during the same period. Some services, such as the closing or open-
ing of a commercial activity, are mandatory, whereas others, such as the inspection of an area
or a building, are optional. The optional services induce a score when performed, and the
company is interested in both maximizing the total collected score, and minimizing the total
working time. As the cluster configuration is fixed, each cluster gives raise to an optimization
problem that is independent from the other clusters.

The resulting optimization problem involves a number of operational constraints. First
of all, the services should be performed within hard time windows and the routes should not
exceed a maximum working time. In addition, a customer might require multiple visits for the
same service in the same period. In such a case, two consecutive visits should be separated
by at least a given threshold time (e.g., 90 minutes or so). This constraint is indeed very
challenging, as it imposes to schedule endogenous time windows, induced by the consecutive
visits, inside the exogenous time window imposed by the contract.

Our goal is to determine a set of routes, one per period, by optimizing an objective func-
tion that takes into account the total collected score and the total working time. The resulting
problem is a multi-period orienteering problem, which is a generalization of the well-known
orienteering problem (OP) (Golden, Levy, and Vohra, 1987). The OP is known to be strongly
NP-hard, and difficult to solve in practice, and the problem we are facing is a challenging
generalization of the OP that includes different additional constraints.

In this work, we first develop a mixed integer linear programming (MILP) model that
is used to formally describe the problem and to solve some small-size instances. Since our
problem is N P -Hard, we propose a heuristic algorithm to solve large-size instances. We
chose to develop an iterated local search (ILS), a metaheuristic that in recent years obtained
relevant results on a large number of optimization problems Lourenço, Martin, and Stützle,

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 45

FIGURE 5.2: Customers in the Reggio Emilia province, divided by clusters

2019. The ILS receives in input the set of customers and the set of services to be performed.
It first builds an initial solution by means of a constructive heuristic. Then, as long as ter-
mination conditions are not met, it iteratively applies perturbations on the current incumbent
solution and looks for improvements by means of a variable neighborhood descent (VND)
procedure (Hansen et al., 2019) based on six neighborhoods.

Extensive computational tests on a set of real-world instances provided by the company
prove that the developed ILS works very well in practice. The solutions it obtains consistently
improve both the ones produced by solving the MILP model, and the ones in use at the
company, both in terms of total score and total working time.

The remainder of the paper is organized as follows. Section 5.2 contains a brief litera-
ture review of patrolling applications and OPs. Section 5.3 formally describes the problem.
Section 5.4 presents the mathematical formulation. Section 5.5 gives the details of the ILS
algorithm. Section 5.6 shows the computational results and, finally, Section 5.7 gives con-
cluding remarks and hints for future research directions. A preliminary version of this work,
solving a limited set of instances with just an early version of the ILS, was presented as
Zucchi et al., 2022.

5.2 Brief Literature Review

Car patrolling is a security measure widely used to protect large areas from criminal activity.
It consists of guards (patrols) using vehicles to move between points of interest in a region
and taking actions that may prevent or respond to crimes. Car patrolling problems has been

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 46

intensively studied in the literature, sometimes under different names because they can model
different applications. Very recently, Samanta, Sen, and Ghosh, 2022a; Samanta, Sen, and
Ghosh, 2022b surveyed police patrolling problems, by dividing them into three categories:
(i) resource allocation, (ii) district design and (iii) route design. The route design category
is the one that most resembles our problem because it is concerned with how the routes are
selected and how they affect the patrol efficiency. However, the problems evaluated in the
survey differ considerably from ours. Indeed, whereas the police patrolling problems aim to
optimize the routing coverage of an area in some ways, in our problem the patrols must visit
given customers and perform pre-specified tasks related to security services.

Our optimization problem is more similar to an OP and it can be described as a general-
ization of a multi-period OP with time windows. The literature on OPs is very rich and one
may find plenty of applications. To the best of our knowledge, the first study on the OP dates
back to Tsiligirides, 1984, in which the problem was presented as a generalization of the
traveling salesman problem. Because the OP is N P -hard, most studies use heuristic meth-
ods to solve either the OP itself or some of its generalizations. A few years ago, Gendreau,
Laporte, and Semet, 1998 discussed why it is so difficult to design high-quality heuristics for
this class of problems. The score of a location, and the distance to reach it are independent,
and often in contrast to one another, which makes it difficult to select the locations that are
part of an optimal solution. For such a problem, simple construction heuristics may direct the
algorithm towards undesirable directions and are not sufficient to explore large parts of the
solution space. This is confirmed by the results obtained on our real-world instances, where
the ILS largely outperforms the initial constructive heuristic.

In the past few years, several papers devoted to the study of OPs have been published. We
refer the interested reader to the extensive reviews by Gunawan, Lau, and Vansteenwegen,
2016 and Vansteenwegen, Souffriau, and Oudheusden, 2011. More in detail, Vansteenwegen,
Souffriau, and Oudheusden, 2011 formally described the most relevant problem variants, and
surveyed known exact and heuristics algorithms, whereas Gunawan, Lau, and Vansteenwe-
gen, 2016 computationally evaluated eight algorithms to solve the team orienteering problem
with time windows, finding out that the ILS by Gunawan, Lau, and Lu, 2015b was the al-
gorithm producing the best solutions on average. Surveys on related classes of problems
were presented by Gavalas et al., 2014, who focused on tourist trip design problems and by
Archetti, Speranza, and Vigo, 2014, who discussed vehicle routing problems with profits.

A number of papers that are closely related to our work appeared after the publication
of the above surveys. A hybrid heuristic composed of a greedy randomized adaptive search
procedure (GRASP) and a variable neighborhood search (VNS) was proposed by Palomo-
Martínez et al., 2017 to solve a generalization of the OP. This variant contains constraints
imposing mandatory visits and incompatibilities among nodes. The hybrid heuristic takes
advantage of the multi-start feature of the GRASP to generate initial solutions that are then
optimized with the VNS. The authors reported that the heuristic was able to find 128 optimal
solutions on a set of 131 instances and required, on average, only 0.8% of the time required
by an MILP model solved with a commercial solver.

The probabilistic orienteering problem is a variant of the OP in which a prize is associated
with each node, but the node will be available for visit only with a certain probability. The
problem has been studied by Angelelli et al., 2017, who presented an integer linear stochastic
model and solved it by branch-and-cut. Computational results were presented on instances
containing up 100 vertices.

A problem similar to ours, although with a different application, was studied by Kotiloglu
et al., 2017 under the name of personalized multi-period tour recommendation. The goal of
the problem is to generate tours including mandatory and optional visits, while maximizing
the total collected score of the optional ones. The problem considers several features, such as
multiple periods of visits, time windows, maximum budget and maximum tour length. The

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 47

authors presented an MILP model and an iterated tabu search. The proposed methods have
been computationally evaluated by using two data sets, one from the literature and the other
generated with real-world data.

The so-called Set Orienteering Problem has been studied in Archetti, Carrabs, and Cerulli,
2018. In this problem, customers are grouped in clusters and a profit is associated with each
cluster, and the aim is to find a single-vehicle route that maximizes the collected profit. The
authors developed a mathematical model and a matheuristic algorithm, and tested them on
benchmark instances from the Generalized Traveling Salesman Problem literature involving
up 1084 vertices.

In Gündling and Witzel, 2020, the goal is to optimize touristic routes considering con-
straints such as visit redundancy avoidance and time windows. An MILP model and an ILS
metaheuristic were proposed. The authors reported that the ILS could almost match the re-
sults obtained by the MILP model solved with Gurobi for smaller instances, and for larger
ones, it provided better solutions in most cases.

A multi-period orienteering problem in which a salesperson needs to perform a route
to visit a subset of available customers has been studied by Zhang, Ohlmann, and Thomas,
2020. The problem is solved by a two-stage heuristic. In the first stage, the subset of cus-
tomers to be visited is decided. In the second stage, a vehicle routing problem is solved by
considering only the selected subset. The authors have chosen this method considering how
the relationship between the customers and the salesperson works, as in their problem the
salesperson has a series of decisions to make upon arriving at a customer site. The proposed
method has been validated with a data set adapted from the vehicle routing problem with
time windows.

Probabilistic properties in OPs have been also recently studied by Angelelli et al., 2021,
who considered an online OP with stochastic service requests. Every request must be either
accepted or rejected in real time, and then, at a later stage, a single vehicle must visit the
accepted customers by maximizing collected profits and meet operational constraints. The
authors modeled the problem as a Markov Decision Process and developed several heuristic
algorithms for its solution.

In Xu et al., 2021, an approximation algorithm for a variant of the team orienteering
problem (TOP) was proposed. In addition to the basic TOP constraints and the objective of
maximizing the collected score, their problem includes a set of new features to better model
Internet of things applications: a limited budget is imposed on the vehicles to perform the
routes; node costs are included in the path cost function in addition to edge costs; nodes
can be served by multiple vehicles. Computational experiments proved that the developed
algorithm provided up to a 17.5% increase in the collected score compared to a state-of-the-
art algorithm for the problem.

A new OP variant with service time dependent profits and time dependent travel times
was investigated by Khodadadian et al., 2022. The authors proposed an MILP mathematical
formulation and a VNS metaheuristic based on three specialized neighborhood structures.
The authors validated their VNS on a set of benchmark instances with known optimal solu-
tions and then they used it to solve a study case based on the city of Shiraz in Iran.

5.3 Problem description

The problem we face can be viewed as a multi-period orienteering problem with time win-
dows (MPOPTW). In the MPOPTW, we are given a graph G = (C0,A). The set of vertices is
defined as C0 = {0,1, . . . ,n}, where 0 is the depot at which the single vehicle starts and ends
each route, and C = {1, . . . ,n} is the set of customers. The graph is complete and a traveling
time γi j is associated with each arc (i, j) ∈ A.

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 48

Let T be the set of services provided by the company. A standard service time qt is
associated with each service t ∈ T and reports the time required by a patrol to execute such
service at a customer location. The set of services is partitioned as T =M∪U , where M is the
set of mandatory services and U is the set of optional ones. The activities should be executed
on a given set D of periods. Each period d ∈ D corresponds to a working shift of a patrol,
with a given start and maximum end time. Each customer c ∈C requires services on a subset
Dc ⊆ D of periods. Formally, we denote by Tcd ⊆ T the set of services to be performed at
customer c on period d. This set is partitioned as Tcd = Mcd∪Ucd , where Mcd ⊆M comprises
mandatory services and Ucd ⊆U optional ones.

Let ncdt be the number of times service t is required by customer c in period d and let
n̄cdt be the number of services that have been actually performed in a solution. We define
the quality of service (QoS) level as Q = ∑c∈C,d∈Dc, t∈Tcd

n̄cdt/∑c∈C,d∈Dc, t∈Tcd
ncdt . Index Q

represents the ratio of services that have been performed in the entire set of periods and it
should be greater than or equal to an input threshold value Qmin.

Every service t required by a customer c in a period d is associated with a time window
[ecdt , lcdt]. This defines the earliest and latest possible times to start the execution of each of
the ncdt services. The time window defines a hard constraint: late arrivals are forbidden and
waiting on site is imposed in case of early arrivals. A time window [e0, l0] is also imposed
on the depot and sets the maximum working time in a period (from 22:00 of a day to 06:00
of the next day in our instances). For some services, such as the closing or the opening of a
commercial activity, the time window is strict (e.g., 10 minutes) and just one visit per night
is required. This is typically the case for mandatory services. For other services, such as
checking a private house, the time window is usually loose (e.g., several hours) but multiple
visits may be required in a period. This is typically the case for optional services. In such
a case, if two or more visits are performed for the same service at the same customer in the
same period, then the start times of any two of such visits should be separated by at least
a given threshold δmin (which is equal to 90 minutes in our instances). This is imposed to
enforce a balanced patrol of the customer during the execution of a route.

For each period, a patrol starts its route at the depot, performs visits to customers to
execute the services and then returns to the depot. The working time of a route is defined as
the difference between the time at which the vehicle returns to the depot and the beginning
of the shift. The beginning of the shift is e0 and the route working time cannot exceed the
maximum duration defined by l0− e0.

Each service t ∈ T required by a customer c ∈ C is associated with a score wct . This
score is collected during the first time the service is performed at the customer in a given
period, and it does not vary from one period to the other. If multiple visits are performed
in one period for the same service at the same customer, then the collected additional score
varies according to a decreasing function. In detail, let τ = 1, . . . ,ncdt be the index of the
τth visit performed at customer c for service t in period d. Then, the score collected at visit
τ is wctτ and is such that wct1 = wct and wctτ ≥ wct,τ+1 for τ = 1, . . . ,ncdt − 1. In this way,
the more visits for a given service are performed at a customer in a period, the more the
score decreases and hence the first visits for other services and/or other customers become
preferable to another visit for the same service at the same customer. This helps to achieve a
balanced number of visits among customers and services.

To summarize, the aim of the MPOPTW is to define a set of routes, one per period, in
such a way that (i) all mandatory services are performed, (ii) all operational constraints are
satisfied, and (iii) a weighted function, which considers the score S of the services that have
been actually performed, and the total working time T (with a negative weight on T), is
maximized. Two input parameters, α and β, are used as weights of S and T , respectively,
and the function to be maximized is z = αS −βT .

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 49

5.4 Mathematical Model

To model the MPOPTW as an MILP, we work on an extended graph in which each vertex
is used to represent a visit to a customer to perform a service. In detail, let Vd be the set
of vertices representing all possible visits associated with the services requested by all cus-
tomers in period d ∈ D. Let n = | ∪d∈D Vd | be the total number of vertices and note that by
construction n = ∑c∈C,d∈D,t∈T ncdt . Let also V 0

d = Vd ∪{0} and V n+1
d = Vd ∪{n+ 1}, where

0 and n+ 1 are copies of the depot representing, respectively, the start and end of the route
for each period d ∈ D.

We define Vcdt as the subset of Vd representing the ncdt visits for service t ∈ T requested
by customer c ∈ C in period d ∈ D. Each vertex v ∈ Vcdt is associated with the standard
service time and the time window associated with the corresponding service t and customer
c, respectively. Similarly, the traveling time between two vertices is set to be equal to the
traveling time between the two customers associated with the vertices.

For what concerns the scores, we use wvd to denote the score associated with vertex v∈Vd
in period d ∈D. The value of wvd is equal to the score associated with the corresponding visit.
It is important to notice that vertices in each subset Vcdt are sorted by decreasing score. That
is, the first vertex in Vcdt corresponds to the first visit to perform service t at customer c in
period d and hence has the highest score, the second vertex corresponds to the second visit
and hence has the second highest score, and so forth, for each c ∈C, t ∈ T , and d ∈ D.

Three sets of decision variables are defined: (i) xi jd takes the value 1 if the patrol moves
from vertex i ∈V 0

d to vertex j ∈V n+1
d in period d ∈ D, 0 otherwise; (ii) yvd takes the value 1

if vertex v ∈ Vd is visited in period d ∈ D; (iii) svd gives the time at which the patrol arrives
at vertex v ∈V n+1

d in period d ∈ D.
The MILP model is defined as follows:

max z = α ∑
d∈D

∑
v∈Vd

wvdyvd−β ∑
d∈D

sn+1,d (5.1)

s. t. ∑
j∈V n+1

d

x0 jd = ∑
i∈V 0

d

xi,n+1,d= y0d = yn+1,d = 1 d ∈ D (5.2)

∑
i∈V 0

d

xivd = ∑
j∈V n+1

d

xv jd = yvd v ∈Vd ,d ∈ D (5.3)

∑
v∈Vcdt

yvd = ncdt c ∈C,d ∈ Dc, t ∈Mcd (5.4)

sid + qi + γi j−M (1− xi jd) ≤ s jd i ∈V 0
d , j ∈V n+1

d ,d ∈ D (5.5)

eid−M (1− yid) ≤ sid i ∈V 0
d ,d ∈ D (5.6)

s jd ≤ l jd +M (1− y jd) j ∈V n+1
d ,d ∈ D (5.7)

s jd− sid ≥ δmin−M (2− yid− y jd) i, j ∈Vcdt : i < j, t ∈ Tcd ,c ∈C,d ∈ D
(5.8)

1
n ∑

d∈D
∑

v∈Vd

yvd ≥ Qmin (5.9)

xi jd ∈ {0,1} i ∈V 0
d , j ∈V n+1

d ,d ∈ D (5.10)

yvd ∈ {0,1} v ∈Vd ∪{0,n+ 1},d ∈ D (5.11)

sid ≥ 0 i ∈Vd ∪{0,n+ 1},d ∈ D. (5.12)

The objective function (5.1) maximizes the weighted sum of total collected score minus
total working time, multiplied by, respectively, α and β. Constraints (5.2) guarantee that each
route starts and finishes at the depot. Constraints (5.3) guarantee route connectivity and also
enforce the relation between variables x and y. Constraints (5.4) guarantee that all mandatory

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 50

services are executed. Constraints (5.5), (5.6) and (5.7) enforce the relation between variables
x and s, and they also impose time window constraints on each service that is executed. In
these constraints, M is used to denote a large number. Constraints (5.8) guarantee that visits
for the same service required by a customer are separated by at least δmin units of time.
Constraint (5.9) imposes the minimum QoS. Constraints (5.10), (5.11) and (5.12) give the
domain of the decision variables.

5.5 Iterated Local Search

To solve large-size MPOPTW instances, we have developed an ILS metaheuristic. The ILS
builds an initial solution by using a constructive heuristic and then iteratively applies pertur-
bations and local searches over the current solution until a termination condition is reached.
The perturbation step accepts only solutions that are feasible with respect to all constraints
of the problem, including the minimum QoS. The local search is performed by means of a
VND, an algorithm that sequentially invokes local search procedures with a set of neighbor-
hoods and finds a locally optimal solution for this set (Hansen et al., 2019). An acceptance
function decides at each iteration whether to keep the current solution or move to a newly-
generated one. In our case, the newly-generated solution is accepted only if its value is better
than that of the current solution. The overall ILS procedure is presented in Algorithm 8. The
algorithm runs until either a maximum run time or a maximum number of iterations without
improvements is reached. Each step of the ILS is described in detail in the following.

Algorithm 8 ILS algorithm
1: procedure ILS(Tmax = maximum run time, Imax = maximum number of iterations without im-

provements)
2: ITERATION← 0 ▷ the number of iterations without improvement
3: s∗← CONSTRUCTIVEHEURISTIC
4: s∗← VND(s∗)
5: while ELAPSEDTIME ≤ Tmax or ITERATION ≤ Imax do
6: s′← PERTURBATION(s∗)
7: s′′← VND(s′)
8: if ACCEPT(s∗,s′′) then
9: s∗← s′′

10: ITERATION← 0
11: else
12: ITERATION← ITERATION+ 1
13: end if
14: end while
15: return s∗

16: end procedure

Evaluation function. Our ILS uses the objective function as it is to evaluate solutions.
Let S (σd) be the total score of a given route σd performed in period d and T (σd) be its
working time. Then the objective function of a solution s = {σd : d ∈ D} can be expressed
as follows:

z(s) = α ∑
d∈D

S (σd)−β ∑
d∈D

T (σd). (5.13)

Constructive heuristic. An initial solution is constructed by a greedy algorithm, whose
pseudo-code is summarized in Algorithm 9. The vertices of each period are sorted in non-
decreasing order of the start time of their time windows. A route is constructed for each
period in two phases: first, the mandatory vertices are inserted sequentially, each at the end
of the current route, in the order in which they were sorted provided that this preserves

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 51

feasibility, that is, a vertex is appended only if the solution remains feasible, otherwise it is
skipped (this is always feasible for the mandatory services in the instances provided by the
company); later, optional vertices are appended one by one in the solution in the sorted order,
each at the end of the current route, whenever the resulting route is feasible. The two phases
invoke the procedure Append(σd , v) that first checks if inserting vertex v at the end of route
σd is feasible, and then, if feasibility is confirmed, it returns the expanded route having v at
its end; otherwise, it return the original route σd .

Algorithm 9 The greedy constructive heuristic
1: procedure CONSTRUCTIVEHEURISTIC
2: for each period d ∈ D do
3: Md ,Ud ← services in M and U for period d
4: Sort Md and Ud in non-decreasing order of evdt
5: σd ← /0 ▷ empty route
6: for v ∈Md (in the sorted order) do
7: σd ← Append(σd , v) ▷ append mandatory v at the end if feasible
8: end for
9: for v ∈Ud (in the sorted order) do

10: σd ← Append(σd , v) ▷ append optional v at the end if feasible
11: end for
12: end for
13: return s = {σ1, . . . ,σD}
14: end procedure

Variable Neighborhood Descent. A VND procedure is used to find a locally optimal
solution using a sequence of different neighborhoods Nk (k = 1, . . . ,kmax). Algorithm 10
shows its main steps. Starting with the first neighborhood (k = 1), the VND explores the
solution space by searching through the sequence of neighborhoods in a deterministic way.
More in detail, at each step of the VND, the current solution is brought to a locally optimal
solution by exploring the current neighborhood Nk using the first improvement policy. If
no solution better than the current one is found in the kth neighborhood, then the algorithm
switches to the next neighborhood, Nk+1. If, instead, a better neighbor solution is found,
then this solution is used to replace the current one and the algorithm returns to the first
neighborhood, N1. The process continues while there is a neighborhood to be explored, that
is, it stops when the current solution is locally optimal with respect to all neighborhoods.

Algorithm 10 Variable neighborhood descent heuristic
1: procedure VND(s)
2: k← 1
3: while k ≤ kmax do
4: s′← HillClimbing(s,Nk) ▷ Find a locally optimal solution
5: if z(s′) > z(s) then ▷ Neighborhood change
6: s← s′

7: k← 1
8: else
9: k← k+ 1

10: end if
11: end while
12: return s
13: end procedure

We implemented six neighborhoods. Some of them are classical neighborhoods from
the vehicle routing literature, whereas others were specifically designed to meet our problem
requirements. The neighborhoods are as follows:

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 52

• N1 = Remove optional: Remove an optional service vertex from a route, thus trying to
decrease the working time;

• N2 = Swap: Swap the positions of two vertices inside a route;

• N3 = 2-opt: Swap two arcs in a route, reversing the visiting order between the two
arcs;

• N4 = Relocate: Move a vertex to another position in the route;

• N5 = Insert optional: Insert an optional unvisited vertex into a route, in an attempt to
increase the collected score;

• N6 = Swap optional: Swap two optional vertices, by letting an unvisited vertex take
the place of a visited one.

The neighborhoods Swap, 2-opt and Relocate may improve the objective function only
by reducing the working time of a route, because they do not change the collected score.
The Remove optional movement attempts to decrease the working time at the expense of
a decrease in the score as well. On the contrary, the Insert optional neighborhood tries to
improve the score at the expense of an increase in the working time. The last neighborhood,
Swap optional, may improve the objective function by increasing the score, reducing the
working time, or both.

Note that all described neighborhoods consist of intra-period and intra-route movements,
as they change routes of each period independently. A solution may be further improved by
performing inter-period movements, that is, changing the execution of a service at a customer
from a period to another. This type of movements may decrease the working time in a period
and open space for more services to be performed there. Inter-period movements are costly
to be evaluated because of the large number of neighbors. Thus, they are not fully explored
in a deterministic way, but are considered in the perturbation step described next.

Perturbation procedure. The perturbation procedure is introduced to escape from the
locally optimal solution obtained by the VND. Two inter-period neighborhoods are used to
this aim. At each iteration, the perturbation procedure randomly selects two periods, d1 and
d2, and then it invokes, alternatively, one of the two neighborhoods. The Relocate inter-
period neighborhood randomly selects a vertex i1 in σd1 , removes it from σd1 and tries to
insert it in every position of σd2 (provided that there is a demand left for i1 in d2). Similarly,
the Swap inter-period neighborhood randomly chooses a vertex i1 in σd1 and then it tries to
swap it with any other vertex i2 in σd2 . In either case, if a move succeeds in producing a
feasible solution, then it is applied, independently of the cost; otherwise, it is rejected. Either
neighborhood proceeds until 10 successful moves have been produced, or |σd1 ||σd2 | attempts
(either successful or unsuccessful) have been performed, where |σd | signifies the number of
vertices in σd

Figure 5.3 illustrates the Relocate inter-period operation through a simplified example.
Three periods, namely 1, 2 and 3, are considered. The top part of the figure illustrates the
solution before the operation is applied and the bottom part illustrates it after. All routes start
from the depot and visit customer c = 1 to provide different services. Suppose the customer
requires services 1, 2, 3 and 4 in periods 1 and 2, and services 1, 2 and 3 in period 3. Suppose
also that a single visit per service, and per period is required, and that service 2 is optional.
The depicted move removes the execution of service 2 in period 1 and transfers it to period
3. In this way, the route in period 1, which had the service removed, may be used to include
other services.

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 53

FIGURE 5.3: Depicting example for the Relocate inter-period perturbation
movement

5.6 Computational evaluation

In this section, we present the outcome of the extensive computational tests that we per-
formed on a large set of real-world instances provided by the company. The algorithms have
been coded in Python 3.7.3 and the MILP model was solved with Gurobi 9.5. Gurobi was
invoked with its default configuration, letting it run on 12 threads. The experiments have
been executed on a Intel Xeon CPU E5-2640 v3 2.60 GHz machine with 64 GB of memory,
running under Windows 10 Pro 20H2 64-bits.

5.6.1 Instances

The company provides security services in a number of provinces in Italy. We were pro-
vided with the data of 12 of such provinces, which differ among them in the number and
geographical distribution of customers, as well as in the number of services requested. Ta-
ble 5.1 reports for each province, in order, the number of instances (column #), which also
corresponds to the number of clusters, the number of periods (|D|), the total, average, mini-
mum, and maximum number of customers (tot|C|, avg|C|, min|C| and max|C|), and of services
requested (totn, avgn, minn and maxn). We were provided in total with 79 instances, with the
number of customers varying from 5 to 100 and the number of requested services from 14 to
1280.

The values of α and β, used in the objective function, were provided by the company after
internal discussion and were set to 5 and 0.9, respectively. The score collected during visit
τ = 1, . . . ,ncdt performed at customer c for service t in a period was set to wctτ = wcte1−τ,
with the wct values being in the set {1,6,9,10}. The minimum QoS level has been set to 75%
and the minimum time between two consecutive visits for the same service at a customer
to δmin = 90 minutes. The traveling times have been obtained by computing the real-world
distances using the Open Source Routing Machine application.

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 54

TABLE 5.1: Details of the real-world instances

Province # |D| tot|C| avg|C| max|C| min|C| totn avgn maxn minn

Mantova 2 7 43 21.5 32 11 171 85.5 140 31
Roma 8 7 118 14.8 25 5 1234 154.3 268 84
Sassari 7 7 119 17.0 33 7 1038 148.3 256 42
Rimini 4 7 154 38.5 57 27 987 246.8 415 93
Ravenna 5 7 172 34.4 50 15 1382 276.4 400 79
Pescara 4 7 227 56.8 69 43 1370 342.5 484 129
Ferrara 7 7 236 33.7 63 11 1812 258.9 525 97
Bologna 8 7 239 29.9 63 17 2733 341.6 632 244
Parma 5 7 289 57.8 77 37 2952 590.4 797 323
Forli 8 7 407 50.9 73 16 2695 336.9 586 40
Modena 11 7 510 46.4 76 9 4288 389.8 651 14
Reggio Emilia 10 7 679 67.9 100 22 7812 781.2 1280 243

5.6.2 ILS results

Table 5.2 reports the results obtained by the ILS. Due to the high number of instances, we
chose to aggregate the results by province. For each province we provide several key perfor-
mance indicators (KPI): the average objective function value, z, according to Equation (5.1);
the average collected score, S ; the average working time, T ; the average traveled distance
by a patrol, km; the average time between two consecutive visits at the same customer to
perform the same service, δ; the average quality of service, Q; the average time in which
the incumbent solution was found, timeinc; and the average run time in seconds, time. We
also include columns #, avg|C| and avgn for the sake of easy data visualization. The last line
provides overall averages.

TABLE 5.2: Average computational results obtained by the ILS

Instance ILS

Province # avg|C| avgn z S T km δ Q timeinc time

Mantova 2 21.5 85.5 2164.7 527.6 526.1 75.0 92.3 82.6 58.1 99.9
Roma 8 14.8 154.3 2945.6 828.5 1329.9 145.2 98.9 82.2 117.8 187.9
Sassari 7 17.0 148.3 2941.7 762.3 966.3 105.4 94.4 89.1 99.8 178.8
Rimini 4 38.5 246.8 5093.6 1168.6 832.8 84.6 91.5 92.2 870.6 1250.3
Ravenna 5 34.4 276.4 6629.6 1547.4 1230.2 110.0 124.4 95.7 823.1 1488.6
Pescara 4 56.8 342.5 9396.1 2102.5 1240.3 156.4 115.6 91.8 1223.7 1858.7
Ferrara 7 33.7 258.9 7162.0 1669.6 1317.5 136.4 104.2 96.5 692.9 797.4
Bologna 8 29.9 341.6 8217.4 2051.8 2268.3 184.1 125.6 94.9 792.4 944.8
Parma 5 57.8 590.4 15593.8 3441.8 1794.5 162.8 131.7 93.8 3101.5 3466.2
Forli 8 50.9 336.9 9159.1 2034.8 1127.9 126.9 110.8 97.8 1042.4 1400.5
Modena 11 46.4 389.8 9380.1 2234.0 1988.5 220.5 148.9 96.7 873.2 1243.9
Reggio Emilia 10 67.9 781.2 16956.2 3818.8 2375.5 220.2 146.1 94.5 2623.4 3024.9

Average 6.6 40.4 360.4 8600.7 2002.4 1568.3 157.6 119.8 93.1 1077.5 1372.7

The ILS was able to find a feasible solution for every instance in an average time of about
23 minutes. The average time was around 3 minutes or less for Mantova, Roma and Sassari,
provinces requiring a small number of services, and larger than 50 minutes for Reggio Emilia,
the province requiring the largest number of services. By comparing timeinc with time, we
observe that the criteria adopted for the ILS termination are appropriate because the algorithm
keeps running for some amount of time after the incumbent has been found, but this time is
not excessive. For all instances, the constraints on the minimum QoS and minimum time
between services were satisfied, and the average Q and δ values are far above the required
75% and 90 minutes, respectively. In the next sections, we obtain insights in the remaining

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 55

KPIs by comparing them with the corresponding values obtained by the MILP model and by
the company.

5.6.3 Comparison with the mathematical model

Table 5.3 reports the results obtained by solving the MILP model with Gurobi and compares
them with the results by the ILS. Let F be the set of instances for which Gurobi was able
to find a feasible solution. Column |F | shows the number of such instances in F for each
province (e.g., Gurobi obtained feasible solutions for 2 out of 2 instances of Mantova, 8 out
of 8 instances of Roma, 6 out of 7 instances of Sassari). The next columns refer to average
values with respect to this reduced set of instances. Columns LB, UB, gap and time provide
the average incumbent solution value, the average upper bound, the average percentage gap
between LB and UB, and the average run time, respectively, of Gurobi. For the ILS, we
report z, time, and, in column impr., the average improvement obtained over the incumbent
values LB of Gurobi, defined as 100(z−LB)/LB. The values of the ILS reported in this table
were also taken for the subset F of instances.

TABLE 5.3: Comparison between Gurobi and ILS (on subset F of instances
for which MILP found a feasible solution)

Instance MILP Model ILS

Province # |F | LB UB gap time z impr. time

Mantova 2 2 2134.9 2754.6 22% 3600.1 2164.7 1.5% 99.9
Roma 8 8 2828.9 4104.0 31% 3600.1 2945.6 12.6% 187.9
Sassari 7 6 2755.8 3531.7 22% 3600.1 2809.7 0.9% 168.4
Rimini 4 4 4763.7 5906.5 19% 3600.3 5093.6 5.0% 1250.3
Ravenna 5 3 5018.2 6220.7 19% 3600.4 5403.3 5.2% 946.7
Pescara 4 2 6781.9 8030.9 16% 3600.2 7118.4 3.9% 679.3
Ferrara 7 4 4989.5 6080.5 18% 3600.2 5094.2 1.6% 79.2
Bologna 8 2 5419.1 7394.3 27% 3600.2 6191.9 18.6% 970.3
Parma 5 0 3600.1
Forli 8 4 6817.5 7751.7 12% 3600.3 7134.7 3.6% 942.5
Modena 11 1 321.9 321.9 0% 0.8 321.9 0.0% 0.1
Reggio Emilia 10 1 3976.3 5865.8 32% 3600.4 4669.0 17.4% 775.7

Average 6.6 3.1 4147.9 5248.3 22% 3502.9 4374.7 6.2% 505.9

Only in three cases, the MILP solver could find feasible solutions for all instances of
a province. This happened for Mantova, Roma and Rimini. Moreover, the solver was not
able to find any solution for the instances of Parma, and just a single one for the instances in
Modena and Reggio Emilia. In total, only 37 out of 79 instances were feasibly solved and
just one of them (Modena) to proven optimality. On this subset F of instances, the ILS was
able to improve the solution value found by the MILP solver by 6.2% on average. The run
time was also considerably lower. Whereas Gurobi reached the time limit of one hour in most
cases, the ILS required on average about eight minutes and a half. We also notice that the
ILS was able to find an exact optimal solution for the only instance that Gurobi could solve
to proven optimality.

In Figure 5.4, we gain further insight by displaying four KPIs derived from the solutions
obtained by the MILP solver and by the ILS. We still consider only the subset F of instances,
providing the average score, working time, QoS and km traveled. For five provinces, namely
Mantova, Roma, Sassari, Rimini and Ferrara, the solver was able to obtain a slightly better
score than the ILS. On the other cases, the ILS got better or equal average scores, achieving
an overall advantage of 0.32% better average score than Gurobi. Whereas the differences
in the score are not so significant, much higher differences can be observed for the working

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 56

time. The ILS found, indeed, better values than Gurobi for the instances of nine provinces
and an identical value for the remaining instance (Modena). The average QoS produced by
Gurobi is 91.4% and that of the ILS is just 93.1%. Both values are thus much higher than the
minimum required QoS (75%). Significant gains are obtained by the ILS for the km traveled
for all instances with the exception of Modena (equal values) and Sassari (slightly worse
value by the ILS).

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

M
an

to
va

Rom
a

Sa
ss

ar
i

Rim
in

i

Rav
enna

Pesc
ar

a

Fe
rra

ra

Bolo
gn

a
Fo

rli

M
odena

Reggio
 E

.

Model ILS

(A) Average score (S)

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

M
an

to
va

Rom
a

Sa
ss

ar
i

Rim
in

i

Rav
enna

Pesc
ar

a

Fe
rra

ra

Bolo
gn

a
Fo

rli

M
odena

Reggio
 E

.

Model ILS

(B) Average working time (T)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

M
an

to
va

Rom
a

Sa
ss

ar
i

Rim
in

i

Rav
enna

Pesc
ar

a

Fe
rra

ra

Bolo
gn

a
Fo

rli

M
odena

Reggio
 E

.

Model ILS

(C) Average quality of service (Q)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

M
an

to
va

Rom
a

Sa
ss

ar
i

Rim
in

i

Rav
enna

Pesc
ar

a

Fe
rra

ra

Bolo
gn

a
Fo

rli

M
odena

Reggio
 E

.

Model ILS

(D) Average traveled kilometers (km)

FIGURE 5.4: Four KPIs by Gurobi and ILS (on subset F of instances for
which MILP found a solution)

5.6.4 Comparison with the company solutions

In Table 5.4, we compare the ILS solutions with the real-world ones currently in use at the
company. We display the average solution value, QoS and δ for both solution sets. For
the ILS, we also report the percentage improvement that it obtained over the z value by the
company.

The solutions currently in use at the company are difficult to evaluate because they do not
obey at least two constraints. First, they do not ensure a minimum quality of service. Refer
for example to the results for the province of Pescara, where the QoS is 48.6% on average,
whereas the minimum desired is 75%. In addition, the minimum time between two visits at
the same customer to perform the same service is not fully respected. The average δ on the
solutions provided by the company is indeed 58.4 minutes, whereas the minimum required is
90 minutes. Thus, the solutions by the company are frequently infeasible, whereas the ones
produced by the ILS are all feasible. Even in this disadvantageous scenario, the ILS found
solutions whose average value is much better than that of the company.

We graphically compare in Figure 5.5 two KPIs, score and working time, to show the
improvements obtained by the ILS. The collected score is improved in all provinces, with the
exceptions of Mantova (2% worse) and Modena (17% worse). The working time is reduced
in all provinces, with the exception of Forli. Some reductions are significant as, for example,
in Mantova, Modena and Rimini.

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 57

TABLE 5.4: Comparison between company and ILS solutions (on the entire
set of instances)

Instance Company ILS

Province # z Q δ z Q δ impr.

Mantova 2 614.7 80.6 41.7 2164.7 82.6 92.3 252%
Roma 8 788.6 83.1 87.7 2945.6 82.2 98.9 274%
Sassari 7 1002.9 92.7 45.4 2941.7 85.9 94.4 193%
Rimini 4 1024.4 78.4 16.4 5093.6 92.2 91.5 397%
Ravenna 5 2884.7 90.8 51.9 6629.6 95.7 124.4 130%
Pescara 4 7657.0 48.6 30.7 9396.1 91.8 115.6 23%
Ferrara 7 4700.0 96.7 60.7 7162.0 96.5 104.2 52%
Bologna 8 4475.1 98.5 77.5 8217.4 94.9 125.6 84%
Parma 5 9767.1 92.6 85.4 15593.8 93.8 131.7 60%
Forli 8 6210.2 83.7 63.9 9159.1 97.8 110.8 47%
Modena 11 6115.9 75.4 36.3 9380.1 96.7 148.9 53%
Reggio Emilia 10 11114.5 83.5 68.3 16956.2 94.5 146.1 53%

Average 6.6 5181.6 84.8 58.4 8600.7 92.8 119.8 66%

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

M
an

to
va

Rom
a

Sa
ss

ar
i

Rim
in

i

Rav
enna

Pesc
ar

a

Fe
rra

ra

Bolo
gn

a

Par
m

a
Fo

rli

M
odena

Reggio
 E

.

Company ILS

(A) Average score (s)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

M
an

to
va

Rom
a

Sa
ss

ar
i

Rim
in

i

Rav
enna

Pesc
ar

a

Fe
rra

ra

Bolo
gn

a

Par
m

a
Fo

rli

M
odena

Reggio
 E

.

Company ILS

(B) Average working time (T)

FIGURE 5.5: Relevant KPIs for company and ILS (on the entire set of in-
stances)

5.6.5 Evaluation of the ILS components

The proposed ILS contains several components. To evaluate the contribution of each one
of them, we executed different configurations of the ILS, each obtained by removing one or
more components. The obtained results are shown in Table 5.5, which displays the average
solution values per province for several tested configurations. In column Greedy, we show
the results of the greedy constructive heuristic alone, and in column G. + VND, the results of
the greedy followed by the first VND execution. The next six columns show the results of the
complete ILS, but removing one of the six VND neighborhoods. Finally, for the purpose of
comparison, the last column displays the results of the complete ILS with all neighborhoods,
as previously reported in Table 5.2.

We can notice that the greedy algorithm provides low-quality solutions in general, which
are very far away from the final solutions obtained by the ILS. The VND (with all neigh-
borhood searches) manages to consistently improve the solutions by the greedy. A large
improvement can be observed for the eight instances of Bologna, for which the average ob-
jective value is almost doubled.

For what concerns the different neighborhood searches, we can notice that all of them

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 58

TABLE 5.5: Impact of the ILS components on the solution value

Instances Heuristics

Province # Greedy G. + VND ILS - N1 ILS - N2 ILS - N3 ILS - N4 ILS - N5 ILS - N6 ILS

Mantova 2 1787.4 2149.0 1897.2 2164.3 2163.7 2158.4 2160.5 2164.9 2164.7
Roma 8 1965.6 2924.6 2245.5 2946.3 2931.4 2922.5 2907.7 2936.6 2945.6
Sassari 7 2243.8 2923.1 2565.1 2931.7 2939.3 2929.8 2940.6 2931.5 2941.7
Rimini 4 4216.5 4872.3 4820.2 5011.7 4998.9 5047.9 4924.9 5004.3 5093.6
Ravenna 5 5634.1 6314.9 6439.8 6540.2 6418.9 6586.9 6358.5 6340.5 6629.6
Pescara 4 7717.6 8942.9 8641.5 9165.7 9022.8 9131.1 8574.5 8953.6 9396.1
Ferrara 7 5942.6 6986.9 6944.8 7008.6 6978.4 7033.8 6769.7 7001.4 7162.0
Bologna 8 4168.8 8166.3 8053.9 8208.0 8160.1 8184.4 4967.6 8203.0 8217.4
Parma 5 11177.2 13452.9 13582.5 14580.5 13938.4 14919.2 12627.5 13616.3 15593.8
Forli 8 7135.9 9031.3 9006.3 9079.3 9045.8 9116.4 7951.8 9055.3 9159.1
Modena 11 2927.1 9335.2 9338.6 9346.6 9324.2 9344.2 3618.7 9340.3 9380.1
Reggio Emilia 10 8346.2 13374.2 13597.7 14420.7 14141.6 14833.3 9899.7 13851.8 16956.2

Average 5246.8 7913.6 7816.1 8166.0 8059.6 8243.2 6160.0 8003.7 8600.7
ILS improvement 64% 9% 10% 5% 7% 4% 40% 7% -

have a positive impact on the performance of the ILS. Removing N1 (Remove optional) leads
to an average z equal to 7816.1, which is even lower than the average values found by greedy
+ VND with all neighborhoods (7913.6). A smaller impact can be observed by the removals
of N2, N3, N4 and N6, which lead to average solution values 5%, 7%, 4% and 7%, respec-
tively, away from the one found by the full ILS. The largest deterioration was observed when
removing N5 (Insert optional). In this case, the average z value is 40% away from the one by
the full ILS, and the distance is very large for the most difficult provinces, such as Modena
(3618.7 vs 9380.1) and Reggio Emilia (9899.7 vs 16956.2).

We can conclude that all neighborhoods are important and that the two most indispens-
able ones are, in order, Insert optional and Remove optional. The importance of Insert op-
tional follows from the fact that the greedy algorithm is quite inefficient in including optional
services in the routes; hence the neighborhood can insert many of such services and consis-
tently improve the solution value. The Remove optional is an important operation because
it opens the possibility for the VND to decrease the collected score but at the same time de-
crease the total working time. In this way, the algorithm has more chances to escape from
locally optimal solutions.

5.7 Conclusions

We studied a car patrolling application that arises from a large Italian company that needs
to plan routes to perform security services at customers’ facilities. The resulting optimiza-
tion problem is a challenging variant of the multi-period orienteering problem. Due to the
difficulty of the problem, we have chosen to solve it through an ILS equipped with an inner
VND. We have also developed an MILP model to formalize the problem.

We have tested both the MILP model, using the Gurobi solver, and the ILS on real-world
instances provided by the company. Gurobi struggled to provide feasible solutions for about
half of the instances, whereas the ILS could solve all of them. Comparing only the subset of
instances in which both the ILS and the solver were able to find feasible solutions, we noticed
that the ILS could provide much better solution quality within a smaller computational effort.
The qualities of service obtained by the two methods were approximately the same, but the
ILS was able to considerably reduce the kilometers travelled by the patrols. With our tests,
we thus ensured that the ILS is a preferable choice to solve the problem.

We then compared the solutions obtained by the ILS with those in use at the company. It
was difficult to fairly compare their objective function values because many of the solutions
in use at the company did not respect some of the operational constraints (minimum time
between consecutive visits and minimum QoS). The ILS was still able to find solutions with

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 59

better objective values while respecting all operational constraints. The average improve-
ment in the objective function value was 47.3%, and not only the minimum QoS was always
respected, but it was also increased on average by about 10%.

These good results have been obtained by a simple but effective combination of several
algorithmic components, including a local search algorithm with six different neighborhoods.
By performing a sensitivity analysis on the entire set of instances, we observed that all such
neighborhoods have a positive contribution to the ILS performance. The largest contributions
are provided, in order, by Insert optional and Remove optional, two neighborhood operations
that are tailored to the problem at hand.

For future research directions, we consider the following worth investigating. First, the
modification of the clusters: the current clusters were provided by the company, but we fore-
see that changing their configuration might help improve the solution quality even further.
Second, a more elaborated evaluation of the quality of service: in our study, the quality of
service is evaluated using an overall measure of the number of services performed, which
may introduce unfairness because it is insensitive to situations in which some customers are
poorly served whereas others fully served; introducing a quality of service measured per sin-
gle customer might improve the fairness of the resulting solutions. Finally, the insertion of
dynamic and stochastic features in the problem: in the current version of the problem, dy-
namic occurrences such as alarm triggering or unexpected urgent services are not considered;
by embedding them into a new problem that considers dynamic and stochastic aspects, we
may obtain a more sophisticated model, to be used on-the-fly during the execution of the
activities. The large availability of data from the company makes this last research direction
very interesting.

60

Conclusion
In this thesis, we have focused on the development of models and methods to create

decision support systems by means of a mathematical approach and heuristic algorithm to
solve problems derived from real business cases in distributed logistics systems.

In Chapter 1, we have presented the study of the Time Windows Assignment Vehicle
Routing Problem (TWAVRP), a VRP variant that appears when the volume of customer de-
mands is uncertain and visits over multiple days should be planned. The objective was to
create routes that minimize expected travel costs, assigning a time window over all scenar-
ios to each customer, and respecting the vehicle capacity. We decided to begin our research
with the development of a good and flexible metaheuristic, and to test it on the benchmark
TWAVRP instances, to check if good-quality solutions can be found within reasonable com-
putational efforts. To this aim, we have proposed an Iterated Local Search (ILS) algorithm
that generates a pool of feasible routes for each scenario, and a mathematical model, called
Route Selector Model (RSM), that chooses the most appropriate routes, among those cre-
ated, in order to minimize total costs and indicate the time windows for the customers. We
compared the results of our algorithm (ILS+RSM) with the Branch-and-Cut proposed by
Dalmeijer and Spliet (2018). The ILS+RSM presented competitive results, concerning both
solution quality and computational effort, in particular for the larger size instances involving
45 and 50 customers.

Chapter 2 showed a mathematical model to solve a scheduling problem during the Covid-
19 pandemic. This chapter studied a real-life personnel scheduling problem, motivated by
Covid-19 pandemic, from a large Italian pharmaceutical distribution warehouse operated by
Coopservice. A MILP formulation was proposed for the problem, which was solved using
an open-source optimization software, namely CBC from COIN-OR. The optimal solution
obtained by our formulation was capable of considerably improving the schedule adopted
by the company. Because Coopservice spends a large part of its budget on human resources
(more than 25,000 employees), it is crucial to have a strategy to properly manage the person-
nel, especially during emergency situations such as epidemic crises. In general, this problem
faces the issue of reducing the risk of contagion and organizing the schedule of the shifts in
these types of scenarios.

In Chapter 3, we have shown a real-life task and personnel scheduling problem arising in
Coopservice to provide cleaning services inside a hospital. We proposed an iterative three-
step procedure to solve a real-life problem of integrated task and personnel scheduling aiming
to minimize the total labor cost. By implementing this approach, the solution obtained by our
formulation was capable of improving the schedule adopted by the company in an acceptable
CPU time for this very complex problem. The results are preliminary and yet they are very
positive from the company’s perspective, which is now able to generate and simulate many
different scenarios.

In Chapter 4, the reader was able to find a case study regarding lead time prediction in the
pharmaceutical logistics sector of the company. In particular, we compared support vector
machines, random forests, multi-layer perceptron, linear regression, and k-nearest neighbors
on a very large collection of examples provided by a large company with headquarters in Italy.
Our experimental results are very encouraging, showing how the purchasing lead time can
be forecast with high accuracy, especially for linear support vector regression. In particular,
the use of simple non-linear approaches does not seem to yield significant improvements
in forecasting. An accurate forecast of such lead time can be crucial for decision-making,
optimization, and planning in the overall pharmaceutical supply chain. Waiting times for
drugs and medicines could be reduced, and hospitals and pharmacies could choose the most
convenient supplier at every moment based on accurate predictions. This can be very relevant

Chapter 5. A Metaheuristic Algorithm for a Multi-period Orienteering Problem 61

when treating patients with urgent needs, as well as fast-changing medical conditions, such
as the ones we are currently facing in the COVID-19 pandemic.

In Chapter 5, a real-life multi-period orienteering problem related to the activity of pa-
trolling a vast area to provide security services was presented. The resulting optimization
problem is a challenging variant of a Multi-Period Orienteering Problem. Due to the diffi-
culty of the problem, we have chosen to solve it by means of an ILS equipped with an inner
VND. We have tested the ILS on real-world instances provided by the company. The ILS was
able to considerably reduce the kilometers traveled by the patrols increasing the number of
visits to the customers. The average improvement in the objective function value was 47.3%,
and not only the minimum QoS was always respected, but it was also increased on average
by about 10%. These good results have been obtained by a simple but effective combination
of several algorithmic components, including six different local search algorithms. By per-
forming a sensitivity analysis on the entire set of instances, we could assess the fact that all
such local searches have a positive contribution to the ILS performance.

62

Bibliography

Albers, Casper J, Frank Critchley, and John C Gower (2011). “Quadratic minimisation prob-
lems in statistics”. In: Journal of Multivariate Analysis 102.3, pp. 698–713.

Aledort, Julia E, Nicole Lurie, Jeffrey Wasserman, and Samuel A Bozzette (2007). “Non-
pharmaceutical public health interventions for pandemic influenza: an evaluation of the
evidence base”. In: BMC public health 7.1, p. 208.

Alonso, MT, R Alvarez-Valdes, M Iori, and F Parreño (2019). “Mathematical models for
multi container loading problems with practical constraints”. In: Computers & Indus-
trial Engineering 127, pp. 722–733.

Amorim, Pedro, Sophie N. Parragh, Fabricio Sperandio, and Bernardo Almada-Lobo (2014).
“A rich vehicle routing problem dealing with perishable food: A case study”. In: TOP
22, pp. 489–508.

Angelelli, Enrico, Claudia Archetti, Carlo Filippi, and Michele Vindigni (2017). “The proba-
bilistic orienteering problem”. In: Computers & Operations Research 81, pp. 269–281.

— (2021). “A dynamic and probabilistic orienteering problem”. In: Computers & Opera-
tions Research 136, p. 105454.

Archetti, Claudia, Francesco Carrabs, and Raffaele Cerulli (2018). “The set orienteering
problem”. In: European Journal of Operational Research 267.1, pp. 264–272.

Archetti, Claudia, M Grazia Speranza, and Daniele Vigo (2014). “Vehicle routing problems
with profits”. In: in: P. Toth and D. Vigo, eds., Vehicle Routing: Problems, Methods, and
Applications, second edition. Milano: SIAM, pp. 273–297.

Avci, Mustafa and Seyda Topaloglu (2017). “A multi-start iterated local search algorithm
for the generalized quadratic multiple knapsack problem”. In: Computers & Operations
Research 83, pp. 54 –65. ISSN: 0305-0548.

Averweg, Udo Richard (2010). “Decision support systems and decision-making processes”.
In: Business Information Systems: Concepts, Methodologies, Tools and Applications.
IGI Global, pp. 135–143.

Azi, Nabila, Michel Gendreau, and Jean-Yves Potvin (2010). “An exact algorithm for a ve-
hicle routing problem with time windows and multiple use of vehicles”. In: European
Journal of Operational Research 202.3, pp. 756–763.

Bartolini, Enrico, Mauro Dell’Amico, and Manuel Iori (2017). “Scheduling cleaning activi-
ties on trains by minimizing idle times”. In: Journal of Scheduling 20.5, pp. 493–506.

Bell, David E (1982). “Regret in decision making under uncertainty”. In: Operations research
30.5, pp. 961–981.

Belton, Valerie and Theodor Stewart (2002). Multiple criteria decision analysis: an inte-
grated approach. Springer Science & Business Media.

Bergh, Jorne Van den, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje
De Boeck (2013). “Personnel scheduling: A literature review”. In: European Journal of
Operational Research 226.3, pp. 367–385.

Berling, Peter and Mojtaba Farvid (2014). “Lead-time investigation and estimation in diver-
gent supply chains”. In: International Journal of Production Economics 157, pp. 177–
189.

Bibliography 63

Borgonovo, Emanuele (2010a). “A methodology for determining interactions in probabilistic
safety assessment models by varying one parameter at a time”. In: Risk Analysis: An
International Journal 30.3, pp. 385–399.

— (2010b). “Sensitivity analysis with finite changes: An application to modified EOQ
models”. In: European Journal of Operational Research 200.1, pp. 127–138.

Bräysy, Olli and Michel Gendreau (2005a). “Vehicle routing problem with time windows,
Part I: Route construction and local search algorithms”. In: Transportation Science 39.1,
pp. 104–118.

— (2005b). “Vehicle routing problem with time windows, Part II: Metaheuristics”. In:
Transportation Science 39.1, pp. 119–139.

Breiman, Leo, Jerome Friedman, Charles J Stone, and Richard A Olshen (1984). Classifica-
tion and regression trees. CRC press.

Brown, Marie T, Jennifer Bussell, Suparna Dutta, Katherine Davis, Shelby Strong, and Suja
Mathew (2016). “Medication adherence: truth and consequences”. In: The American
journal of the medical sciences 351.4, pp. 387–399.

Bruck, Bruno P, Valerio Incerti, Manuel Iori, and Matteo Vignoli (2017). “Minimizing CO2
emissions in a practical daily carpooling problem”. In: Computers & Operations Re-
search 81, pp. 40–50.

Brucker, Peter, Rong Qu, and Edmund Burke (2011). “Personnel scheduling: Models and
complexity”. In: European Journal of Operational Research 210.3, pp. 467 –473. ISSN:
0377-2217.

Cabrera-Sánchez, Juan-Pedro and Ángel F Villarejo-Ramos (2020). “Acceptance and use
of big data techniques in services companies”. In: Journal of Retailing and Consumer
Services 52.C, p. 101888.

Caceres-Cruz, Jose, Pol Arias, Daniel Guimarans, Daniel Riera, and Angel A. Juan (Dec.
2014). “Rich Vehicle Routing Problem: Survey”. In: ACM Computing Surveys 47.2.
ISSN: 0360-0300.

Campana, P Nicolas, Giorgio Zucchi, Manuel Iori, Carlo A Magni, and Anand Subramanian
(2021). “An integrated task and personnel scheduling problem to optimize distributed
services in hospitals”. In: Proceedings of the 23th International Conference on Enter-
prise Information Systems (ICEIS 2021) 1, pp. 461–470.

Ceschia, Sara, Luca Di Gaspero, and Andrea Schaerf (2011). “Tabu search techniques for
the heterogeneous vehicle routing problem with time windows and carrier-dependent
costs”. In: Journal of Scheduling 14.6, pp. 601–615.

Chamikara, MAP, P Bertok, D Liu, S Camtepe, and I Khalil (2020). “Efficient privacy preser-
vation of big data for accurate data mining”. In: Information Sciences 527, pp. 420–443.
ISSN: 0020-0255.

Chang, F-CR (1997). “Heuristics for dynamic job shop scheduling with real-time updated
queueing time estimates”. In: International Journal of Production Research 35.3, pp. 651–
665.

Chung, Wenming, Srinivas Talluri, and Gyöngyi Kovács (2018). “Investigating the effects of
lead-time uncertainties and safety stocks on logistical performance in a border-crossing
JIT supply chain”. In: Computers & Industrial Engineering 118, pp. 440–450.

Coopservice Scpa (2020). URL: https://www.coopservice.it/.
Cordeau, J-F, G Laporte, and A Mercier (2001). “A unified tabu search heuristic for vehicle

routing problems with time windows”. In: Journal of the Operational Research Society
52.8, pp. 928–936.

Cordeau, Jean-François, Michel Gendreau, and Gilbert Laporte (1997). “A tabu search heuris-
tic for periodic and multi-depot vehicle routing problems”. In: Networks: An Interna-
tional Journal 30.2, pp. 105–119.

https://www.coopservice.it/

Bibliography 64

“Coronavirus disease 2019 (COVID-19): A literature review” (2020). In: Journal of Infection
and Public Health 13.5, pp. 667 –673.

Dalmeijer, Kevin and Remy Spliet (2018). “A branch-and-cut algorithm for the Time Win-
dow Assignment Vehicle Routing Problem”. In: Computers & Operational Research 89,
pp. 140–152.

Dean, Jared (2014). Big data, data mining, and machine learning: value creation for business
leaders and practitioners. John Wiley & Sons.

Desrochers, Martin, Jacques Desrosiers, and Marius Solomon (1992). “A New Optimiza-
tion Algorithm for the Vehicle Routing Problem with Time Windows”. In: Operations
Research 40.2, pp. 342–354.

Doi, Tsubasa, Tatsushi Nishi, and Stefan Voß (2018). “Two-level decomposition-based matheuris-
tic for airline crew rostering problems with fair working time”. In: European Journal of
Operational Research 267.2, pp. 428–438.

Drucker, Harris, Christopher JC Burges, Linda Kaufman, Alex J Smola, and Vladimir Vap-
nik (1997). “Support vector regression machines”. In: Advances in neural information
processing systems 9. Ed. by M. C. Mozer, M. I. Jordan, and T. Petsche. MIT Press,
pp. 155–161.

Eberle, Lukas Gallus, Hirokazu Sugiyama, and Rainer Schmidt (2014). “Improving lead time
of pharmaceutical production processes using Monte Carlo simulation”. In: Computers
& Chemical Engineering 68, pp. 255–263.

El-Rifai, Omar, Thierry Garaix, and Xiaolan Xie (2016). “Proactive on-call scheduling dur-
ing a seasonal epidemic”. In: Operations Research for Health Care 8, pp. 53–61.

Elahipanah, Mahsa, Guy Desaulniers, and Eve Lacasse-Guay (Oct. 2013). “A two-phase
mathematical-programming heuristic for flexible assignment of activities and tasks to
work shifts”. In: Journal of Scheduling 16, pp. 443–460.

Ernst, Andreas, Houyuan Jiang, Mohan Krishnamoorthy, Bowie Owens, and David Sier
(2004a). “An annotated bibliography of personnel scheduling and rostering”. In: An-
nals of Operations Research 127.1-4, pp. 21–144.

Ernst, Andreas, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier (2004b). “Staff
scheduling and rostering: A review of applications, methods and models”. In: European
Journal of Operational Research 153.1, pp. 3–27.

Ernst, Andreas T, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier (2004c). “Staff
scheduling and rostering: A review of applications, methods and models”. In: European
Journal of Operational Research 153.1, pp. 3–27.

Fang, Yaqing, Yiting Nie, and Marshare Penny (2020). “Transmission dynamics of the COVID-
19 outbreak and effectiveness of government interventions: A data-driven analysis”. In:
Journal of medical virology 92.6, pp. 645–659.

Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996). “From data mining
to knowledge discovery in databases”. In: AI magazine 17.3, p. 37.

Fırat, Murat and Cor AJ Hurkens (2012). “An improved MIP-based approach for a multi-skill
workforce scheduling problem”. In: Journal of Scheduling 15.3, pp. 363–380.

Flahault, Antoine, Elisabeta Vergu, Laurent Coudeville, and Rebecca F Grais (2006). “Strate-
gies for containing a global influenza pandemic”. In: Vaccine 24.44-46, pp. 6751–6755.

Frank, Alejandro Germán, Lucas Santos Dalenogare, and Néstor Fabián Ayala (2019). “In-
dustry 4.0 technologies: Implementation patterns in manufacturing companies”. In: In-
ternational Journal of Production Economics 210, pp. 15–26.

Gatica, Gabriel, Nilay Shah, and Lazaros G. Papageorgiou (2001). “Capacity planning under
clinical trials uncertainty for the pharmaceutical industry”. In: European Symposium on
Computer Aided Process Engineering - 11. Ed. by Rafiqul Gani and Sten Bay Jørgensen.
Vol. 9. Computer Aided Chemical Engineering. Elsevier, pp. 865 –870.

Bibliography 65

Gavalas, Damianos, Charalampos Konstantopoulos, Konstantinos Mastakas, and Grammati
Pantziou (2014). “A survey on algorithmic approaches for solving tourist trip design
problems”. In: Journal of Heuristics 20.3, pp. 291–328.

Gendreau, Michel, Gilbert Laporte, and Frédéric Semet (1998). “A tabu search heuristic for
the undirected selective travelling salesman problem”. In: European Journal of Opera-
tional Research 106.2-3, pp. 539–545.

Golden, Bruce L, Larry Levy, and Rakesh Vohra (1987). “The orienteering problem”. In:
Naval Research Logistics (NRL) 34.3, pp. 307–318.

Goltsos, Thanos E, Borja Ponte, Shixuan Wang, Ying Liu, Mohamed M Naim, and Aris A
Syntetos (2019). “The boomerang returns? Accounting for the impact of uncertainties
on the dynamics of remanufacturing systems”. In: International Journal of Production
Research 57.23, pp. 7361–7394.

Gunawan, Aldy, Hoong Chuin Lau, and Kun Lu (2015a). “An Iterated Local Search Al-
gorithm for Solving the Orienteering Problem with Time Windows”. In: Evolutionary
Computation in Combinatorial Optimization. Ed. by Gabriela Ochoa and Francisco Chi-
cano. Cham: Springer International Publishing, pp. 61–73.

— (2015b). Well-Tuned ILS for Extended Team Orienteering Problem with Time Windows.
Tech. rep. LARC-TR-01-15. Available at http://research.larc.smu.edu.sg/
larcweb / larc / publications / technicalreports / Well - Tuned - ILS - for -
Extended-Team-Orienteering-Problem-with-Time-WindowsTR-01-15.pdf:
Living Analytics Research Center.

Gunawan, Aldy, Hoong Chuin Lau, and Pieter Vansteenwegen (2016). “Orienteering prob-
lem: A survey of recent variants, solution approaches and applications”. In: European
Journal of Operational Research 255.2, pp. 315–332. ISSN: 03772217.

Gündling, Felix and Tim Witzel (2020). “Time-Dependent Tourist Tour Planning with Ad-
justable Profits”. In: Proc. 20th Symposium on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS) Pisa, Italy, September 7-8. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Gurobi Optimization, LLC (2020). Gurobi Optimizer Reference Manual. URL: http://www.
gurobi.com.

Guyon, O., P. Lemaire, É. Pinson, and D. Rivreau (2010). “Cut generation for an integrated
employee timetabling and production scheduling problem”. In: European Journal of
Operational Research 201.2, pp. 557 –567. ISSN: 0377-2217.

Gyulai, Dávid, András Pfeiffer, Gábor Nick, Viola Gallina, Wilfried Sihn, and László Monos-
tori (2018). “Lead time prediction in a flow-shop environment with analytical and ma-
chine learning approaches”. In: IFAC-PapersOnLine 51.11, pp. 1029–1034.

Haddadene, Syrine Roufaida Ait, Nacima Labadie, and Caroline Prodhon (2016). “A GRASP
x ILS for the vehicle routing problem with time windows, synchronization and prece-
dence constraints”. In: Expert Systems with Applications 66, pp. 274 –294. ISSN: 0957-
4174.

Hansen, Pierre, Nenad Mladenović, Jack Brimberg, and José A Moreno Pérez (2019). “Vari-
able neighborhood search”. In: in: M.Gendrau and J.-Y. Potvin, eds., Handbook of Meta-
heuristics. New York: Springer, pp. 57–97.

Harapan, Harapan, Naoya Itoh, Amanda Yufika, Wira Winardi, Synat Keam, Heyhpeng Te,
Dewi Megawati, Zinatul Hayati, Abram L Wagner, and Mudatsir Mudatsir (2020). “Coro-
navirus disease 2019 (COVID-19): A literature review”. In: Journal of infection and
public health.

Haugh, Kathy Henley (2014). “Medication adherence in older adults: The pillbox half full”.
In: Nursing Clinics of North America 49.2, pp. 183–199.

http://research.larc.smu.edu.sg/larcweb/larc/publications/technicalreports/Well-Tuned-ILS-for-Extended-Team-Orienteering-Problem-with-Time-WindowsTR-01-15.pdf
http://research.larc.smu.edu.sg/larcweb/larc/publications/technicalreports/Well-Tuned-ILS-for-Extended-Team-Orienteering-Problem-with-Time-WindowsTR-01-15.pdf
http://research.larc.smu.edu.sg/larcweb/larc/publications/technicalreports/Well-Tuned-ILS-for-Extended-Team-Orienteering-Problem-with-Time-WindowsTR-01-15.pdf
http://www.gurobi.com
http://www.gurobi.com

Bibliography 66

Hoffmann, Kirsten, Udo Buscher, Janis Sebastian Neufeld, and Felix Tamke (2017). “Solv-
ing practical railway crew scheduling problems with attendance rates”. In: Business &
Information Systems Engineering 59.3, pp. 147–159.

Hosoda, Takamichi and Stephen M Disney (2018). “A unified theory of the dynamics of
closed-loop supply chains”. In: European Journal of Operational Research 269.1, pp. 313–
326.

Hu, Xingchen, Witold Pedrycz, and Xianmin Wang (2018). “Fuzzy classifiers with informa-
tion granules in feature space and logic-based computing”. In: Pattern Recognition 80,
pp. 156–167.

Ioannou, George and Stavrianna Dimitriou (2012). “Lead time estimation in MRP/ERP for
make-to-order manufacturing systems”. In: International Journal of Production Eco-
nomics 139.2, pp. 551–563.

Ishizaka, Alessio and Philippe Nemery (2013). Multi-criteria decision analysis: methods and
software. John Wiley & Sons.

Juette, Silke and Ulrich W Thonemann (2012). “Divide-and-price: A decomposition algo-
rithm for solving large railway crew scheduling problems”. In: European Journal of
Operational Research 219.2, pp. 214–223.

Jun, Hong-Bae, Jin-Young Park, and Hyo-Won Suh (2006). “Lead time estimation method
for complex product development process”. In: Concurrent Engineering 14.4, pp. 313–
328.

Kabugo, James Clovis, Sirkka-Liisa Jämsä-Jounela, Robert Schiemann, and Christian Binder
(2020). “Industry 4.0 based process data analytics platform: A waste-to-energy plant
case study”. In: International Journal of Electrical Power & Energy Systems 115, p. 105508.

Keskin, Merve and Bülent Çatay (2018). “A matheuristic method for the electric vehicle
routing problem with time windows and fast chargers”. In: Computers & Operations
Research 100, pp. 172–188.

Khodadadian, M, A Divsalar, C Verbeeck, A Gunawan, and P Vansteenwegen (2022). “Time
dependent orienteering problem with time windows and service time dependent profits”.
In: Computers and Operations Research 143.March, p. 105794. ISSN: 0305-0548.

Kim, Sun Hoon, Jeong Woo Kim, and Young Hoon Lee (2014). “Simulation-based optimal
production planning model using dynamic lead time estimation”. In: The International
Journal of Advanced Manufacturing Technology 75.9-12, pp. 1381–1391.

Kletzander, Lucas and Nysret Musliu (2020). “Solving the general employee scheduling
problem”. In: Computers & Operations Research 113, p. 104794.

Kotiloglu, Serhan, Theodoros Lappas, Konstantinos Pelechrinis, and PP Repoussis (2017).
“GW2020”. In: Tourism Management 62, pp. 76–88.

Kramer, Raphael, Jean-François Cordeau, and Manuel Iori (2019). “Rich vehicle routing with
auxiliary depots and anticipated deliveries: An application to pharmaceutical distribu-
tion”. In: Transportation Research Part E: Logistics and Transportation Review 129,
pp. 162–174.

Krishnamoorthy, M., A.T. Ernst, and D. Baatar (2012). “Algorithms for large scale Shift Min-
imisation Personnel Task Scheduling Problems”. In: European Journal of Operational
Research 219.1, pp. 34 –48. ISSN: 0377-2217.

Kuo, Chung-Feng Jeffrey, Chieh-Hung Lin, and Ming-Hao Lee (2018). “Analyze the energy
consumption characteristics and affecting factors of Taiwan’s convenience stores-using
the big data mining approach”. In: Energy and Buildings 168, pp. 120–136.

Lapègue, Tanguy, Odile Bellenguez-Morineau, and Damien Prot (2013). “A constraint-based
approach for the shift design personnel task scheduling problem with equity”. In: Com-
puters & Operations Research 40.10, pp. 2450–2465. ISSN: 0305-0548.

Bibliography 67

Laporte, Gilbert and François V. Louveaux (1993). “The integer L-shaped method for stochas-
tic integer programs with complete recourse”. In: Operations Research Letters 13.3,
pp. 133–142.

Li, Heng, Shang-Ming Liu, Xiao-Hua Yu, Shi-Lin Tang, and Chao-Ke Tang (2020). “Coro-
navirus disease 2019 (COVID-19): current status and future perspectives”. In: Interna-
tional journal of antimicrobial agents 55.5, p. 105951.

Lingitz, Lukas, Viola Gallina, Fazel Ansari, Dávid Gyulai, András Pfeiffer, and László Monos-
tori (2018). “Lead time prediction using machine learning algorithms: A case study by
a semiconductor manufacturer”. In: Procedia CIRP 72, pp. 1051–1056.

López-Ibáñez, Manuel, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas G Stützle (2016). “The irace package: Iterated racing for automatic algorithm
configuration”. In: Operations Research Perspectives 3, pp. 43–58.

Lougee-Heimer, Robin (2003). “The Common Optimization INterface for Operations Re-
search: Promoting open-source software in the operations research community”. In:
IBM Journal of Research and Development 47.1, pp. 57–66.

Lourenço, Helena R, Olivier C Martin, and Thomas Stützle (2003). “Iterated local search”.
In: Handbook of metaheuristics. Springer, pp. 320–353.

Lourenço, Helena Ramalhinho, Olivier C Martin, and Thomas Stützle (2019). “Iterated local
search: Framework and applications”. In: in: M.Gendrau and J.-Y. Potvin, eds., Hand-
book of Metaheuristics. New York: Springer, pp. 129–168.

Lu, Weisheng, Xi Chen, Yi Peng, and Liyin Shen (2015). “Benchmarking construction waste
management performance using big data”. In: Resources, Conservation and Recycling
105.Part A, pp. 49–58.

Maenhout, Broos and Mario Vanhoucke (2018). “A perturbation matheuristic for the inte-
grated personnel shift and task re-scheduling problem”. In: European Journal of Oper-
ational Research 269.3, pp. 806–823.

Marchesi, Janaina F., Silvio Hamacher, and Julia L. Fleck (2020). “A stochastic programming
approach to the physician staffing and scheduling problem”. In: Computers & Industrial
Engineering 142, p. 106281.

Martins, Lucas Burahem, Manuel Iori, Mayron César O Moreira, and Giorgio Zucchi (2021).
“On Solving the Time Window Assignment Vehicle Routing Problem via Iterated Lo-
cal Search”. In: Graphs and Combinatorial Optimization: from Theory to Applications,
CTW2020 Proceedings, pp. 223–235.

Mitchell, Stuart, Michael O’Sullivan, and Iain Dunning (2011). “PuLP: a linear program-
ming toolkit for python”. In: The University of Auckland, Auckland, New Zealand. URL:
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf.

Montgomery, Douglas C, Elizabeth A Peck, and G Geoffrey Vining (2012). Introduction
to linear regression analysis. Vol. 821. Wiley Series in Probability and Statistics. John
Wiley & Sons.

Moreira, Mayron César O and Alysson M Costa (2013). “Hybrid heuristics for planning
job rotation schedules in assembly lines with heterogeneous workers”. In: International
Journal of Production Economics 141.2, pp. 552–560.

Moscelli, Giuseppe, Luigi Siciliani, and Valentina Tonei (2016). “Do waiting times affect
health outcomes? Evidence from coronary bypass”. In: Social Science & Medicine 161,
pp. 151–159.

Mourtzis, Dimitris, Michael Doukas, Katerina Fragou, Kostas Efthymiou, and Violeta Mat-
zorou (2014). “Knowledge-based estimation of manufacturing lead time for complex
engineered-to-order products”. In: Procedia CIRP 17, pp. 499–504.

http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf

Bibliography 68

Neves-Moreira, Fábio, Diogo Pereira da Silva, Luís Guimarães, Pedro Amorim, and Bernardo
Almada-Lobo (2018). “The time window assignment vehicle routing problem with prod-
uct dependent deliveries”. In: Transportation Research Part E: Logistics and Trans-
portation Review 116, pp. 163 –183.

Nogueira, Bruno, Rian G. S. Pinheiro, and Anand Subramanian (2018). “A Hybrid Iterated
Local Search heuristic for the maximum weight independent set problem”. In: Opti-
mization Letters 12.3, pp. 567–583.

Noori-Daryan, Mahsa, Ata Allah Taleizadeh, and Fariborz Jolai (2019). “Analyzing pric-
ing, promised delivery lead time, supplier-selection, and ordering decisions of a multi-
national supply chain under uncertain environment”. In: International Journal of Pro-
duction Economics 209, pp. 236–248.

Oliveira, Maiza B, Giorgio Zucchi, Marco Lippi, Douglas F Cordeiro, Núbia R Silva, and
Manuel Iori (2021). “Lead Time Forecasting with Machine Learning Techniques for a
Pharmaceutical Supply Chain”. In: Proceedings of the 23th International Conference on
Enterprise Information Systems (ICEIS 2021) 1, pp. 634–641.

Ozkarahan, Irem and James E Bailey (1988). “Goal programming model subsystem of a
flexible nurse scheduling support system”. In: IIE transactions 20.3, pp. 306–316.

Öztürk, Atakan, Sinan Kayalıgil, and Nur E Özdemirel (2006). “Manufacturing lead time
estimation using data mining”. In: European Journal of Operational Research 173.2,
pp. 683–700.

Palomo-Martínez, Pamela J, M Angélica Salazar-Aguilar, Gilbert Laporte, and André Langevin
(2017). “A hybrid variable neighborhood search for the orienteering problem with manda-
tory visits and exclusionary constraints”. In: Computers & Operations Research 78,
pp. 408–419.

Pazour, Jennifer A. and Russell D. Meller (2013). “Exploring the Parallels Between a Hos-
pital Pharmacy and a Distribution Center”. In: Systems Analysis Tools for Better Health
Care Delivery. Ed. by Panos M. Pardalos, Pando G. Georgiev, Petraq Papajorgji, and
Britta Neugaard. New York, NY: Springer New York, pp. 131–150. ISBN: 978-1-4614-
5094-8.

Pfeiffer, András, Dávid Gyulai, Botond Kádár, and László Monostori (2016). “Manufac-
turing lead time estimation with the combination of simulation and statistical learning
methods”. In: Procedia CIRP 41, pp. 75–80.

Ponte, Borja, José Costas, Julio Puche, Raúl Pino, and David de la Fuente (2018). “The value
of lead time reduction and stabilization: A comparison between traditional and collabo-
rative supply chains”. In: Transportation Research Part E: Logistics and Transportation
Review 111, pp. 165–185.

Ristoski, Petar and Heiko Paulheim (2016). “Semantic Web in data mining and knowledge
discovery: A comprehensive survey”. In: Journal of Web Semantics 36, pp. 1–22.

Rumelhart, D. E. and J. L. McClelland (1987). “Learning Internal Representations by Error
Propagation”. In: Parallel Distributed Processing: Explorations in the Microstructure
of Cognition: Foundations. MIT Press, pp. 318–362.

Sagaert, Yves R, Nikolaos Kourentzes, Stijn De Vuyst, El-Houssaine Aghezzaf, and Bram
Desmet (2019). “Incorporating macroeconomic leading indicators in tactical capacity
planning”. In: International Journal of Production Economics 209, pp. 12–19.

Salazar-González, Juan-José (2014). “Approaches to solve the fleet-assignment, aircraft-
routing, crew-pairing and crew-rostering problems of a regional carrier”. In: Omega
43, pp. 71–82.

Samanta, Sukanya, Goutam Sen, and Soumya Kanti Ghosh (2022a). “A literature review on
police patrolling problems”. In: Annals of Operations Research, 316, pp. 1063–1106.

Bibliography 69

Samanta, Sukanya, Goutam Sen, and Soumya Kanti Ghosh (2022b). “Correction to: A lit-
erature review on police patrolling problems”. In: Annals of Operations Research, 316,
p. 1575.

Savelsbergh, Martin WP (1992). “The vehicle routing problem with time windows: Minimiz-
ing route duration”. In: ORSA Journal on Computing 4.2, pp. 146–154.

Seccia, Ruggiero (2020). The Nurse Rostering Problem in COVID-19 emergency scenario.
Tech. rep. DIAG - Sapienza University of Rome. URL: http://www.optimization-
online.org/DB_HTML/2020/03/7712.html.

Shereen, Muhammad Adnan, Suliman Khan, Abeer Kazmi, Nadia Bashir, and Rabeea Sid-
dique (2020). “COVID-19 infection: origin, transmission, and characteristics of human
coronaviruses”. In: Journal of Advanced Research 24, pp. 91–98. ISSN: 2090-1232.

Sievers, Stefan, Tim Seifert, Marcel Franzen, Gerhard Schembecker, and Christian Bram-
siepe (2017). “Lead time estimation for modular production plants”. In: Chemical En-
gineering Research and Design 128, pp. 96–106.

Sivarajah, Uthayasankar, Muhammad Mustafa Kamal, Zahir Irani, and Vishanth Weerakkody
(2017). “Critical analysis of Big Data challenges and analytical methods”. In: Journal
of Business Research 70, pp. 263–286.

Smet, Pieter, Andreas T Ernst, and Greet Vanden Berghe (2016). “Heuristic decomposition
approaches for an integrated task scheduling and personnel rostering problem”. In: Com-
puters & Operations Research 76, pp. 60–72.

Spliet, Remy, Said Dabia, and Tom Van Woensel (2018). “The Time Window Assignment
Vehicle Routing Problem with Time-Dependent Travel Times”. In: Transportation Sci-
ence 52.2, pp. 261–276.

Spliet, Remy and Guy Desaulniers (2015). “The discrete time window assignment vehicle
routing problem”. In: European Journal of Operational Research 244.2, pp. 379–391.

Spliet, Remy and Adriana F. Gabor (2014). “The Time Window Assignment Vehicle Routing
Problem”. In: Transportation Science 49.4, pp. 721–731.

Strijbosch, LWG, RMJ Heuts, and MLJ Luijten (2002). “Cyclical packaging planning at a
pharmaceutical company”. In: International Journal of Operations & Production Man-
agement 22.5, pp. 549–564.

Subramanian, Anand and Lucídio dos Anjos Formiga Cabral (2008). “An ILS Based Heuris-
tic for the Vehicle Routing Problem with Simultaneous Pickup and Delivery and Time
Limit”. In: Evolutionary Computation in Combinatorial Optimization. Ed. by Jano van
Hemert and Carlos Cotta. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 135–146.
ISBN: 978-3-540-78604-7.

Subramanian, Anand, Lúcia Maria de A Drummond, Cristiana Bentes, Luiz Satoru Ochi, and
Ricardo Farias (2010). “A parallel heuristic for the vehicle routing problem with simul-
taneous pickup and delivery”. In: Computers & Operations Research 37.11, pp. 1899–
1911.

Tatsiopoulos, IP and BG Kingsman (1983). “Lead time management”. In: European Journal
of Operational Research 14.4, pp. 351–358.

Tetteh, Ebenezer Kwabena (2019). “Reducing avoidable medication-related harm: What will
it take?” In: Research in Social and Administrative Pharmacy 15.7, pp. 827–840.

Tohidi, Mohammad, Masoumeh Kazemi Zanjani, and Ivan Contreras (2020). “A physician
planning framework for polyclinics under uncertainty”. In: Omega, p. 102275.

Toth, Paolo and Daniele Vigo (2014). Vehicle routing: problems, methods, and applications.
Ed. by Paolo Toth and Daniele Vigo. 2nd. SIAM, p. 463. ISBN: 9781611973587.

Tsai, Chih-Fong, Wei-Chao Lin, and Shih-Wen Ke (2016). “Big data mining with parallel
computing: A comparison of distributed and MapReduce methodologies”. In: Journal
of Systems and Software 122, pp. 83–92.

http://www.optimization-online.org/DB_HTML/2020/03/7712.html
http://www.optimization-online.org/DB_HTML/2020/03/7712.html

Bibliography 70

Tsiligirides, Theodore (1984). “Heuristic methods applied to orienteering”. In: Journal of the
Operational Research Society 35.9, pp. 797–809.

Van den Bergh, Jorne, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje
De Boeck (2013). “Personnel scheduling: A literature review”. In: European Journal of
Operational Research 226.3, pp. 367 –385. ISSN: 0377-2217.

Vance, Pamela H, Cynthia Barnhart, Ellis L Johnson, and George L Nemhauser (1997). “Air-
line crew scheduling: A new formulation and decomposition algorithm”. In: Operations
Research 45.2, pp. 188–200.

Vandaele, Nico, Liesje De Boeck, and Dominiek Callewier (2002). “An open queueing net-
work for lead time analysis”. In: IIE transactions 34.1, pp. 1–9.

Vanden Berghe, Greet (2002). “An advanced model and novel meta-heuristic solution meth-
ods to personnel scheduling in healthcare”. PhD thesis. Leuven, Belgium: KU Leuven.
URL: https://lirias.kuleuven.be/retrieve/88598.

Vansteenwegen, Pieter, Wouter Souffriau, and Dirk Van Oudheusden (2011). “The orienteer-
ing problem: A survey”. In: European Journal of Operational Research 209.1, pp. 1–
10.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins (2013). “Heuristics for multi-attribute
vehicle routing problems: A survey and synthesis”. In: European Journal of Operational
Research 231.1, pp. 1–21.

Vidal, Thibaut, Teodor Crainic, Michel Gendreau, and Christian Prins (2012). A unifying
view on timing problems and algorithms. Tech. Rep. 43, CIRRELT.

Vidal, Thibaut, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins (2014). “A
unified solution framework for multi-attribute vehicle routing problems”. In: European
Journal of Operational Research 234.3, pp. 658–673.

Volk, Rebekka, Julian Stengel, and Frank Schultmann (2014). “Building Information Model-
ing (BIM) for existing buildings—Literature review and future needs”. In: Automation
in construction 38, pp. 109–127.

Xu, Wenzheng, Weifa Liang, Zichuan Xu, Jian Peng, Dezhong Peng, Tang Liu, Xiaohua Jia,
and Sajal K. Das (2021). “Approximation algorithms for the generalized team orien-
teering problem and its applications”. In: IEEE/ACM Transactions on Networking 29.1,
pp. 176–189.

Zhang, Shu, Jeffrey W Ohlmann, and Barrett W Thomas (2020). “Multi-period orienteering
with uncertain adoption likelihood and waiting at customers”. In: European Journal of
Operational Research 282.1, pp. 288–303.

Zhigalov, Grigory (2018). VRPTW. GitHub repository: https://github.com/donfaq/
VRPTW, last commit: 0261f086d1610c2da3152540d0e535a4eaeef76c.

Zucchi, G., V.H.V. Correa, A.G. Santos, M. Iori, and M. Yagiura (2022). “A Metaheuristic
Algorithm for a Multi-period Orienteering Problem arising in a Car Patrolling Applica-
tion”. In: Proc. 10th International Network Optimization Conference (INOC) Aachen,
Germany, March 1-4, pp. 99–104.

Zucchi, Giorgio, Manuel Iori, and Anand Subramanian (2021). “Personnel scheduling during
Covid-19 pandemic”. In: Optimization Letters 15, pp. 1385–1398.

https://lirias.kuleuven.be/retrieve/88598
https://github.com/donfaq/VRPTW
https://github.com/donfaq/VRPTW

	Abstract
	Introduction
	On solving the time window assignment vehicle routing problemThis work has been published as: Martins, L. B., Iori, M., Moreira, M. C. O. & Zucchi, G. (2021). “On Solving the Time Window Assignment Vehicle Routing Problem via Iterated Local Search”. In Graphs and Combinatorial Optimization: from Theory to Applications, CTW2020 Proceedings, pp. 223–235.
	Introduction
	Brief Literature Review
	Formal Problem Definition
	An Iterated Local Search-based Algorithm
	Iterated Local Search (ILS)
	Route Selector Model

	Computational Experiments
	Instances
	Results

	Conclusions and Future Research Avenues

	Personnel scheduling during Covid-19 pandemicThis work has been published as: Zucchi, G., Iori, M., & Subramanian, A. (2021). Personnel scheduling during Covid-19 pandemic. Optimization Letters, 15(4), 1385-1396.
	Introduction
	Problem description
	Personnel scheduling in a normal scenario and during Covid-19 pandemic
	Proposed mathematical formulation
	Computational results
	Concluding remarks

	Scheduling problem for distributed services in hospitalsThis work has been published as: Campana, N. P., Zucchi, G., Iori, M., Magni, C. A., & Subramanian, A. (2021). An integrated task and personnel scheduling problem to optimize distributed services in hospitals. In Proceedings of the 23th International Conference on Enterprise Information Systems (ICEIS 2021), 1, 461-470.
	Introduction
	Problem definition
	Literature Review
	Proposed algorithm
	First step: generating a weekly pattern
	Second step: generating the cleaning schedule
	Third step: personnel scheduling

	Computational experiments
	Parameters
	Instances
	Results for the real-life instance
	Results for the artificial instances

	Conclusions

	Lead time forecasting for a pharmaceutical supply chainThis work has been published as: de Oliveira, M. B., Zucchi, G., Lippi, M., Cordeiro, D. F., da Silva, N. R., & Iori, M. (2021). Lead Time Forecasting with Machine Learning Techniques for a Pharmaceutical Supply Chain. In International Conference on Enterprise Information Systems (ICEIS 2021), 1, 634-641.
	Introduction
	Related works
	Methodology
	Linear regression
	Linear support vector machines
	Random forests
	k-nearest neighbors
	Multi-layer perceptron

	Dataset
	Experimental Results
	Conclusions

	A Metaheuristic Algorithm for a Multi-period Orienteering ProblemPreliminary results of this work appears in: Zucchi, G., Correa, V., Iori, M., dos Santos, A., Yagiura, M. (2022). A Metaheuristic Algorithm for a Multi-period Orienteering Problem Arising in a Car Patrolling Application. In International Network Optimization Conference (INOC 2022), 99–104. The full version of the paper is now submitted to Networks, an internation journal.
	Introduction
	Brief Literature Review
	Problem description
	Mathematical Model
	Iterated Local Search
	Computational evaluation
	Instances
	ILS results
	Comparison with the mathematical model
	Comparison with the company solutions
	Evaluation of the ILS components

	Conclusions

	Conclusion
	Bibliography

