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Abstract
Aim: Obesity and co-existing metabolic comorbidities are associated with increased cardiovascular (CV) morbidity 
and mortality risks, generally clustered to risk factors such as dyslipidemia. The aim of this study was to evaluate 
the lipid profile changes in subjects with severe obesity undergoing different procedures of bariatric and metabolic 
surgery (BMS), sleeve gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB) in a real-world, clinical setting.

Methods: A single-center, retrospective, observational clinical study was performed enrolling patients undergoing 
BMS. The primary outcome was the change in total cholesterol, low-density lipoprotein (LDL), high-density 
lipoprotein (HDL) cholesterol, and triglycerides.
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Results: In total, 123 patients were enrolled (males 25.2% and females 74.8%) with a mean age of 48.2 ± 7.9 years 
and a mean BMI of 47.0 ± 9.1 kg/m2. All patients were evaluated until 16.9 ± 8.1 months after surgery. Total and 
HDL cholesterol did not change after surgery, while a significant reduction in triglyceride levels was recorded. 
Moreover, a rapid decline of both LDL and non-HDL cholesterol among follow-up visits was observed. In particular, 
significant inverse correlations were found between total cholesterol, LDL cholesterol, non-HDL cholesterol, and 
triglycerides and the number of months elapsed after bariatric surgery. Similarly, a direct correlation was found 
considering HDL cholesterol. Moreover, total cholesterol, LDL cholesterol, non-HDL cholesterol, and triglycerides 
significantly changed among visits after RYGB, while no changes were observed in the SG group. Finally, 
considering lipid-lowering therapies, the improvement in lipid asset was detected only in non-treated patients.

Conclusion: This study corroborates the knowledge of the improvement in lipid profile with BMS in clinical practice. 
Together with sustained weight loss, the BMS approach efficiently corrects dyslipidemia, contributing to 
decreasing the CV risk.

Keywords: Severe obesity, bariatric and metabolic surgery, lipid-lipoprotein profile, dyslipidemia

INTRODUCTION
Obesity is recognized as one of the most relevant public health problems in the world. This epidemic 
condition has nearly tripled since the 1980s[1], and it is associated with a wide range of co-morbid 
conditions, such as metabolic syndrome, cardiovascular (CV) diseases, gall bladder disease, osteoarthritis, 
sleep disorders, and certain types of cancer[2].

Severe obesity is defined by a body mass index (BMI) higher than 40 kg/m2, with co-existing metabolic 
comorbidities, which could lead to substantially increased CV morbidity and mortality risks[2]. Indeed, 
severe obesity is associated with up to 9.8 years of life lost compared to normal BMI subjects[3]. In particular, 
morbidity and mortality appear to be determined by the clustering of CV risk factors in obese 
individuals[2,4]. Among these, dyslipidemia is a common condition related to both severe obesity and CV 
risk[5,6]. The alteration of the lipid profile encountered in patients with obesity is frequently characterized by 
high levels of triglycerides (TG) and low-density lipoprotein (LDL) cholesterol and by low levels of high-
density lipoprotein (HDL) cholesterol[7,8].

In general, the management of obesity conventionally includes lifestyle modification, pharmacotherapy, and 
bariatric surgery. Bariatric surgery is the most effective long-term therapy for weight loss, with the 
concomitant beneficial effect of improving comorbidities and decreasing mortality[9]. The most common 
bariatric procedures worldwide were once divided into restrictive procedures, such as sleeve gastrectomy 
(SG) and adjustable gastric banding (AGB); malabsorptive procedures, such as biliopancreatic diversion 
with duodenal switch (BPD/DS); and mixed malabsorptive and restrictive surgery procedure, such as the 
Roux-en-Y gastric bypass (RYGB)[10,11]. Currently, the recognition that gastro-intestinal bariatric operations 
induce not simply mechanical but also metabolic changes provides a rationale for the surgical treatment of 
diabetes and metabolic disease[12]. Indeed, bariatric surgery is effective in weight loss and carbohydrate 
metabolism improvement[13,14]. Moreover, it is also effective to improve the lipid profile in patients with 
obesity, although differences among procedures have been detected[7,9]. For these reasons, bariatric surgery 
has been redefined as “bariatric and metabolic surgery (BMS)” for its intent to treat metabolic disorders as 
opposed to traditional bariatric surgery intended as mere weight-reduction therapy[15].

In the literature, approximately 60% of patients with severe obesity qualifying for BMS have dyslipidemia[16]. 
The obesity-related alteration of the lipid profile is characterized by increased triglycerides and LDL 
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cholesterol serum levels, together with a reduction in HDL values[8]. These abnormalities in severe obesity 
play a central role in the development of atherosclerosis, contributing to the residual cardiovascular risk[17]. 
BMS results in an atheroprotective change in lipid abnormalities, with a reduction in both fasting and 
postprandial triglycerides serum levels, an increase in HDL cholesterol levels, and changes in LDL and HDL 
composition[9,18-22]. Several studies have shown the effect of BMS on lipid asset. Mid- and long-term follow-
up period prospective studies[19,22] and meta-analytic evaluations have widely demonstrated 
hypercholesterolemia and hypertriglyceridemia improvement across surgery[9,23,24].

Considering these metabolic effects of obesity surgery, we wanted to verify the direct action of bariatric 
surgery on lipid metabolism in clinical practice. With this in mind, this study aimed to evaluate lipid profile 
component changes in subjects with severe obesity undergoing different procedures of BMS performed in 
our hospital, considering both RYGB and SG.

METHODS
A single-center, retrospective, observational clinical study was performed enrolling patients with severe 
obesity undergoing BMS and followed up from 2010 to May 2021 at the Unit of Endocrinology of 
University Hospital of Modena, Italy. Routinely, patients were evaluated by a multidisciplinary team 
consisting of endocrinologists, bariatric surgeons, nutritionists, psychologists, and dieticians. According to 
the assessment of the multidisciplinary team, patients were treated with two different BMS approaches, 
Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG).

The following inclusion criteria were considered: (i) age higher than 18 years; (ii) BMS performed at the 
Modena Hospital; and (iii) follow-up performed at the Unit of Endocrinology. No specific exclusion criteria 
were considered.

Study design
All visits performed immediately before and after BMS until May 2021 were collected. The routine 
endocrinology practice provided a baseline visit, followed by other visits one month after surgery (Visit 1), 
three months after (Visit 2), and 6, 12, 18, and 24 months after surgery (Visits 3-6), and then annually 
thereafter. This follow-up period was not fixed, since it could be adjusted and tailored to the patient for 
specific clinical reasons.

Demographic (age and sex), anthropometric (height and weight), pharmacological (medication), and 
laboratory data were obtained preoperatively and during follow-up visits and were collected in specific case 
report forms (CRFs). BMI was expressed in units of weight (kg)/height (m2), ideal body weight as that 
equivalent to a BMI of 25 kg/m2, and excess weight (EW) as the weight excess between preoperative weight 
and ideal weight. The percentage of excess weight loss (%EWL) was calculated by the formula: [(initial 
weight - follow-up weight)/(initial weight - ideal weight)] × 100. The percentage of total weight loss 
(%TWL) was calculated by the formula: [(initial weight - follow-up weight)/initial weight] × 100[25].

The primary outcome of our study was the change of lipid profile components, consisting of total 
cholesterol (mg/dL), LDL cholesterol (mg/dL), HDL cholesterol (mg/dL), and triglycerides (mg/dL). When 
not available, both LDL and non-HDL cholesterol values were calculated according to the Friedewald’s 
formula[26]. Ongoing lipid-lowering therapies were collected at each visit. Liver tests [glutamic-oxaloacetic 
transaminase (GOT), glutamic-pyruvic transaminase (GPT), and gamma-glutamyl transferase (γ-GT)], 
transferrin as a nutritional index, and uric acid were considered as secondary endpoints.
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The study was performed in accordance with the Declaration of Helsinki. Source documents of research 
material in the form of paper files and electronic files, and all datasets are deposited at the Unit of 
Endocrinology of University Hospital of Modena (Italy) and are available upon request. The Institutional 
Review Board of Modena and the Ethical Committee of Modena approved the study (code 0022400/21, 
approved on 21 July 2021).

Bariatric procedures
RYGB and SG are the most frequently performed BMS procedures worldwide for morbid obesity[11]. This 
technique consists of the creation of a gastric pouch by using the upper part of the stomach near the 
gastroesophageal junction. The remaining stomach and duodenum are then anastomosed at the distal end 
to an area lower down the jejunum (biliopancreatic limb) that drains gastric and pancreas secretions and 
bile into the small intestine[27]. A gastrojejunostomy is then performed to create the alimentary limb. The 
distance between the two anastomoses is measured by an average of 120 cm. In SG, part of the greater 
curvature of the stomach is removed, reducing its capacity by approximately two-thirds and thus limiting 
the intake of food. Additionally, removing the part of the stomach that secretes hormones causes hunger to 
decrease[28]. The decision regarding the type of surgery was based on patients’ conditions (in particular, basal 
BMI), considering patients’ comorbidities and preoperative clinical/metabolic status. Surgeries were 
performed in accordance with standard techniques and were generally performed by laparoscopy.

Statistical analysis
Descriptive analyses were performed considering the baseline visit. We evaluated the mid-term BMS effect 
considering the visits in which all patients enrolled were evaluated. In particular, the mid-term analysis 
evaluated patients until Visit 5 (i.e., approximately 18 months after surgery). The long-term analysis 
considered all visits available for each patient. In these analyses, Visit 1 was not considered since it 
corresponded to the first control one month after surgery and blood examinations were not performed. 
Differences between pre- and post-surgery and among visits were evaluated for continuous data using 
ANOVA univariate or Mann-Whitney U-test for normally or not-normally distributed parameters, 
respectively. Categorical variables were compared before and after surgery using chi-squared test. The 
correlation analysis was performed among continuous variables, applying Rho’s Spearman analysis.

Patients were classified according to normal ranges for total, HDL, and LDL cholesterols and triglycerides. 
In particular, normal ranges of total cholesterol serum levels were 200 ng/dL[29]. HDL cholesterol was 
considered normal above 50 mg/dL in women and when higher than 40 mg/dL in men[29,30]. LDL cholesterol 
was considered normal below 116 mg/dL[29,31], and triglycerides lower than 150 mg/dL F[29,30]. The rate of 
lipid profile alterations was calculated, and the change of these rates after surgery was described. 
Multivariate logistic regression analyses were performed by setting the lipid profile alteration as the 
dependent variable and the patient’s age and gender, the time elapsed after surgery, lipid-lowering therapies, 
and anthropometrical variables (i.e., weight, BMI, initial weight, %EWL, and %TWL) as independent 
variables.

These analyses were repeated, dividing the cohort of patients considering the surgical procedures used. 
Statistics were performed using Statistical Package for the Social Science software for Windows (version 27.0 
SPSS Inc, Chicago, IL). Statistical significance was considered for P < 0.05.

RESULTS
In total, 123 patients were enrolled, 31 men (25.2%) and 92 women (74.8%), with a mean age of 48.2 ± 7.9 
years [Table 1]. Surgical adverse events occurred in seven patients (5.6%), five after RYGB (4%) and two 
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Table 1. Anthropometric and laboratory analyses at each visit until Visit 5D

Baseline Visit 2 Visit 3 Visit 4 Visit 5 P-value

Weight (kg) 128.1 + 27.9 104.2 + 24.5§* 96.0 + 22.6§* 89.7 + 19.0§* 87.1 + 18.1* < 0.001

BMI (kg/m2) 47.0 + 9.1 38.2 + 7.9§* 35.2 + 7.3§* 32.9 + 6.1§* 32.1 + 5.1* < 0.001

%EWL - 42.8 + 23.7§* 57.4 + 24.3§* 63.4 + 19.7§* 70.5 + 17.9* < 0.001

%TWL - 18.3 + 7.0§* 25.0 + 7.5§* 29.6 + 8.5§* 31.8 + 8.2* < 0.001

RBC (millions/mL) 4.9 + 0.5 4.8 + 0.4 4.7 + 0.5 4.6 + 0.5 4.6 + 0.5 0.125

Hb (g/dL) 13.6 + 1.6 13.6 + 1.1 13.4 + 1.1 13.8 + 4.0 13.5 + 1.3 0.807

Ht (%) 41.5 + 3.5 41.4 + 3.1 40.8 + 3.3 40.7 + 3.3 40.2 + 5.5 0.197

Glycaemia (mg/dL) 105.7 + 33.6 96.2 + 18.8 93.9 + 19.7 99.4 + 28.2 84.3 + 25.5* 0.007

Creatinine (mg/dL) 0.8 + 0.2 0.8 + 0.2 0.9 + 0.4 0.8 + 0.2 0.8 + 0.2 0.282

Uric acid (mg/dL) 5.7 + 1.3 5.7 + 0.2 5.2 + 1.2 5.2 + 0.9 4.8 + 1.2* 0.001

Total cholesterol (mg/dL) 207.6 + 40.5 191.6 + 59.9 181.1 + 50.0 190.7 + 40.9 195.8 + 38.2 0.060

HDL cholesterol (mg/dL) 50.2 + 12.4 49.5 + 14.1 53.6 + 15.6 53.2 + 10.6 57.2 + 13.1 0.202

LDL cholesterol (mg/dL) 132.0 + 33.2 123.5 + 52.9 104.3 + 34.1* 116.3 + 39.9 123.2 + 34.3 < 0.001

Non-HDL cholesterol (mg/dL) 157.4 + 38.2 143.5 + 56.8 127.6 + 49.1* 136.8 + 44.0 142.0 + 37.7 < 0.001

Triglycerides (mg/dL) 143.0 + 96.1 121.8 + 59.3 101.0 + 43.8 99.3 + 46.9 85.3 + 35.0* 0.006

AST (IU/L) 26.6 + 10.1 26.4 + 8.1 26.5 + 15.9 22.9 + 8.2 22.8 + 11.0* 0.043

ALT (IU/L) 29.3 + 18.5 29.8 + 12.4 25.0 + 9.7 22.2 + 9.9 21.0 + 8.6* 0.008

γ-GT (IU/L) 33.2 + 25.3 23.9 + 19.4 32.8 + 35.1 26.9 + 33.2 17.9 + 8.7* 0.047

Total AP (IU/L) 86.7 + 32.0 88.8 + 29.6 98.9 + 43.1 100.3 + 49.1 83.0 + 46.7 0.308

Transferrin (mg/dL) 286.5 + 87.7 248.9 + 51.1* 248.4 + 40.5* 252.3 + 45.1* 261.4 + 46.9 < 0.001

Ferritin (ng/mL) 80.9 + 81.2 82.6 + 92.4 70.3 + 99.0 66.0 + 58.7 53.8 + 46.8 0.148

Comorbidities

Hypertension n(%) 65 (52.8) 62 (50.4) 61 (49.6) 59 (47.9) 56 (49.6)

Diabetes mellitus n(%) 20 (16.3) 20 (16.3) 20 (16.3) 20 (16.5) 20 (17.7)

OSAS n(%) 1 (0.8) 0 (0) 1 (0.8) 1 (0.8) 0 (0)

Osteoporosis n(%) 2 (1.6) 2 (1.6) 2 (1.6) 2 (1.7) 3 (2.7)

Data are expressed as mean ± standard deviation. Significantly different at post hoc analysis (Tukey test) compared to baseline * or previous visit 
§. AP: Alkaline phosphatase; BMI: body mass index; EWL: excess weight loss; GOT: glutamic-oxaloacetic transaminase; GPT: glutamic-pyruvic 
transaminase; γ-GT: gamma-glutamyl transferase; Hb: hemoglobin; HDL: high-density lipoprotein; Ht: hematocrit; LDL: low-density lipoprotein; 
RBC: Red blood cells; TWL: total weight loss.

after SG (1.6%). No cases of cancer or gallstones were reported.

Supplementary Table 1 reports the number of patients evaluated at each visit and the interval that occurred 
since metabolic surgery. The first visit after follow-up was performed 2.0 ± 2.2 months after metabolic 
surgery, and the first five visits were performed on all patients.

Anthropometric changes after bariatric surgery
Patients’ weight and BMI significantly decreased after BMS, together with both %EWL and %TWL, 
confirming the progressive decline of body weight and the maintenance of the metabolic surgery result 
[Table 1]. Considering the longest follow-up available for each patient, both weight (Beta = -0.537; 
P < 0.001) and BMI (Beta = -0.193; P < 0.001) were significantly inversely related to months after surgery 
[Figure 1]. Similarly, both %EWL (Beta = -0.157; P = 0.001) and %TWL (Beta = -0.439; P < 0.001) showed a 
significant direct relationship with months after surgery [Figure 1].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202209/5201-SupplementaryMaterials.pdf


Page 6 of Greco et al. Metab Target Organ Damage 2022;2:16 https://dx.doi.org/10.20517/mtod.2022.2216

Figure 1. Linear regression analysis of months elapsed after bariatric and metabolic surgery (BMS) with: (A) body weight; (B) body mass 
index (BMI); (C) percentage of excess weight loss (%EWL); and (D) percentage of total weight loss (%TWL).

By classifying patients according to the BMS technique applied, we confirmed that weight and BMI 
significantly decreased after surgery [Table 2]. The patient’s weight and BMI were significantly higher at 
baseline in the SG group compared to the RYGB group (P = 0.004 and P = 0.005, respectively). Although 
both surgical approaches led to weight reduction, weight and BMI remained significantly higher in the SG 
group compared to the RYGB group, and both surgical techniques led to a significant increase in both 
%EWL and %TWL across visits [Table 3]. Considering routine blood analysis, uric acid significantly 
decreased after BMS (P = 0.001), together with significant changes in AST, ALT, gamma-GT, and 
transferrin serum levels [Table 1].

Lipid profile
Considering lipid profile, total and HDL cholesterol did not change after BMS [Table 1]. On the contrary, a 
significant decrease in triglyceride serum levels was recorded (P = 0.006), with lower values at Visit 5 
compared to baseline (P = 0.029) [Table 2]. Moreover, both LDL and non-HDL cholesterol were 
significantly reduced among visits (P < 0.001) [Table 2]. Significant direct correlations were found between 
total (Beta = -0.741; P = 0.014) [Figure 2], LDL (Beta = -0.751; P = 0.013) [Figure 2], non-HDL cholesterol 
(Beta = -0.916, P = 0.003) [Figure 2], and triglycerides (Beta = -0.159, P = 0.016) [Figure 2] and months 
elapsed after BMS. Similarly, a direct correlation was found between HDL cholesterol and months after 
surgery (Beta = 0.196; P = 0.036) [Figure 2]. HDL cholesterol serum levels were significantly inversely 
related to patients’ weight (Beta = -0.196; P = 0.001), but not to BMI (Beta = 0.171; P = 0.314), as measured at 
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Table 2. Anthropometric and laboratory analyses at each visit until Visit 5, dividing patients according to the metabolic surgery 
applied

Baseline Visit 2 Visit 3 Visit 4 Visit 5 P-value

RYGB 77 patients (62.6%)  

Weight (kg) 122.6 + 22.8 100.2 + 21.3§* 91.9 + 19.7§* 86.7 + 17.8§* 83.7 + 17.4* < 0.001

BMI (kg/m2) 45.3 + 7.9 36.9 + 7.1§* 33.7 + 6.4§* 31.8 + 6.0§* 31.1 + 4.5* < 0.001

%EWL - 43.5 + 25.9§* 58.9 + 26.4§* 65.9 + 20.2§* 72.0 + 18.7* < 0.001

%TWL - 18.0 + 6.6§* 24.8 + 7.6§* 28.8 + 8.7§* 30.8 + 8.4* < 0.001

RBC (millions/mL) 4.9 + 0.5 4.8 + 0.4 4.7 + 0.5 4.6 + 0.5 4.6 + 0.5 0.125

Hb (g/dL) 13.5 + 1.8 13.5 + 1.1 13.3 + 1.1 13.9 + 4.9 13.5 + 1.4 0.752

Ht(%) 41.6 + 3.7 41.4 + 3.3 40.7 + 3.4 40.7 + 3.5 40.4 + 5.3 0.328

Glycaemia (mg/dL) 106.6 + 35.2 97.6 + 19.8 96.1 + 22.8 102.1 + 32.4 83.0 + 31.4 0.094

Creatinine (mg/dL) 0.8 + 0.2 0.8 + 0.2 0.9 + 0.5 0.7 + 0.2 0.7 + 0.2 0.316

Uric acid (mg/dL) 5.6 + 1.1 5.6 + 1.4 4.9 + 1.3 5.0 + 1.0 4.6 + 1.4* 0.012

Total cholesterol (mg/dL) 267.0 + 38.0 155.4 + 37.4§* 172.3 + 36.3* 167.5 + 26.8* 173.2 + 29.0 < 0.001

HDL cholesterol (mg/dL) 51.5 + 11.8 47.7 + 9.1 55.5 + 7.1 59.7 + 8.4 55.7 + 12.1 0.142

LDL cholesterol (mg/dL) 130.3 + 29.0 105.7 + 27.3§* 101.8 + 31.2* 92.0 + 26.2* 107.9 + 22.4 < 0.001

Non-HDL cholesterol (mg/dL) 154.9 + 36.3 107.6 + 37.0§* 118.0 + 31.7* 107.8 + 28.8* 122.1 + 28.8 < 0.001

Triglycerides (mg/dL) 134.5 + 88.4 115.0 + 76.1 82.1 + 23.7 79.2 + 26.6 70.1 + 37.8 0.021

AST (IU/L) 24.4 + 10.9 26.4 + 7.9 31.3 + 22.5 23.4 + 7.9 26.2 + 13.4 0.343

ALT (IU/L) 30.2 + 20.1 26.4 + 11.6 28.0 + 9.8 24.6 + 9.9 22.6 + 9.3 0.426

γ-GT (IU/L) 32.1 + 24.8 19.5 + 10.7 29.4 + 39.4 22.0 + 22.4 15.2 + 9.2 0.149

Total AP (IU/L) 86.7 + 32.0 88.8 + 29.6 98.9 + 43.1 100.3 + 49.1 83.0 + 46.7 0.308

Transferrin (mg/dL) 296.3+ 89.2 251.3+ 55.2§* 249.3+ 41.2* 250.1+ 47.6* 260.2+ 47.0 0.020

Ferritin (ng/mL) 67.8 + 58.5 64.3 + 57.9 52.8 + 45.8 51.3 + 44.2 41.3 + 37.3 0.257

SG 46 patients (37.4%) 

Weight (kg) 137.4 + 33.2 111.1 + 28.2§* 102.9 + 25.5§* 94.9 + 20.0* 92.7 + 18.0* < 0.001

BMI (kg/m2) 50.0 + 10.3 40.5 + 8.7§* 37.6 + 8.1§* 34.7 + 6.0* 33.9 + 5.7* < 0.001

%EWL - 41.6 + 19.5§* 55.0 + 20.5§* 64.5 + 18.9§* 68.1 + 16.2* < 0.001

%TWL - 19.0 + 7.7§* 25.2 + 7.4§* 31.0 + 8.1§* 33.5 + 7.8* < 0.001

RBC (millions/mL) 4.8 + 0.3 4.7 + 0.4 4.6 + 0.4 4.5 + 0.4 4.5 + 0.3 0.106

Hb (g/dL) 13.7 + 1.2 13.7 + 1.0 13.6 + 1.1 13.5 + 1.0 13.5 + 1.1 0.964

Ht (%) 41.4 + 3.2 41.3 + 2.7 41.1 + 3.1 40.7 + 3.1 39.9 + 5.9 0.413

Glycaemia (mg/dL) 104.2 + 31.0 94.7 + 17.7 90.3 + 13.6 96.2 + 23.5 86.4 + 13.9 0.170

Creatinine (mg/dL) 0.7 + 0.2 0.8 + 0.2 0.8 + 0.2 0.8 + 0.2 0.8 + 0.2 0.344

Uric acid (mg/dL) 5.8 + 1.5 5.8 + 1.3 5.4 + 1.1 5.4 + 0.6 5.0 + 1.0 0.070

Total cholesterol (mg/dL) 210.4 + 44.9 220.0 + 58.0 189.2 + 60.3 216.6 + 39.0 216.2 + 34.6 0.511

HDL cholesterol (mg/dL) 47.9 + 13.1 51.0 + 17.5 51.7 + 14.4 46.7 + 8.5 58.3 + 14.3 0.274

LDL cholesterol (mg/dL) 135.0 + 40.6 149.7 + 50.8 107.3 + 38.8 146.8 + 33.8 136.8 + 38.47 0.167

Non-HDL cholesterol (mg/dL) 161.9 + 41.3 173.9 + 53.5 137.2 + 62.0 169.1 + 34.8 157.9 + 37.6 0.345

Triglycerides (mg/dL) 159.1 + 109.1 126.2 + 47.5 118.5 + 51.3 117.6 + 54.6 100.6 + 25.5 0.205

AST (IU/L) 22.1 + 8.5 26.3 + 8.6 22.6 + 6.2 22.5 + 8.7 20.9 + 6.4 0.224

ALT (IU/L) 27.9 + 15.9 30.4 + 13.8 22.3 + 9.0 19.4 + 9.5 19.3 + 7.9* 0.016

γ-GT (IU/L) 34.9 + 26.3 29.4 + 25.9 35.8 + 31.9 31.0 + 40.7 20.7 + 7.8 0.651

Total AP (IU/L) 86.7 + 32.0 88.8 + 29.6 98.9 + 43.1 100.3 + 49.1 83.0 + 46.7 0.308

Transferrin (mg/dL) 278.6 + 60.8 243.6 + 48.8§* 235.3 + 41.3 236.7 + 40.3 245.8 + 41.8 0.002

Ferritin(ng/mL) 107.6 + 110.8 121.0 + 132.8 105.9 + 155.5 92.3 + 71.9 75.1 + 54.0 0.626

Data are expressed as mean ± standard deviation. Significantly different at post hoc analysis (Tukey test) compared to baseline * or previous visit 
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§. AP: Alkaline phosphatase; BMI: body mass index; EWL: excess weight loss; GOT: glutamic-oxaloacetic transaminase; GPT: glutamic-pyruvic 
transaminase; γ-GT: gamma-glutamyl transferase; Hb: hemoglobin; HDL: high-density lipoprotein; Ht: hematocrit; LDL: low-density lipoprotein; 
RBC: red blood cells; RYGB: Roux-en-Y gastric bypass; SG: sleeve gastrectomy; TWL: total weight loss.

Table 3. Correlation analyses (Spearman’s Rho) among lipid profile variables and percentage of excess and total weight loss (%EWL 
and %TWL)

Total cholesterol HDL LDL Non-HDL Triglycerides

%EWL Rho = -0.247; P = 0.001 Rho = 0.201; P = 0.006 Rho = -0.251; P = 0.001 Rho = -0.312; P < 0.001 Rho = -0.404; P < 0.001

%TWL Rho = -0.202; P = 0.005 Rho = 0.181; P = 0.013 Rho = -0.205; P = 0.009 Rho = -0.269; P < 0.001 Rho = -0.377; P < 0.001

EWL: Excess weight loss; HDL: high-density lipoprotein; LDL: low-density lipoprotein; TWL: total weight loss.

each visit. Similarly, triglyceride serum levels were inversely related to patients’ weight (Beta = -0.798; 
P = 0.009), but not to BMI (Beta = -0.231; P = 0.794). On the contrary, total (Beta = -0.132; P = 0.488; 
and Beta = 0.986; P = 0.088, respectively) and LDL cholesterol (Beta = -0.058; P = 0.759; and Beta = 0.921; 
P = 0.103, respectively) were not related to patient’s weight and BMI decrease. Moreover, lipid profile 
changes were significantly related to both %EWL and %TWL [Table 3].

Considering the longest follow-up available in our cohort (i.e., Visit 15), a significant trend of triglycerides 
reduction after BMS was confirmed (Beta = -0.691; P < 0.001) [Figure 3], as well as after adjustment for 
lipid-lowering therapies (Beta = -0.952; P < 0.001). Similarly, the increase in HDL cholesterol after surgery 
remained significantly related to the months elapsed since surgery for the longest follow-up available 
(Beta = 0.171; P < 0.001) [Figure 3], although the result is not significant after adjusting lipid-lowering 
therapies (Beta =0.126; P = 0.175). On the contrary, the total (Beta = -0.231; P = 0.056) and LDL 
(Beta = -0.182; P = 0.075) cholesterol reductions were lost considering the longest follow-up.

The duration of lipid-lowering drug administration before patients’ enrolment was not available in our 
cohort since this therapy is generally prescribed and managed by a general practitioner. We could only 
evaluate the duration of lipid-lowering drug administration during the study period. In particular, the mean 
lipid-lowering medication duration was 36.8 ± 11.3 months. The treatment was performed using statin 
therapy with several medium- to high-dose molecules. Furthermore, since the lipid asset was influenced by 
lipid-lowering therapies, the prescription of these drugs was evaluated at each visit. Lipid-lowering therapies 
were prescribed to 21 patients (17.1%) at baseline, 24 (19.5%) at Visit 2, 25 (20.3%) at Visits 3 and 4 (17.9%), 
and 22 at Visit 5. Classifying patients between treated and not-treated with lipid-lowering drugs, a 
significant improvement in the lipid profile was detected in all non-treated patients, with a significant 
decrease in total, LDL, and non-HDL cholesterol and triglycerides, together with an HDL cholesterol 
increase [Table 4]. Thus, adjusting the regression analyses previously performed by the presence of lipid-
lowering therapy, statistical significance was lost for total (Beta = -0.665; P = 0.448), HDL (Beta = -0.872; 
P = 0.401), LDL (Beta = -0.186; P = 0.835), and non-HDL cholesterol (Beta = -0.916; P = 0.289). However, 
triglycerides significantly decreased with months after surgery (Beta = -0.296; P = 0.027).

Considering the two different surgical approaches, total cholesterol, LDL cholesterol, non-HDL cholesterol 
and triglycerides significantly changed among visits in RYGB treated patients (P < 0.001) [Table 2]. The 
lipid profile did not change among visits considering the SG group [Table 2].

Total cholesterol serum levels were defined as elevated for values higher than 200 mg/dL. Overall, 45.5% of 
the cohort (56 patients) showed high total cholesterol serum levels at baseline, and this percentage 
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Table 4. Lipid profile at each visit until Visit 5

Baseline Visit 2 Visit 3 Visit 4 Visit 5 P-value

Patients not treated with lipid-lowering drugs

Total cholesterol (mg/dL) 204.7 + 39.1 176.5 + 50.6* 178.7 + 37.6* 174.9 + 29.6* 192.2 + 43.7* < 0.001

HDL cholesterol (mg/dL) 50.4 + 10.7 46.8 + 7.5 52.8 + 13.8 53.9 + 10.2 60.2 + 12.5* 0.010

LDL cholesterol (mg/dL) 131.9 + 31.7 110.6 + 46.7 109.6 + 46.7* 104.0 + 30.0* 120.3 + 39.3 < 0.001

Non-HDL cholesterol (mg/dL) 154.7 + 37.5 130.9 + 51.9 125.8 + 35.8* 121.0 + 33.0* 137.2 + 42.3 < 0.001

Triglycerides (mg/dL) 133.4 + 90.1 121.2 + 64.2 89.9 + 29.8* 85.1 + 29.3* 69.2 + 24.0* 0.008

Patients treated with lipid-lowering drugs

Total cholesterol (mg/dL) 221.8 + 45.0 239.2 + 62.4 197.4 + 77.0 225.0 + 43.0 202.0 + 28.3 0.080

HDL cholesterol (mg/dL) 50.9 + 18.7 57.7 + 24.8 55.4 + 20.1 51.9 + 12.1 52.4 + 12.3 0.771

LDL cholesterol (mg/dL) 132.0 + 44.5 157.9 + 56.9 126.4 + 34.5 148.5 + 47.8 127.4 + 28.0 0.163

Non-HDL cholesterol (mg/dL) 171.2 + 39.5 181.5 + 58.0 132.8 + 81.8 171.2 + 48.0 149.6 + 30.6 0.062

Triglycerides (mg/dL) 183.7 + 112.6 123.7 + 45.6 119.8 + 57.8 122.5 + 61.7 110.7 + 35.8 0.213

Data are expressed as mean + standard deviation. Significantly different at post hoc analysis (Tukey test) compared to baseline * or previous 
visit§.

significantly decreased during the follow-up visits, shifting to 7.3% (8 patients) at Visit 2 and 5.3% (6 
patients) at Visit 5 (P < 0.001). Multivariate logistic regression analysis showed that normalization of total 
cholesterol was predicted by time after surgery (P = 0.039) and lipid-lowering therapy (P = 0.029) [Table 5].

Considering HDL cholesterol serum levels, 25.2% of the cohort (31 patients) showed low HDL cholesterol 
serum levels at baseline, and this percentage significantly decreased during the follow-up visits, shifting to 
7.3% (9 patients) at Visit 2, 6.5% (8 patients) at Visit 3, 3.2% (4 patients) at Visit 4, and 1.9% (2 patients) at 
Visit 5 (P < 0.001). Multivariate logistic regression analysis showed that normalization of HDL cholesterol 
was predicted by patient’s weight (P = 0.001) and %TWL (P = 0.041) [Table 6].

Considering LDL cholesterol serum levels, 39.8% of the cohort (49 patients) showed altered LDL cholesterol 
serum levels at baseline, and this percentage significantly decreased during the follow-up visits, shifting to 
8.9% (11 patients) at Visit 2, 7.4% (9 patients) at Visits 3 and 4, and 6.8% (8 patients) at Visit 5 (P < 0.001). 
Multivariate logistic regression analysis did not identify predictive variables.

Regarding triglycerides serum levels, 33.3% of the entire cohort (41 patients) showed altered triglycerides 
serum levels at baseline, and this percentage significantly decreased during the follow-up visits, shifting to 
16.2% (20 patients) at Visit 2, 13.0% (16 patients) at Visit 3, 12.2% (15 patients) at Visit 4, and 11.4% (14 
patients) at Visit 5 (P < 0.001). Multivariate logistic regression analysis was performed, including altered 
triglycerides as the dependent variable and patient’s age, months after surgery, weight, BMI, type of surgery, 
and lipid-lowering therapies as dependent variables. The normalization of triglycerides was predicted only 
by lipid-lowering therapy (P = 0.028) [Table 7].

Finally, the same significant regressions were obtained considering males and females separately (data not 
shown).

DISCUSSION
This retrospective study proves the improvement of lipid-lipoprotein profile in a high number of subjects 
with severe obesity who underwent RYGB or SG. The atherogenic lipid profile decrease is directly related to 
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Table 5. Multivariate logistic regression analysis considering the alteration of total cholesterol as the dependent variable

95% confidence interval
B Standard error Wald P-value Exp(B)

Upper limit Lower limit

Intercept -16.825 7.570 4.940 0.026

Age 0.025 0.019 1.710 0.191 1.025 0.988 1.064

Gender 0.343 0.547 0.393 0.531 1.409 0.483 4.112

Months after surgery -0.039 0.020 3.838 0.039 0.961 0.924 1.000

Weight -0.009 0.009 1.013 0.314 0.991 0.973 1.009

BMI 0.039 0.029 1.773 0.183 1.040 0.982 1.102

%EWL 0.011 0.030 0.138 0.711 1.011 0.953 1.073

%TWL 0.112 0.127 0.784 0.376 1.119 0.872 1.436

Surgery type -0.574 0.305 3.554 0.059 0.563 0.310 1.023

Lipid-lowering therapy -0.773 0.355 4.740 0.029 0.462 0.230 0.926

Table 6. Multivariate logistic regression analysis considering the alteration of high-density lipoprotein (HDL) cholesterol as the 
dependent variable

95% confidence interval
B Standard error Wald P-value Exp(B)

Upper limit Lower limit

Intercept -0.747 1.401 0.284 0.594

Age -0.027 0.020 1.810 0.178 0.973 0.935 1.013

Gender -0.887 0.600 2.185 0.139 0.412 0.127 1.335

Months after surgery 0.006 0.020 0.092 0.762 1.006 0.968 1.046

Weight -0.034 0.010 11.858 0.001 1.035 1.015 1.055

BMI -0.048 0.030 2.523 0.112 0.953 0.898 1.011

%EWL 0.046 0.029 2.569 0.109 1.047 0.990 1.108

%TWL -0.286 0.141 4.158 0.041 0.751 0.570 0.989

Surgery type -0.453 0.329 1.896 0.168 0.636 0.333 1.212

Lipid-lowering therapy -0.751 0.385 3.810 0.051 0.472 0.222 1.003

Table 7. Multivariate logistic regression analysis considering the alteration of triglycerides as the dependent variable

95% confidence interval
B Standard error Wald P-value Exp(B)

Upper limit Lower limit

Intercept -1.715 1.929 0.790 0.374

Age -0.018 0.027 0.457 0.499 0.982 0.932 1.035

Gender -0.713 0.702 1.030 0.310 0.490 0.124 1.942

Months after surgery -0.024 0.031 0.623 0.430 0.976 0.918 1.037

Weight 0.019 0.013 2.245 0.134 1.019 0.994 1.045

BMI -0.015 0.040 0.140 0.708 0.985 0.911 1.066

%EWL 0.002 0.036 0.002 0.966 1.002 0.934 1.074

%TWL 0.046 0.158 0.085 0.771 1.047 0.769 1.427

Surgery type -0.390 0.468 0.695 0.404 0.677 0.271 1.694

Lipid-lowering therapy -1.079 0.490 4.845 0.028 0.340 0.130 0.888

the time elapsed since surgery. Available literature shows the effect of BMS on dyslipidemia[9,19,22-24], and, in 
this context, the present analysis reflects the trend of the alteration of lipid metabolism in real-life clinical 
practice.
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Figure 2. Linear regression analysis of months elapsed after bariatric and metabolic surgery (BMS) with: (A) total cholesterol serum 
levels; (B) LDL; (C) non-HDL; (D) triglycerides; and (E) HDL cholesterol.

Considering our baseline data, we found a similar dyslipidemia prevalence for total and LDL cholesterols, 
detected in 45.5% and 39.8% of the analyzed group, respectively. On the contrary, a lower prevalence was 
detected for baseline altered HDL cholesterol and triglycerides serum levels (25.2% and 33.3%, respectively). 
After surgery, we described a particular dynamic of cholesterol decrease, with a rapid decrease for LDL and 
non-HDL cholesterol and a slow change for triglycerides. Moreover, we demonstrated that considering the 
longest follow-up available, i.e., up to seven years after surgery, only triglycerides reduction and HDL 
increase progressively continue, irrespective of medical lipid-lowering therapy. On the contrary, as we 
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Figure 3. Linear regression analysis of months occurred after bariatric and metabolic surgery (BMS) considering the entire follow-up 
available in the cohort with: (A) triglycerides; and (B) HDL cholesterol.

moved further away from surgery, the rapid improvement in total and non-HDL cholesterol serum levels 
was progressively lost.

Dyslipidemia prevalence decreased after BMS, and it was significantly predicted by patient’s weight and 
%TWL, thus confirming the decisive role of adipose tissue reduction in the lipid profile changes. Indeed, the 
adipose tissue depots in severe obesity influence the lipid-lipoprotein profile[20] and the cardio-metabolic 
risk[32]. The excessive visceral adipose tissue accumulation is associated with increased whole-body lipolysis 
and increased delivery of non-esterified fatty acids (NEFA) to the liver with the overproduction of 
triglyceride-rich lipoproteins[32-34]. Accordingly, cholesterol reduction after BMS is directly related to 
patients’ weight, suggesting that the greater the weight loss, the greater the decline in serum cholesterol 
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levels. Similarly, HDL serum levels also showed such significant correlation with patient’s weight, although 
a clear increase was not detected after surgery.

Moreover, as is known, obesity is related to a hypertriglyceridemic state with metabolic abnormalities in all 
triglyceride-rich lipoproteins. The liver plays a central role in determining this condition[35]. Indeed, subjects 
with severe obesity show an altered hepatic fatty acids trafficking: intra-hepatic fatty acids are shifted 
towards very-low LDL (VLDL) and triglycerides production rather than oxidative pathways[36]. These 
mechanisms may explain the different lipid profiles detected in subjects with severe obesity. Furthermore, 
the BMS, such as in RYGB, determines an increase in circulating fasting bile acid levels[37]. These changes in 
bile acid physiology after RYGB likely support weight loss and promote sustained metabolic improvements 
in terms of glucose and lipid metabolism[38], recognizing the bile acids as endogenous entero-hormones with 
a possible pivotal role in BMS. In our observations, at 16.9 ± 8.1 months of follow-up (Visit 5), the lipid 
profile change seemed to be flattened, not reaching statistical significance. This effect appeared more 
evident in the RYGB than in the SG group. This trend seemed to be in line with the weight change trend 
during the long follow-up. In this context, an adaptation of the enterohepatic circulation and bile acid 
physiology at a distance from surgery cannot be excluded.

Furthermore, it is obvious that lipid asset is influenced by lipid-lowering therapies, which were prescribed in 
17.1% of our cohort of patients at baseline. Interestingly, the lipid profile improvement after BMS was 
detected only in patients not treated with lipid-lowering therapies. However, the analysis of the lipid-
lowering therapy-free patients clearly showed a positive effect of BMS-induced weight loss on atherogenic 
dyslipidemia in patients with obesity. In addition, in our cohort, only the reduction in altered total 
cholesterol and triglycerides serum levels was predicted by lipid-lowering therapy, confirming that the 
regulation of lipid profile is more complex and several variables play a role in dyslipidemia development. 
Moreover, several studies have suggested a potential different ability to impact the lipid profile of BMS 
procedures, with greater benefits of malabsorptive-mixed rather than restrictive operations[9,39,40].

Finally, in our cohort, the majority of patients enrolled were females. It is widely acknowledged that the 
genetic, epigenetic, and hormonal conditions of sex influence physiology, disease, and therapeutic 
responses. In particular, sex plays a pivotal role as a modifier of the major causes of death and morbidity[41], 
including lipid disease. Thus, we performed stratified analyses according to sex, and no significant 
differences in outcomes were observed.

This study has some limitations. First, data regarding the genetic aspect of lipid profile alteration in our 
cohort were not available. Indeed, genetics plays an important role in determining cholesterol levels and 
response to treatment. Furthermore, dyslipidemia can be genetically determined (primary or familial 
dyslipidemia) or secondary to other conditions (such as diabetes mellitus, obesity, or an unhealthy lifestyle), 
the latter being more common. Thus, genetic and epigenetic influences on response to treatment with BMS 
in terms of lipid change cannot be excluded. Moreover, other limits intrinsic to the study design must be 
considered. The retrospective collection of real-life data did not allow the consideration of data related to 
some aspects relevant to lipid profile, such as compliance to either diet or exercise. Indeed, it is widely 
acknowledged that serum cholesterol levels are heavily affected by the intake of saturated, unsaturated, and 
polyunsaturated fats and are also determined by physical training[42]. Considering dietary compliance after 
BMS, no data on the long-term effect on the lipid profile are available. Although the role of the dietary 
approach before and after surgery is important, the beneficial effect of the surgery on the lipid profile and 
cardiovascular risk factors is confirmed in the long term[43]. Moreover, physical exercise is a vital part of 
weight management programs for enhancing weight loss, keeping ideal body weight, and preventing weight 
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regain. This important role is also confirmed after the bariatric approach[44]. Furthermore, collecting all 
clinical elements to calculate the cardiovascular risk by standardized scoring systems before and after 
surgery was not routinely performed, and both the number of subjects and the duration of the follow-up are 
limited. Indeed, follow-up reaches one year for all subjects, but a more extensive follow-up, up to seven 
years, is available only for a small group of patients. In addition, we were not able to evaluate the body 
composition, hepatic dysfunction, and insulin resistance status. Despite these limitations, our study 
thoroughly analyzed the lipid profile and evolution in an interval in subjects with severe obesity undergoing 
surgery and compared the two most common BMS procedures in a routine clinical setting. Although 
randomized clinical trials remain the most important source of clinical evidence, the stringent constraints of 
a clinical trial setting may limit the generalizability of these trial results to routine clinical practice[45]. Thus, 
even more relevance was provided by this real-world data analysis which could be used to fill this gap, 
providing new insights and better describing the usual clinical practice in a specific condition.

In conclusion, our data suggest that BMS procedures for morbid obesity not only allow sustained weight 
loss but also are an efficacious treatment to correct dyslipidemia in complicated obese individuals. This 
could provide a basis for clinical decision-making and help clinicians develop a personalized approach to 
managing severe obesity and associated dyslipidemia. Additionally, these changes demonstrate benefits 
from weight loss after BMS, including decreased risk for cardiovascular diseases.
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