
Citation: Vaccari, L.; Coruzzolo, A.M.;

Lolli, F.; Sellitto, M.A. Indoor

Positioning Systems in Logistics:

A Review. Logistics 2024, 8, 126.

https://doi.org/10.3390/

logistics8040126

Academic Editor: Robert Handfield

Received: 27 August 2024

Revised: 13 November 2024

Accepted: 22 November 2024

Published: 4 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

logistics

Review

Indoor Positioning Systems in Logistics: A Review
Laura Vaccari 1 , Antonio Maria Coruzzolo 1,* , Francesco Lolli 1,2 and Miguel Afonso Sellitto 3

1 Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia,
Via Amendola 2, 42122 Reggio Emilia, Italy; laura.vaccari@unimore.it (L.V.); francesco.lolli@unimore.it (F.L.)

2 Interdepartmental Centre En&Tech, Piazzale Europa, 1, 42124 Reggio Emilia, Italy
3 Production and Systems Engineering Graduate Program, Universidade do Vale do Rio dos Sinos, UNISINOS,

Av. Unisinos, 950—Cristo Rei, São Leopoldo 93022-000, Brazil; sellitto@unisinos.br
* Correspondence: antoniomaria.coruzzolo@unimore.it

Abstract: Background: Indoor Positioning Systems (IPS) have gained increasing relevance in logistics,
offering solutions for safety enhancement, intralogistics management, and material flow control
across various environments such as industrial facilities, offices, hospitals, and supermarkets. This
study aims to evaluate IPS technologies’ performance and applicability to guide practitioners in
selecting systems suited to specific contexts. Methods: The study systematically reviews key IPS
technologies, positioning methods, data types, filtering methods, and hybrid technologies, alongside
real-world examples of IPS applications in various testing environments. Results: Our findings
reveal that radio-based technologies, such as Radio Frequency Identification (RFID), Ultra-wideband
(UWB), Wi-Fi, and Bluetooth (BLE), are the most commonly used, with UWB offering the highest
accuracy in industrial settings. Geometric methods, particularly multilateration, proved to be the
most effective for positioning and are supported by advanced filtering techniques like the Extended
Kalman Filter and machine learning models such as Convolutional Neural Networks. Overall, hybrid
approaches that integrate multiple technologies demonstrated enhanced accuracy and reliability,
effectively mitigating environmental interferences and signal attenuation. Conclusions: The study
provides valuable insights for logistics practitioners, emphasizing the importance of selecting IPS
technologies suited to specific operational contexts, where precision and reliability are critical to
operational success.

Keywords: logistics; indoor positioning system; tracking; indoor technologies

1. Introduction

Geolocation systems track the position of tags; however, while GPS is effective out-
doors, it faces limitations indoors due to interference. Indoor positioning systems (IPS) are
therefore essential in various environments and applications, particularly in the context
of ongoing digital transformation [1]. These systems have gained increasing importance
due to their capacity to provide precise location data, thus enabling a wide range of appli-
cations across different industries. The growing interest in IPS stems from their potential
to deliver substantial benefits and support diverse use cases. For example, in industrial
intralogistics, IPS can be used to track goods [2,3] and operators [4–6], enabling companies
to make informed decision-making based on real-time data. For instance, by visualizing
flows, businesses can optimize their operations, identify bottlenecks, and improve overall
efficiency [7]. Moreover, the location data obtained from these systems can be used to
define optimal routes [8], ensuring timely and cost-effective intralogistics operations.

Automated Guided Vehicles (AGVs) are another area where geolocation systems
play a crucial role. By providing precise location data, IPS can facilitate the seamless
operation of AGVs, ensuring they navigate efficiently through warehouses or production
facilities [9–11]. This not only improves productivity but also reduces the likelihood of
collisions and other operational disruptions. In addition, IPS can help identify and prevent
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incidents by monitoring the movement and location of personnel and equipment, thereby
enhancing safety and reducing the risk of accidents [12–14].

Similarly, geolocation systems can significantly enhance warehouse management by
streamlining the orderly picking of goods [15–19]. By tracking the location of items and
workers, IPS can streamline the picking process, ensuring that the right items are picked
in the most efficient order. This reduces errors, speeds up order fulfillment, and enhances
overall customer satisfaction.

Moreover, there are human services that have not been tested in industrial settings but
still have goals relating to accuracy testing, safety, intralogistics design and management,
and material flow control. For instance, In [20], the authors conducted a study on the
geolocation of elderly individuals in a nursing home to ensure their safety. Additionally, in
reference [21], the authors used an indoor geolocation system to navigate a micro aerial
vehicle (MAV) for stock management at an office site, while the reference [22] planned the
routes of a robot after geolocalizing it in a laboratory. In [23], the authors investigated the
use of a tracking system in a classroom. In [24], the authors geolocalized individuals in a
shopping mall to provide them with advertisements for their safety during COVID-19.

The precision of these systems must be considered as many applications demand
high accuracy. For instance, a robot may need to halt at a specific point to pick up items
in a warehouse [9]. IPS utilize various technologies to pinpoint the location of objects or
people within indoor environments [25]. Some of the primary IPS include radio-based tech-
nologies like Wi-Fi, Bluetooth (BLE), UWB, and RFID, as well as light-based, sound-based,
magnetic-based, and inertial-based technologies. These technologies utilize advanced
methods for position calculation, including multilateration, proximity-based techniques,
and fingerprinting. They also apply filters such as particle filtering, Kalman filtering, and
Convolutional Neural Networks. Additionally, data integration techniques are employed
to address the challenges of indoor positioning, offering tailored solutions for specific needs
and environments. It follows that each technology has unique advantages and limitations,
making them suitable for different applications and environments in logistics.

1.1. Motivation for This Study

Given the wide range of applications in logistics, we aim to provide a review that can
guide practitioners in evaluating different combinations of IPS and their performances in
different environments.

Our study examines 104 papers to understand the characteristics of indoor positioning
systems in environments such as industrial settings [5], offices [21], supermarkets [26],
and hospitals ([20]). These environments were used to conduct experiments with indoor
positioning technology and pose various challenges due to interferences such as metallic
obstacles [27,28], physical obstacles such as people [29], or magnetic interferences [5], lead-
ing to Non-Line of Sight (NLOS) conditions [7], reflections [30], and multipath effects [31]
that affect accuracy. To address the challenges posed by these interferences and to achieve
better accuracy, our literature review discusses various technologies and methods, focusing
on papers relevant to logistics applications.

Table 1 shows a comparative overview of previous literature reviews on IPS with a
specific focus on logistics applications. Key aspects compared include consideration of the
environment, technologies, data, filters, and methods considered in our paper.
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Table 1. Literature reviews.

Title Year Environment Technologies Data Filters Methods

[32] 2020 No No No Yes No

[33] 2022 No Yes Yes No No

[34] 2022 No Yes Yes No Yes

[35] 2023 No Yes No Yes Yes

[36] 2023 No Yes Yes No Yes

Our paper 2024 Yes Yes Yes Yes Yes

In [32], Rácz-Szabó et al. provided a comprehensive overview of indoor positioning
technology applications in production, logistics, quality monitoring, and safety. Their
article focuses on how these applications interact with the manufacturing execution system
(MES) and production within a company, but it does not delve into the technology, data,
or methods in depth as deeply as our literature review. While they explained machine
learning techniques, we also demonstrated the use of data preprocessing filters alongside
these techniques.

Similarly, in [33], Tyagi et al. focused on the implementation of radio-based technolo-
gies and mentioned hybrid technologies to enhance robot navigation accuracy. However,
our article includes a broader range of position calculation technologies, methods, and fil-
ters. While, in [33], the authors explained data and distance-based methods, their research
did not cover the filters and methods that improve tag position accuracy.

With a more general framing in [34], a literature review has been conducted on
commonly used technologies, algorithms, and techniques, highlighting their advantages
and disadvantages. In contrast, our research emphasizes logistics issues, the environments
where these technologies are applied, and the available filters and their applications, which
were not addressed in [34].

A specific literature review on industrial applications involving MAV was presented
in [35], covering topics such as safety and MAV charging. This review focused exclusively
on UAVs, whereas our article includes various tagged entities in motion, such as people,
vehicles, UAVs, AGVs, and items. Additionally, in [35], Awasthi et al. do not address data
used for position calculation.

Lastly, in [36], Sartayeva et al. conducted a literature review that inspired our study.
Building on [36], we delve further into hybrid technologies, which are adapted to various
environments to address interference issues, providing numerous examples demonstrating
high accuracy.

In conclusion, the comparative analysis in Table 1 underscores gaps in existing reviews,
such as the limited exploration of how environmental factors, technology combinations,
and data integration affect system accuracy and reliability in logistics. Our review makes a
unique contribution by focusing on the environmental conditions in which technologies
were tested, highlighting the impact of obstructions on system performance—an often
overlooked factor in previous reviews. Unlike in work by other researchers, we provide
specific accuracy values (in cm) for the best combinations of data, technologies, filters, and
methods. Our study fills these gaps by offering a detailed analysis of the methodologies
used in indoor positioning systems. By addressing these key aspects, we contribute to a
deeper understanding of indoor positioning technologies and offer guidance for optimizing
their use in complex logistics environments, thus improving both accuracy and operational
efficiency.

1.2. Aims of This Study

To understand the existing and most used IPSs in the literature, their common applica-
tions and scopes in logistics, their accuracy, and their effectiveness in different environments,
we formulated the following research questions (RQ), which guided our work:
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RQ1: Which IPSs exist in the literature?
RQ2: Which IPSs are most commonly used in logistics, depending on the environment in

which they are tested?
RQ3: What are the aims of reviewed contributions?
RQ4: What IPS pairings were utilized?
RQ5: What level of accuracy does a specific IPS achieve depending on the environment in

which it is used?

The explanations for the research questions (RQs) are divided into several sections.
The answer to RQ1 is provided in Sections 3.5–3.9, as these sections covered different
IPS utilizing diverse technologies, methods, filters, communication protocols, and data.
Similarly, the answer to RQ2 can be found in Sections 3.5–3.9, as these sections cover
various IPS that use diverse technologies, methods, filters, communication processes, and
data used in different environments. For RQ3, the answer is located in Sections 3.3 and 3.4,
which discuss the four types of aims of contributions for tracking various actors. RQ4 is
addressed in Section 4, highlighting how different combinations of technologies, methods,
and filters are used. Finally, the answer to RQ5 can be found in Sections 3.2 and 4, where
we explain how IPSs are influenced by the environmental geometry and the combinations
of different technologies applied.

2. Materials and Methods
2.1. Material Collection and Selection

The search was conducted using Scopus on 24 August 2024. After developing the
research questions, we applied several criteria to select relevant papers during the initial
review. The inclusion criteria were papers written in English that focused on logistics
applications, utilized IPS and were published after 2010 in journals categorized as research
or review articles. When searching, the query was configured to look for the words in
Table 2 within the titles, abstracts, or keywords of the papers in Scopus. This table consists
of 3 columns: Group A, Group B, and Group C. Each selected paper had to include at least
one keyword from each group.

Table 2. Query on Scopus.

Group A Group B Group C

indoor positioning
system indoor technique logistic

or or or
indoor positioning AND indoor technologies AND supply chain

or or or
indoor system

localization indoor solution warehouse

The exclusion criteria were as follows: proceedings, book chapters, editorials, and
reviews. Figure 1 illustrates the methodology of the systematic literature review, which
was divided into three phases: identification, screening, and inclusion. In the identification
phase, research questions were formulated, relevant keywords were selected, and inclusion
criteria were established. This search resulted in 338 pertinent records. In the screening
phase, records were filtered based on exclusion criteria, which eliminated 214 proceedings
and 11 reviews. The abstracts of the remaining 113 records were then assessed to determine
their relevance. In the final phase, inclusion, 104 full-text articles were assessed based
on their full text. This systematic approach ensured that only the most relevant and
high-quality studies were included in the literature review, allowing for a comprehensive
analysis of indoor positioning systems and their applications.
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Figure 1. Selection process diagram.

2.2. Material Analysis

Table 3 presents a framework for the descriptive and logistical analysis of the reviewed
papers on indoor positioning systems with applications in logistics. It categorizes the data
into several key sections, enabling a structured and thorough evaluation of each study. The
categories include the following:

• Year, country, subject area: these columns capture the basic bibliometric information
of the papers, providing insight into the temporal and geographical distribution of the
research.

• Test environment, actor, aims of contributions: these columns detail the context in
which the IPS is deployed, including the type of environment (e.g., industrial setting
and hospitals), the specific actors being tracked (e.g., personnel and assets), and the
area of aims for contributions area (e.g., material flow control and safety).

• Communication, technology, and combinations: these sections identify the communi-
cation technologies and specific IPS technologies used, as well as any combinations of
these technologies, indicating the complexity and integration of different systems.

• Data, methods, hybrid technologies: these columns describe the types of data col-
lected, the methods used for position calculation, and any combinations of methods,
highlighting the diversity in data processing and analytical approaches.

• Filters, parameters, machine learning: this part focuses on the filtering techniques
applied to improve accuracy, including traditional parametric filters and advanced
machine learning-based algorithms.

• Accuracy: this column captures the level of accuracy achieved by each IPS in different
environments, which is crucial for evaluating the performance and reliability of the
systems.

• Technology accuracy analysis: this section illustrates examples of both the best and
worst accuracy results, while explaining how these results are achieved by utilizing
all the previously discussed characteristics.

The general analysis aims to classify the selected papers to understand the level
of interest in the topic of IPS for logistical aims. This analysis of logistics is relevant to
understand how IPS works in terms of technology, data, methods, and filters to track
actors in different environments. This understanding can help practitioners apply IPS in
logistics effectively.

Overall, the table serves as a detailed matrix for categorizing and analyzing the various
aspects of IPS research, providing a clear and organized overview of the factors influencing
the effectiveness of these systems in different logistical contexts. Most of the analyses
are conducted for each type of environment. However, in a few cases, it was deemed
unnecessary, and for these cases, the diagrams are titled “Total”.
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Table 3. Categories for the analysis.

Category Sub-Category

General Analysis

Descriptive Analysis
Year

Country
Subject area

Logistics Analysis

Test environments

Industrial setting
Office

Hospital
Supermarket

Actors

Person
Item

Robot
Manual vehicle

MAV
UAV
AGV

Aims of contributions

Material flow control
Intralogistics design and management

Safety
Accuracy test

Communication layers
Light-based
Radio-based
Sound-based

Technologies

Acoustic
Bluetooth

LORA
RFID

Ultrasound
Visible light

Wi-Fi
Zigbee

Datas

Signal characteristic-based
Angle-based
Time-based

Image-based

Methods

Computer-based
Constraint-based

Fingerprinting
Geometric

Proximity-based

Filters Parametric-based
Machine learning-based

3. Results
3.1. Descriptive Analysis

The descriptive analysis includes various statistics on the 104 papers included in this
research. The columns “Year”, “Country”, and “Subject Area”, describe the following
aspects of the reviewed papers:

• Year: indicates the publication year of each paper, providing a temporal context for
the research.

• Country: specifies the country of the authors’ origin, giving a geographical context.
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• Subject Area: identifies the academic or research field to which the study belongs,
highlighting the disciplinary focus.

In Figure 2, we can see the number of published documents from 2011 to 2024. The
graph reveals a period of low publication activity initially, followed by a gradual increase
starting around 2018 and culminating in a peak in 2022 with the highest number of doc-
uments published, reaching 21. The dotted line represents an exponential growth trend,
indicating that the number of published documents tends to accelerate over the years. The
data were fitted using an exponential formula: y = a × eb×x, where the parameter a is
4 × 10−142 and b is 0.1622.

Figure 2. Number of annual published articles between 2011 and 2024.

The spatial distribution is shown in Figure 3. China is the primary country of pub-
lications, based on the author’s origin, followed by Italy. Hong Kong also shows sig-
nificant interest in this topic. Given the number of manufacturing companies in China,
tracking materials [37–39], AGVs [22,40,41], and people [4,42,43] are indispensable for
efficient production.

Figure 3. Top ten countries.

Figure 4 shows the distribution of subject areas. The subject areas most involved in
this topic are engineering ([44–46]) and computer science ([47–49]) as several applications
are relevant to these fields.
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Figure 4. Specific subject area grouping.

3.2. Test Environments
3.2.1. Environmental Disturbances

We added an environmental layer to account for different test locations, as varying
environments can impact the accuracy of indoor positioning systems (IPS) due to their
distinct shapes and potential interferences. For example, a warehouse may experience
more signal interferences, such as obstructions and multipath, compared to an office on
a campus. Additionally, signals in a warehouse may face interference from magnetic
fields created by other technologies in the production environment. The impact of these
interferences has been demonstrated by [50], which utilized an IPS that was validated in
the operational industrial environment of the Centro Bahía de Cádiz Airbus factory. This
complex indoor setting includes metallic structures and working personnel, which caused
significant interference. Similarly, the reference [51] examined the performance degradation
of a UWB system under full occlusion, using timber and steel as blocking materials. Under
controlled laboratory conditions, the average error was approximately 8.9 cm. However, in
a real-world construction site, errors ranged from 40 cm to 120 cm, depending on congestion
and the line-of-sight visibility between the tags and receivers. Additionally, in [45], the
authors reported that accuracy depends on the test scenario, finding that the average
localization error ranges from 24 cm to over 1 m, influenced by environmental conditions.
Lastly, in [40], the authors demonstrated that localization accuracy depends on various
factors like bandwidth and wall material.

3.2.2. Types of Environments

There is a need to categorize the environments where IPS tests were conducted to
assess the different levels of accuracy obtained based on the specific environment. For this
purpose, we considered four main categories: offices, industrial settings, supermarkets,
and hospitals. The first category includes all tests conducted in offices, rooms, or university
laboratories. The second category pertains to all industrial environments, such as ware-
houses, production lines, or shop floors. The last two categories include supermarkets,
where museums and libraries were also grouped, and hospitals. For instance, in supermar-
kets [26], the goal is to send advertisements to the person approaching a shelf. Similarly,
in museums [52], information is provided about the piece of art. Determining the exact
position of a tag on a library shelf is comparable to locating it on a supermarket shelf, which
is why they are grouped under the same environment category [53].
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3.2.3. Statistics on the Tested Environments

As shown in Figure 5, the majority of the collected papers investigated IPS in of-
fices [31,54–57], specifically in university offices. Secondly, industrial settings are another
type of environment frequently tested [5,38,42,58], as the principal logistics activities take
place in these locations. On the other hand, fewer papers conducted tests in supermar-
kets [26,59] or hospitals [20]. Currently, most testing is carried out in offices or university
laboratories, which are ideal locations because they have fewer sources of interference.
However, this convenience means that other environments, such as industrial settings,
hospitals, museums, libraries, and supermarkets, have not been as thoroughly tested. For
example, more studies should be conducted in hospitals to track inventory for better man-
agement of medications, streamline queues in hallways, and locate patients with mobility
issues, such as those suffering from Alzheimer’s or other diseases, as discussed by [20,36].
To achieve more reliable and applicable results, IPS must be further tested in real-world
contexts, where conditions are more variable and representative of everyday operational
challenges. Thus, future studies should be conducted in real environments.

Figure 5. Distribution of papers across different environments.

3.3. Actors

Figure 6 is a pie chart representing the percentage of papers that track each type of
actor, such as AGVs [40,60–62], items [63–65]), MAVs ([21,41], unmanned aerial vehicles
(UAV) [66–68], UAS, people [59,69,70], robots [22,71,72], or manual vehicles [73–75], such
as forklifts or shopping carts. The chart indicates that “Item” is the most tracked actor,
followed by “Person”.

Figure 6. Distribution of tracked actors in indoor positioning systems.
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3.4. Aims of Contributions

Indoor positioning systems (IPS) have diverse aims of use, and there is a need to
categorize them. For this purpose, we propose a classification based on four main scopes:
enhancing safety, optimizing or designing intralogistics, controlling the flow of goods,
or testing the accuracy of newly proposed technologies. Thus, as visible in Figure 7, the
resulting categories are named: Safety, Intralogistics Design and Management, Material
Flow Control, and Accuracy Testing.

Figure 7. Percentage of contribution aims in indoor positioning.

3.4.1. Safety

The Safety category encompasses all activities related to ensuring the safety of indi-
viduals (e.g., elderly people and workers) and vehicles. This category includes applications
such as accident detection and the promotion of preventive measures through IPS. For
example, in [69], the authors developed an IPS-based system to geolocate people during
building evacuations to ensure that each occupant leaves the building. In the safety category
for industrial environments, we found studies ensuring worker safety in cold warehouses.
For instance, in [12], the authors created an indoor safety tracking system that detects
motionless behavior to identify abnormal conditions in a cold warehouse. Similarly, in [39],
worker safety was monitored based on their movements in a cold storage warehouse. IPS
systems have been employed not only in industrial environments but also in hospitals,
as seen in [20], where elderly patients were equipped with tag bracelets worn on their
wrists. These wristbands contained active RFID tags, which enabled real-time monitoring
of their body temperature, location, and overall condition. These data are essential for the
hospital’s information system, helping reduce the likelihood of accidents.

3.4.2. Intralogistics Design and Management

The second category pertains to IPS applications that aim to enhance the design
and management of intralogistics, including optimizing internal transportation, route
planning, and picking processes. For example, in [8], the authors mapped AGVs with IPS
so that they could collaborate, share resources, and optimize their routes. Regarding route
optimization, in [76], the authors defined the default route for multiple order pickers to
mitigate congestion in real time, which is based on IPS and information sharing. Similarly,
in [55], the authors used IPS to locate AGVs and optimize their routes, while in [10], IPS
was used not only to allow AGVs to navigate a warehouse and choose the optimal route but
also to map the space where they move. Route optimization and autonomous navigation
based on IPS were also applied for UAVs [77]. In this same category, we found works that
attempt to optimize robot movements, as seen in [22,78]. Lastly, related to intralogistics
optimization, we found applications that optimized layout design, as seen in [79], where IPS
was exploited to identify bottlenecks and backlogs, helping to redesign the facility layout.
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3.4.3. Material Flow Control

The third category encompasses all the applications related to controlling the flow
of goods. These include inventory tracking, monitoring work in progress, and providing
real-time status updates on stored items. Examples from this category that aimed to control
items in production processes include the study by [80], where IPS was used to deliver
light parts by UAV to workstations within a manufacturing plant. Similarly, in [17], the
authors utilized radio frequency technology for monitoring labeled items moving on a
conveyor belt to determine their order of arrival. Along the same lines, in [79], the authors
aimed to enhance production by tracking the items involved in the process, while in [51],
the authors monitored construction progress and materials on a construction site in real
time. Regarding inventory management, in [66], the authors flew a drone into a warehouse
to scan the inventory, while in [37], the authors exploited IPS in a cotton bale storage
warehouse to track their location and monitor their characteristics (e.g., humidity and
temperature). Another application relevant to inventory management was developed
in [50], where IPS was used to guide UAVs to search for lost items in a warehouse. Lastly,
other applications in this category focused on effectively managing order picking. For
example, in [15], the authors supervised order-picker movements and the movement of
items between workstations in a manually operated warehouse, while in [16], the authors
focused on reducing the overall time required for order-taking with the help of IPS, which,
in turn, enhances effective stock management.

3.4.4. Accuracy Testing

The purpose of the last category of contributions reviewed identified is to test the
accuracy of IPS applied to track objects or people. This category includes, for example, the
study by [7], where the authors tested the accuracy of a UWB system in reconstructing the
routes of small electrically guided vehicles. The accuracy of UWB was also investigated
in [70], where the authors utilized an IPS to geolocate individuals. Other studies in this
category evaluated IPS based on RFID, as seen in [26], where RFID accuracy was tested in a
supermarket; in [43], where RFID accuracy was evaluated concerning multi-target tracking
in logistics; and in [81], where the authors aimed to monitor the movement of an object
within a 3 × 3 square meter office on campus. Another study in this category evaluated
the accuracy of a new infrared (IR) optical system intended for low-cost and simple indoor
coordinate measurements of large objects [82]. In this category, we also found works that
tested the combination of different technologies, as seen in [83], where an IPS based on
Wi-Fi and LORA was tested to assess its accuracy and the impacts of interferences. The
combination of UWB and IMUs (inertial measurement unit) was evaluated in [84] to track a
quadcopter, and the combination of IMUs and visible light was evaluated in [42] to follow
a robot in a warehouse. As visible in Figure 7, the majority of contributions (56%) involved
testing IPS systems. This highlights the crucial need to assess the accuracy of IPS systems
before real-world applications in logistics. Real applications comprise the remaining 44%
of the collected papers, which are divided between 20% related to Material Flow Control,
18% to Intralogistics Design and Management, and lastly, 6% to Safety. From this analysis,
we can conclude that future research must focus on the already developed and tested IPS
applications to understand their impacts on logistics, with a focus on safety, which is the
least investigated area.

3.5. Communication Layers

Figure 8 depicts five pie charts, each representing the distribution of communication
layers used in the different logistical environments identified. We identified three types of
communication layers: light-based [85], radio frequency-based [68], and sound-based [86].

In general, radio frequency-based communication is the most commonly used method
across all environments. In supermarket and hospital environments, only radio-based
systems were employed. In [56], the authors used passive UHF-RFID to improve the
navigation system of an AGV in a campus room. In [38], the authors used BLE and UWB
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to track items in a world-leading computer manufacturer’s factory. Similarly, [31] tracked
items and people with Wi-Fi on campus; it gave low accuracy, showing ample range for
improvement. In [21], the authors used LORA technology to let a MAV navigate in both
the warehouse and outdoor environments, this technology uses the signal that has to pass
through walls. However, the data are taken at a low frequency to use little battery power,
resulting in positioning accuracy in meters and not centimeters. In [28], the authors utilized
Zigbee radio-based technology to track assets within a room but encountered interferences
and multipath issues.

Light and sound-based communications are only minimally utilized in specific con-
texts such as industrial settings and offices. For instance, a light-based communication
system was used by [87]. In [11], the authors aimed to geolocalise the robot using infrared
technology. In another example, [71] used visible light-based technology, employing LEDs
and a camera to track a robot in a warehouse.

Sound-based systems were not used in industrial settings but appeared exclusively in
offices. In [88], the authors utilized ultrasound technology to track items in a real-world
experiment in a warehouse-like scenario. In [86], the authors used an acoustic sound-based
system and support vector machine SVM method to classify LOS and NLOS with the
connected classification accuracy.

Figure 8. Preferred communication types for indoor positioning by environment.

3.6. Technologies

Figure 9 consists of four bar charts depicting the number of papers on various commu-
nication technologies across different environments: total, hospital, supermarket, office,
and industrial settings. The “Total” category represents the combined values from the
other environments. Sound-based technologies include acoustic and ultrasound, while
light-based technologies include infrared and VLC (Visible Light Communication), with
the remaining being radio-based, including BLE, LORA, Wi-Fi [89], RFID, UWB, and
Zigbee [90]. Ultraviolet light is not used due to potential health risks associated with
prolonged exposure.

RFID technology is the most widely used overall [81,91] as stated by [92], followed by
UWB, particularly in hospital and industrial environments, respectively. This technology
can be categorized as active or passive RFID. The main distinction between passive and
active RFID lies in how RFID tags (transponders) are powered and their operational
functionality. Passive RFID tags do not have an internal power source, while active ones
usually use batteries. It is technically possible to use passive RFID for a limited form of real-
time positioning. However, limitations in reading distance, update frequency, accuracy, and
interference make this approach less effective compared to using active RFID. Active RFID,
with its ability to transmit data over long distances and provide more frequent updates,
is generally preferred for real-time positioning applications that require high precision
and reliability. Passive RFIDs are commonly used in applications such as access control
systems, inventory management, electronic passports, and contactless payments, while
active RFIDs are used in applications that require long-distance reading or active tracking,
such as vehicle tracking, real-time asset tracking, and ensuring worker safety in hazardous
environments. By integrating passive RFID with other technologies, such as Wi-Fi, BLE, or
UWB, these limitations can be overcome, thereby enabling effective real-time tracking.
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Figure 9. Indoor positioning technologies.

The UWB system is the most used technology in industrial settings because it can
distinguish between direct and reflected signals thanks to its fine temporal resolution
capability [2]. However, as noted by [13], time synchronization and accurate positioning
of anchors are critical to maintaining UWB tracking system accuracy. Properly managing
these aspects is crucial, as neglecting them can adversely affect the performance of the
real-time tracking system.

Wi-Fi is the third most used technology, especially used on campuses [40,41,89,93]. In
particular, Li-Fi, along with Wi-Fi technology, minimizes electromagnetic interference, mak-
ing it ideal for sensitive environments like medical or industrial settings while providing
faster connection speeds than traditional radio-based technologies.

BLE is also a notable technology across different environments, while acoustic and
Zigbee receive minimal attention.

Overall, more technologies were tested on campus than in other environments, includ-
ing ZigBee, ultrasound, LORA, and acoustic.

In our study, we found that these technologies can be used in combination with each
other or with magnetic and inertial technologies. We observed that magnetic and inertial
technologies were applied only in combination with radio-based, light-based, or sound-
based technologies in the papers we analyzed. The combinations of technologies will be
discussed in more detail in the next section.

Hybrid Technologies

A hybrid IPS, or indoor positioning system, employs a combination of technologies
(see Table 4) to work together, enhancing the accuracy and reliability of position detection.
These systems integrate various methods, such as the following:

1. Radiofrequency (RF) technologies: Wi-Fi, Bluetooth, and RFID.
2. Optical Technologies: machine vision and infrared signals.
3. Ultrasound: high-frequency sound waves to measure distances.
4. Magnetometers: detection of changes in magnetic fields.
5. Motion sensors: accelerometers and gyroscopes.

By combining these technologies, a hybrid system can overcome the limitations of
individual methods. For example, RF signals can be blocked by physical obstacles, but
motion sensors help maintain high tracking accuracy. A hybrid approach creates a more
robust and accurate system that can work effectively in different indoor environments
with various features and obstacles. For instance, in [6,9,47,94] the authors utilized an
IMU in combination with radio-based technology to improve distance, acceleration, and
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position calculations. In [95], the authors achieved different levels of accuracy depending
on whether they used IMU data. When using IMU, the accuracy was under 1 m, whereas,
without the use of inertial systems, the positioning errors remained below 3 m. Ref. [38]
used BLE for general tracking due to its high accuracy, low power consumption, low cost,
and high scalability. UWB is used to obtain accurate location labels during the offline phase,
which serve as training input for supervised learning of the neural network model. RFID is
used for simple proximity identification and is easy to implement.

In summary, the combinations involving UWB appear frequently paired with other
technologies like BLE in [38], RFID in [73], and IMU in [47]. Wi-Fi is another common
technology in these combinations, paired with LoRa in [83], IMU in [9], or in a trio with
BLE and RFID in [8].

Table 4. Technologies combinations found in the paper analyzed.

Reference Paper Technologies N. Papers

[50] UWB and VLC 1

[38] UWB and BLE 2

[73] UWB and RFID 2

[83] Wi-Fi and LORA 2

[8] BLE, Wi-Fi, and RFID 1

[94] UWB, IMU and BLE 1

[6] RFID and IMU 1

[9,41] Wi-Fi and IMU 3

[47,77] UWB and IMU 3

[62] LORA and IMU 1

[95] BLE, Wi-Fi, and IMU 1

The focus on these combinations suggests a research interest in exploring the comple-
mentary strengths of these technologies in various applications.

3.7. Data

Numerous types of data are utilized for positioning and communication between tags
and anchors. These can be categorized based on signal characteristics, angles, and time.
Signal characteristic-based data include received signal strength indicator (RSSI), phase
difference of arrival (PDoA), and channel state information (CSI). In [5,39], the authors
used RSSI data with IPSs in a warehouse. In [58,96], the authors used PDoA data with
other radio frequency technologies.

Angle-based data are represented by the angle of arrival (AoA) and angle of departure
(AoD). In [26], the authors used AoA data to reduce the obstruction in a supermarket,
although no articles employed used AoD.

Time-based data consist of time of arrival (ToA), time difference of arrival (TDoA), time
of flight (ToF), and two-way ranging (TWR). For instance, reference [2] used ToF to calculate
the position of an item on campus, measuring the travel time of a signal between two points.
In [3], the authors used TDoA by measuring the difference in arrival times of a signal at
multiple receivers. In [60], the authors used ToA by measuring the specific arrival time of a
signal at a single receiver to determine the distance. These techniques are fundamental to
various localization and tracking systems used in many modern applications.

Figure 10 illustrates that signal characteristic-based data are widely employed across
all environments, as it is the less expensive method, according to [34]. In hospitals and
supermarkets, only angle-based and signal characteristic-based data are prevalent due to
the limited number of studies in these settings, as depicted in Figure 5. In contrast, the
industrial setting shows a higher usage of time-based data compared to other scenarios.
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Moreover, the data can be used in a hybrid approach, for example, in [97] the authors used
both RSSI and phase data. Ref. [64] used TDoA and AOA data.

Figure 10. Data.

In addition, various distance-based calculation algorithms can utilize the data to de-
termine the distance between the tag and the anchor ([33,36]). However, converting data
into distances is not always necessary; it depends on the method used for calculating the
tag’s position. Range-based methods involve calculating the distance from the data, while
range-free methods do not require this conversion. Nevertheless, distance-based calcula-
tions alone are not sufficient for accurately determining the tag’s position, so additional
methods are often employed.

A Data Comparison

Some data are more precise than others for geolocation purposes. Table 5 presents the
papers where one data approach was found to be more efficient than others. In [98], the
authors used the RFID system and PDoA data because they are less prone to reflections
than TDoA. In [2], the authors utilized UWB technology, ToF data, and a trilateration
system, which yielded superior results compared to using RSSI. However, the calculation
of positions with ToF is more complex. Nevertheless, ToF measurements can be impacted
by multiple reflections and delays. In [69], the authors used RSSI and not AOA or ToF with
Bluetooth technology, but the accuracy dropped to 3.5 m. In [99], the authors compared the
accuracy results obtained using RSSI and ToF data; the latter produced better results. In [7],
the authors combined TDoA and AoA methods to improve accuracy. They also found that
TDoA outperforms ToA.

Table 5. Data performance.

Reference Paper Data That Performs Better Data That Performs Worse

[98] PDoA TDoA

[2] ToF RSSI

[69] AoA RSSI
ToF RSSI

[99] ToF RSSI

[7] TDoA ToA

Overall, it appears that RSSI is user-friendly but less accurate than other data types.

3.8. Methods

The methods for calculating the position of a tag that must be geolocated are diverse
(see Figure 11). In this collection of papers, the following methods have been identified:
geometric methods, constraint-based methods, proximity-based methods, fingerprinting,
and computer-based methods. For a detailed explanation of these methods, readers can
refer to [36]. Geometric methods involve techniques such as multilateration [23] and multi-
angulation [100]. The proximity method is an optimization problem focused on finding
the point in a given set that is closest (or most similar) to a specified point. Fingerprinting
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requires an offline phase to train the systems and an online phase to determine the tag’s
position. Computer-based methods necessitate offline training to create a digital map and
computer vision [46]. Other methods include constraint-based approaches, such as belief
propagation and maximum likelihood estimation [44,101], semi-definitive programming,
and parallel projection method.

Figure 11. Methods.

Geometric methods are the most studied location methods in these environments;
supermarkets and hospitals use only these. Ref. [26] used RFID technology and AOA
angle-based data with the multi-angulation method to define the position of the person
wearing the reader while the tags are placed on the shelves. In [67], the authors used
the method of trilateration with data ToF to use a UAV in a warehouse. The position
calculation by [102] used a geometric method of intersecting parabolas to locate the tag.
RFID (Radio Frequency Identification) technology by [103] used mobile readers mounted
on rails, moving along the x- and y-axes. The position of the continuously scanned tag was
defined by intersecting two circles. In [104], the authors used a hyperbolic method with a
moving antenna to locate the item in a laboratory, utilizing TDoA data. In [30], the authors
utilized the method of intersecting reader radii and adjusting signal attenuation to estimate
RSSI. The position error was calculated by comparing estimated and true RSSI values.

In warehouses, proximity methods serve as a secondary option, employing algorithms
such as a closest neighbor or centroid localization. In [16], the authors combined the use of
proximity, fingerprinting, and trilateration methods. In their study, ref. [71] utilized the
iterative closest point method in the first step to create the map. In the second step, they
employed the Monte Carlo approach. It is important to note that the robot’s geolocation in
dynamic environments is more challenging compared to static environments, which could
lead to potential changes in its location.

On campuses, fingerprinting is also used as a secondary method. In [27], the authors
used fingerprinting with a Wi-Fi system in a room of students of 8 × 8 m. In [78], the
authors used a fingerprinting method to navigate a robot on a campus.

When approaching a particular application or problem, there are often multiple meth-
ods that can be employed together to achieve the desired accuracy. By combining different
techniques, it is possible to leverage the strengths of each while compensating for their
individual limitations. This integrated approach enables more robust and adaptable solu-
tions, providing greater reliability and precision across a range of conditions. For instance,
in [12,37] the authors utilized fingerprinting with trilateration, In [5], the authors em-
ployed fingerprinting with pedestrian dead reckoning (PDR), while reference [105] used
computer-based and geometric methods for signal processing.
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3.9. Filters

The filters used for IPSs can be either mathematical or based on machine learning
(see Figures 12 and 13). Employing several filters can enhance the accuracy of a system by
improving position detection.

The first group included commonly used filters such as the Kalman filter, particle
filtering, and moving average. Particle filtering is commonly used in warehouses, while
moving average and Kalman filters are preferred in offices. It is worth noting that these
filters were not used in supermarkets and hospitals depending on the selected papers.
These filters can be applied to preprocess data to calculate the distance between tags
and anchors [36]. For instance, in [5], particle filtering was used to correct incorrect
measurements of all detected locations of vehicles, using the collected radio signals, due to
magnetic perturbations. In [80], the authors used moving averages to improve positioning
accuracy and Kalman filters for fusing data from UWB and IMU sensors. The system
by [106] employs a Kalman Filter to fuse data from GPS, IPS, and INS (Inertial navigation
system), while an Extended Kalman Filter (EKF) is utilized to linearize the non-linear
measurement models.

Figure 12. Filters.

The second group discussed various machine learning filters [107], including su-
pervised and unsupervised ones. The collected papers mentioned filters like boosting
trees, long short-term memory (LSTM), neural networks (NNs), convolutional neural net-
works (CNNs), support vector machines (SVMs), random forests, and K-nearest neighbors
(KNNs). It indicates that, among all environments, neural networks and convolutional
neural networks were the most commonly used. Machine learning filters can be employed
for data pre-processing or to define the best estimation position algorithm [32]. For ex-
ample, the system of [39] used a deep learning unsupervised neural network system to
learn to identify accidents in a cold warehouse using distance and vibration data. In [108],
the authors used the CNN filtering of input data. In [12], the authors explained that the
majority of existing research focuses on reducing errors caused by NLOS and multipath
propagation. Bias introduced by UWB and TDOA was addressed using NN and Kalman
filters. In [54], the authors enhanced accuracy using deep learning models compared to
geometric fingerprinting methods, e.g., predicting initial data.

Figure 13. Machine learning filters.

4. Accuracy Analysis
4.1. Accuracy

Indoor positioning systems’ accuracy is expressed in various forms in the researched
papers, such as distance error, localization accuracy, mean absolute error, and root mean
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square error. Distance error and localization accuracy measure the difference or precision
of the estimated position compared to the actual position as a percentage of occurrence or
averaged value across all tests. The mean absolute error is the average absolute difference
between the actual and estimated points, while the root mean square error calculates the
square root of the average of the squared errors, making it a more complex measure. For all
these types of accuracy measurement, a lower value indicates a better result. The accuracy
is case-specific; it can vary from 1 cm to 500 cm, as shown in Table 6, based on the indoor
positioning technology, the method used for calculating the tag position, the filters applied,
and the environment obstructions. The most common accuracy value found among the
analyzed papers is 10 cm. In the industrial setting, the accuracy is between 1 and 200 cm,
while on campus, it can be as high as 500 cm. The supermarket has a range of 25 to 100 cm,
while in the hospital, the accuracy of the positioning system is not defined.

Table 6. Accuracy values.

Test
Environment

N. Papers for
Range A

Accuracy
Range A

N. Papers for
Range B

Accuracy
Range B

N. Papers for
Range C

Accuracy
Range C

industrial
setting 23 1–99 3 100–200 1 201–500

office 20 1–99 8 100–200 3 201–500

supermarket 2 1–99 1 100–200 0 201–500

Given that the accuracy ranges are quite similar across all environments, with the
value of 500 found only once on campuses, it is believed that the quality of the system
is not solely determined by the environment. Instead, it also relies on other factors we
have covered, such as the data, computational methods, filters, technologies used, and the
system’s installation and calibration methods.

4.2. Technology Accuracy Analysis

In this section, the correlations between technology, methods, data, and filters are de-
tailed to achieve the highest accuracy in various environments. This chapter will highlight
the top 10 best correlations and the three worst correlations among these factors, focusing
on those that yield the most accurate results in each environment. As shownin Figure 14,
the accuracy results are not uniform depending on the technology used; indeed, for each
technology, the accuracy value falls within a certain range.

Figure 14. Minimum and maximum accuracy levels for indoor positioning technologies.

These variations in the range for the same technology occur because the technology
is not the only factor that influences indoor positioning accuracy. It also depends on the
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method used for the geolocalization, the data used, the filters applied to the data, and
the environment where it is used. As [108] notes, the environment has an impact on the
accuracy results, such as interference from metal obstacles (racks, machinery, etc.) and
metallic walls in industrial environments, which can reflect and block signals, thus causing
deterioration in ranging and positioning accuracy.

Here is a detailed description of the columns and table contents analyzed in this
chapter, which were examined for each type of environment:

• Reference paper: provides the bibliographical reference of the paper.
• Technology: lists the technologies used in each study for localization, including Wi-Fi,

UWB, IMU, BLE, VLC, and RFID.
• Method: describes the methods used for localization, e.g., Multilateration, PDR (Pedes-

trian Dead Reckoning), closest neighbor, and digital map construction.
• Filters: specifies filters used to improve localization accuracy, such as EKF, KF (Kalman

Filter), PF (Particle Filter), CNN, NN (Neural Network), and LSTM (Long Short-Term
Memory).

• Data: indicates the types of data used for localization, such as PDoA (Phase Difference
of Arrival), ToF (Time of Flight), CSI (Channel State Information), IMU data, RSSI
(Received Signal Strength Indicator), and image data.

• Accuracy: provides the accuracy of the location obtained in each study, expressed in cm.

If the method is not present, a distance-based calculation approach was used to
calculate the tag’s position. This table is an invaluable resource for understanding which
combinations of technologies and methodologies are most effective for achieving high
accuracy in different environments, such as industrial settings, offices, supermarkets, and
hospitals. Researchers and practitioners can use this information to guide future studies
and implementations for improved positioning and tracking accuracy in similar settings.

4.2.1. Industrial Setting

Table 7 provides a structured summary of current technologies and methods for in-
door localization in industrial environments, highlighting their evolution and the range of
approaches that provide accuracies that range from 1.7 cm to 330 cm. These studies share
the common aim of advancing indoor positioning precision by integrating cutting-edge
technologies and techniques. Each approach reflects the underlying principle that combin-
ing technologies can overcome typical indoor localization challenges, such as multipath
reflections and tracking errors. Key insights include the following:

1. Advanced filtering methods:

- In [61,72,96], the authors focused on reducing errors using the EKF and particle
filters, respectively. In [72], EKF improved localization accuracy, especially in
orientation, reducing orientation error by approximately 0.5° to 1° with greater
overall robustness.

- In [39,49,108], the authors utilized machine learning techniques, specifically
Convolutional Neural Networks (CNNs) and Neural Networks (NN), to process
and filter data. In [108], the improvement led to an increase in accuracy by 29%.
This highlights the growing role of machine learning in enhancing the accuracy
of positioning systems.

2. Data accuracy:

- Among the worst performances we found were those by [9,38,109,110], which
all used the same RSSI data. Although low-cost to obtain, RSSI results are often
unreliable. On the other hand, most of the best accuracy cases used ToF as data
type [47,67,72,94,111].

3. Hybrid approaches:

- Various studies have employed hybrid approaches by integrating multiple tech-
nologies. In [47,111], the authors utilized UWB and Inertial Measurement Unit
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(IMU) sensors. In [94], the combination of UWB and BLE was used. Addition-
ally, [9,109] featured the use of Wi-Fi and IMU sensors, while [38] combined
UWB, BLE, and RFID technologies. These studies show how combining different
technologies can enhance accuracy.

- Many studies combined multiple filtering techniques to enhance accuracy, such
as KF and PF ([67]), NN and EKF [111], KNN and PF ([109]), CNN and KF [16,70],
CNN and LSTM [38,47].

4. Technology accuracy:

- In [47,67,94,108,111], the authors utilized UWB with favorable outcomes. As
shown in Table 7, UWB is the most prevalent solution, yielding the highest
accuracy results in industrial settings.

Table 7. Correlations in industrial settings.

Reference Paper Technology Method Filters Data Accuracy

Best accuracies

[72] RFID computer-based EKF ToF 1
Image

[96] Wi-Fi EKF PDoA 1.7

[67] UWB Multilateration KF ToF 5
PF

[108] UWB CNN CSI 6

[47] UWB PDR CNN ToF 8
IMU Multilateration LSTM IMU

[39] BLE Multilateration NN RSSI 8

[61] VLC Closest neighbor PF IMU 10

[49] VLC Digital map
construction CNN Image 10

[94] UWB Multilateration IMU 10
BLE ToF

[111]
UWB Multilateration NN IMU 13
IMU EKF ToF

Image

[58] RFID Multilateration PDoA 13

Worst accuracies

[109] Wi-Fi PDR KNN RSSI 100
IMU Fingerprinting PF

[9] Wi-Fi KF RSSI 120
IMU

[110] BLE Fingerprinting
Multilateration

Chebyshev
algorithm RSSI 140

[38]
BLE CNN RSSI 200

UWB LSTM
RFID

[70] UWB KF ToA 300
CNN

[16] UWB Fingerprinting KF TDoA 330
CNN

In industrial settings, different technologies and methodologies are favored:
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• Ultra-Wideband: known for its precision in short-range tracking, UWB is frequently
used in industrial settings.

• Multilateration: this method is commonly employed and consistently produces some
of the best results. Moreover, Fingerprinting consistently yields the lowest accuracies.

• RSSI: this type of data obtained the lowest accuracies.
• Neural Networks and Extended Kalman filters: these are employed to process complex

data and improve the accuracy of positioning systems.

In summary, industrial environments benefit most from technologies and methods
that prioritize accuracy and robustness, such as UWB, multilateration, and advanced
filtering techniques like neural networks and Extended Kalman Filters. By leveraging
these approaches, practitioners can achieve greater precision and reliability in positioning
systems, despite the challenges presented by industrial settings.

4.2.2. Office

As for the previous industrial setting section, we performed the same work for the
office setting. Table 8 shows the combinations of different technologies, methods, filters,
and data with the best and lowest accuracy achieved in the office testing environment. Each
study is founded on the principle that combining multiple technologies and techniques
can improve indoor positioning accuracy and help address common challenges in indoor
positioning, such as environmental obstructions. Key insights include the following:

1. Advanced filtering techniques:

- In [87], the authors used a computer vision system with a moving average (MA)
filter to optimize inventory tracking. The application of the MA filter reduced
random variations in the data, ensuring more stable and accurate tracking of
objects in complex logistical environments.

- In [92], the authors employed RFID technology, Multilateration, KF, and RSSI
data, achieving high accuracy. The Kalman filter reduced noise in the data,
improving the accuracy of the tracking system and making it more reliable even
in environments with signal reflections.

- In [84], the authors used NN and KF to improve the accuracy of UWB and TDoA
systems. combining NN and KF allowed accurate position estimation.

- In [85], the authors implemented a belief propagation algorithm (BP) and particle
filtering based on Angle of Arrival (AoA) data.

- In [83,112], the authors used Wi-Fi with the fingerprinting method and filters like
KNN and Neural Networks. However, both experienced relatively low levels of
accuracy, attributable to the complexity of the analyzed environments, which are
characterized by numerous interferences and reflections that negatively affect
system performance.

These studies show that although advanced filters such as Kalman filtering, particle fil-
tering, and neural networks can significantly improve accuracy, the results are influenced
by the type of technology and the specific environment in which they are applied.

2. Geometric methods:

- In [104], the authors used a hyperbolic method with a moving antenna, utilizing
TDoA data and Particle Swarm Optimization (PSO).

- In [102], the authors used a geometric method of hyperbolic intersection for
position calculation.

- In [98], the authors employed hyperbolic intersection.

These studies underscore the effectiveness of multilateration techniques in enhancing
positioning accuracy.

3. Methods’ combination:

- In [87], the authors used two methods, such as Centroid Localization Method
(CLM) and a computer-based approach. This hybrid combination suggests that



Logistics 2024, 8, 126 22 of 31

the use of multiple methods can enhance the localization system’s accuracy by
utilizing each technology’s strengths to achieve better results.

4. Data accuracy:

- In [102,104] and [84], the authors utilized TDoA, which is the most frequently
used data among the examples which yield superior accuracy results.

- In [69,83,112], the authors used RSSI data, which had lower accuracy.

5. Hybrid technologies approaches:

- In [83,102], the authors employed LORA and a UWB or Wi-Fi system. The study
revealed that LORA paired with UWB achieved superior accuracy compared to
the Wi-Fi combination.

- In [84], the authors used UWB with an inertial sensor IMU, achieving high
accuracy. This approach demonstrates the advantages of incorporating IMU data
to enhance stability and accuracy, particularly in environments with dynamic or
complex layouts where positional data may otherwise degrade.

6. Technology accuracy:

- In [56,98,104], the authors used RFID technology, achieving good accuracy, and
it is the most used in offices.

Table 8. Correlations in offices.

Reference Paper Technology Method Filters Data Accuracy

Best accuracies

[87] VLC CLM MA Image 1
computer-based

[113] VLC Image 1

[48] RFID PF PDoA 2

[114] Radio-based UKF 4

[98] RFID Multilateration PDoA 6.5

[88] Ultrasound Multiangulation low pass AoA 10

[92] RFID Multilateration KF RSSI 10

[85] VLC BP PF AoA 10

[104] RFID Multilateration PSO TDoA 12.2

[102] UWB Multilateration MA TDoA 13
LORA

[84] UWB Multilateration NN IMU 14
IMU EKF TDoA

[56] RFID ML PDoA 20

Worst accuracies

[115] RFID Fingerprinting NN RSSI 150

[112] Wi-Fi Fingerprinting KNN RSSI 250
genetic

[83] Wi-Fi NN RSSI 250
LORA

[69] BLE Closest neighbor RSSI 350

[78] Ultrasound Fingerprinting KF IMU 500
median filter

In office settings, different technologies and methodologies are favored:
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• RFID: commonly used for tracking objects and people, RFID systems are highly
effective in office environments.

• Multilateration: it provides good accuracy with RFID technology on campuses, while
Fingerprinting does not have good results.

• EKF: this algorithm is used to predict and correct positions, enhancing accuracy.
• Time difference of arrival (TDoA): This method uses the time difference between

received signals to determine position, providing reliable results. On the other hand,
RSSI achieves the lowest accuracy.

• Hybrid approaches: The combination of hybrid technologies and methods tends to
produce lower accuracy results.

This analysis helps practitioners understand various ways to implement indoor posi-
tioning technologies in this environment to achieve favorable results, which is crucial for
logistics applications.

4.2.3. Supermarket

The articles in Table 9 are connected in that they address the issue of localization and
tracking within indoor environments using different Radio Frequency Identification (RFID)
and Bluetooth technologies, as well as machine learning methodologies:

1. Supermarket [26,59]: In [26], the authors used RFID technology with Angle of Arrival
(AOA) data to determine the position of a person wearing the RFID reader, with
tags placed on the shelves. This method aims to send personalized advertisements
to individuals approaching certain areas of the supermarket, enhancing customer
interaction and potentially increasing sales. In [59], the authors achieved a positioning
accuracy of 1.05 m in the optimal scenario (using 341 reference points) and 4.62 m in
the least favorable scenario (using 45 reference points).

2. Library [53]: The authors used RFID technology, along with RSSI and phase data to
calculate the absolute position of RFID tags through multilateration. Additionally,
a CNN is utilized to establish the relative position of the tags and compute the z-
coordinate (height). This method is useful for precise inventory management and
object localization within a library, facilitating book management and retrieval.

3. Museum [52]: The authors utilized Bluetooth technology, RSSI data, and a neural
network filter to track positions. Although this method achieved lower accuracy
compared to other approaches, it is still useful in a museum context for tracking
visitors and interacting with exhibits, thereby enhancing visitor experience.

In summary, these articles share the common goal of improving indoor localization and
user interaction through the use of RFID and BLE technologies, each applied to a specific
context (supermarket, library, museum). The main differences lie in the technologies used
(RFID vs. Bluetooth), the methods for position calculation (AOA, RSSI, phase), and the
specific applications in various scenarios. AOA outperformed RSSI, and Multilateration
outperformed Fingerprinting in this environment.

Table 9. Correlations in supermarkets.

Reference Paper Technology Method Filters Data Accuracy

[26] RFID Multiangulation Moving average AoA 10
Digital map construction

[53] RFID Multilateration CNN RSSI 25
Phase

Worst accuracies

[52] BLE NN RSSI 100

[59] Radio-based Fingerprinting KNN RSSI 460
Chebyshev algorithm
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4.2.4. Hospital

For hospitals, only one article was found: In [20], the authors used tag bracelets with
RFID technology, RSSI signal, and trilateration methods to track the location of elderly
people. Antennas were required in each room of the hospital for the data to be detected.
The article does not mention the accuracy of this tracking method.

5. Discussion

Building on the findings in prior sections, we summarize the answers to the five
proposed research questions. The first two questions are as follows: “Which IPSs exist in
the literature?” (RQ1) and “Which IPSs are most commonly used in logistics, depending on
the environment in which they are tested?” (RQ2). These environments include industrial
settings, offices, hospitals, and supermarkets. In response to RQ1 and RQ2, we identified
that radio-based technology is the most prevalent across all environments, in alignment
with existing literature, as confirmed in [34] individuated. Among radio-based options,
RFID is the most frequently used technology, in line with current literature and as illustrated
in [81] and shown in Figure 9. Specifically, UWB, RFID, and BLE are widely used in
industrial settings; RFID, Wi-Fi, and UWB in offices; RFID in hospitals; and RFID and BLE
in supermarkets. Geometric methods, particularly multilateration (Figure 11), are the most
common in each setting, as noted in [34], followed by fingerprinting. Across environments,
the majority of studies employ signal characteristic-based data, while time-based and
motion-based data are common in industrial settings and offices. In supermarkets, angle-
based and signal data are primarily used. Enhanced accuracy and reliability can be achieved
by combining these technologies with advanced filtering techniques or machine learning
models. The most widely used parametric filtering methods are particle filtering, Extended
Kalman Filter in industrial settings, and Kalman filtering in offices. Convolutional Neural
Networks, Neural Networks, and k-nearest neighbors.

The third question, “What are the aims of the reviewed contributions?” was addressed
by categorizing these objectives into four areas: material flow control, intralogistics design
and management, safety, and accuracy testing. Our analysis (Figure 7) shows that the
majority of contributions (56%) focus on accuracy testing, emphasizing the importance of
evaluating IPS performance before practical logistical applications. The remaining 44%
address practical applications, with 20% focused on material flow control, 18% on intral-
ogistics design and management, and 6% on safety. This indicates that future research
should focus on exploring the impact of IPS in practical logistics applications, particularly
in safety, an important but underexplored area within the Industry 5.0 framework [116–118].
The fourth and fifth questions ask, “What IPS pairings were utilized?” (RQ4) and “What
accuracy does a specific IPS achieve based on the environment in which it is used?” (RQ5).
Our findings for RQ4, detailed in Tables 7–9, illustrate correlations between technologies,
methods, filters, and data. Moreover, Table 4 highlights the combination of Inertial Measure-
ment Units (IMU) with radio-based technologies, as previously demonstrated in [36], which
underscores its benefits in enhancing IPS performance. Combining diverse technologies is
a powerful approach to achieving optimal accuracy and reliability for indoor positioning
across various environments. In response to RQ5, we found that different technologies and
combinations thereof yield varying accuracy levels. According to Figure 14, technologies
like visible light, infrared, UWB, and RFID offer the highest accuracy, while BLE, Wi-Fi,
and LoRa demonstrate medium to low accuracy; Zigbee falls in the medium accuracy
range [32]. Generally, as shown in Tables 7–9, UWB obtains higher accuracy in industrial
environments, while RFID excels in offices. On the other hand, RSSI, Wi-Fi, and BLE in
industrial and office settings tend to be less accurate, while time-based data performs excep-
tionally well, as illustrated in Table 5. Furthermore, geometric methods consistently deliver
better accuracy across settings (as shown in Tables 7–9). The broad range of accuracy values
highlights that IPS precision is highly affected by environmental conditions. Real-world IPS
implementation poses challenges, particularly in device installation, calibration, and data
processing due to environmental interferences. For example, [7] explored sensor placement
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and found that lower heights increase the chance of encountering Non-Line of Sight (NLOS)
conditions due to interference. The geometry and size of the area between anchors, or the
“cell”, also affect accuracy due to hidden areas and signal attenuation. Physical [14] and elec-
tromagnetic interference [5] further complicate successful IPS deployment. Electromagnetic
interference from industrial machinery or electronic devices, as noted by [30], and physical
obstacles like walls and metal shelves can alter signal propagation, causing reflections and
attenuations that reduce measurement accuracy. Additionally, materials such as wood or
plastic absorb Wi-Fi signals, which degrades measurement quality and Wi-Fi-based IPS
accuracy. We examined how IPSs can be effectively employed in logistics across different
environments, including industrial settings, offices, hospitals, and supermarkets, despite
multiple interferences. We found that sensor fusion techniques can help address these
interferences in line with [33]. Hybrid positioning systems enhance accuracy by combining
the strengths of various technologies to overcome environmental challenges.

IPSs have attracted growing interest, especially radio frequency technologies, due
to their transformative potential across multiple sectors [36]. However, more research is
needed to fully explore and optimize these technologies for specific applications. Despite
rising interest, there remains a significant lack of research on IPS in particular settings, such
as hospitals and supermarkets. Future studies could address this gap by examining the
benefits of patient geolocation in hospitals or cart tracking in supermarkets. In hospitals, IPS
could improve patient safety through real-time tracking, expedite response times during
emergencies, and optimize medical equipment use, as discussed in [20]. In supermarkets,
tracking shopping carts could streamline operations, enhance customer service, and provide
valuable insights for inventory and marketing, as noted by [26]. Further research on IPS
for logistics applications is also needed, particularly for intralogistics design, management,
and material flow control. Effective IPS implementations, as discussed by [79], could lead to
optimized warehouse layouts, identify bottlenecks, and improve route definitions, resulting
in enhanced efficiency, cost savings, sustainability, and operational performance. Further
research in logistics should also focus on integrating IPS with software expert systems
aiming at decision support [119], mainly related to customers´ requirements regarding due
date, quantity, and mix of deliveries. Future studies should also investigate the impact
of environment dimensions and device count on testing outcomes. Addressing these
research gaps will support the development of more effective and customized IPS solutions,
ultimately enhancing safety, efficiency, and performance across various sectors.

6. Conclusions

The integration of IPS into logistics operations represents a significant advancement,
underscoring its critical importance in modern logistics management, as discussed by [32].
Our contribution aims to assist practitioners in utilizing IPS for various logistics applica-
tions, including safety, intralogistics design and management, and material flow control.
Additionally, some studies focus on accuracy tests to evaluate the application of IPS in
logistics. Our review covers technologies, methods, data, filtering techniques for improving
output, various hybrid technologies, and examples of IPS applications. Understanding
how IPS function is essential for its implementation in a logistics context where accuracy
is typically paramount. Given that interferences vary across different environments, we
differentiated settings such as industrial facilities, offices, supermarkets, and hospitals.
Notably, the same technology produced different results, depending on the environment
(see Figure 14). We found that UWB technology was primarily used in industrial envi-
ronments, which yielded the best results, while RFID was favored in other settings (see
Figure 9). Overall, visible light, UWB, and RFID demonstrated the highest accuracy val-
ues (see Figure 14). Geometric methods consistently provided the best results across all
environments (see Tables 7–9). Moreover, certain data types proved to be more effective
than others, with RSSI showing the lowest accuracy (see Tables 5 and 7–9). Regarding
the filtering techniques, EKF, and particle filtering, CNN and NN are the most used in
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industrial settings, while KF, CNN, and NN are the most common in offices (see Figures 12
and 13).

Conversely, the accuracy results from the studies indicated similar accuracy levels
across different environments, with most results falling between 1 and 99 cm (see Table 6).
This consistency was achieved by mitigating obstructions through the use of hybrid ap-
proaches, which integrate different technologies, filters, methods, and data.
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2. Gnaś, D.; Adamkiewicz, P. Indoor localization system using uwb. Inform. Autom. Pomiary Gospod. Ochr. Srodowiska 2022, 12, 15–19.

[CrossRef]
3. Frankó, A.; Vida, G.; Varga, P. Reliable identification schemes for asset and production tracking in industry 4.0. Sensors 2020,

20, 3709. [CrossRef] [PubMed]
4. Wu, W.; Shen, L.; Zhao, Z.; Harish, A.R.; Zhong, R.Y.; Huang, G.Q. Internet of Everything and Digital Twin enabled Service

Platform for Cold Chain Logistics. J. Ind. Inf. Integr. 2023, 33, 100443. [CrossRef]
5. Silva, I.; Pendao, C.; Torres-Sospedra, J.; Moreira, A. TrackInFactory: A Tight Coupling Particle Filter for Industrial Vehicle

Tracking in Indoor Environments. IEEE Trans. Syst. Man, Cybern. Syst. 2022, 52, 4151–4162. [CrossRef]
6. Hayward, S.J.; Earps, J.; Sharpe, R.; van Lopik, K.; Tribe, J.; West, A.A. A novel inertial positioning update method, using passive

RFID tags, for indoor asset localisation. CIRP J. Manuf. Sci. Technol. 2021, 35, 968–982. [CrossRef]
7. Mucchi, L.; Trippi, F. Experimental measurements of the accuracy of commercial UWB real-time localisation systems and proposal

of new collision avoidance algorithms for industrial applications. Int. J. Ultra Wideband Commun. Syst. 2012, 2, 179–188. [CrossRef]
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