
Discrete Applied Mathematics 100 (2000) 17–48

Algorithms and codes for dense assignment problems:
the state of the art

Mauro Dell’Amicoa ; ∗, Paolo Tothb
aDISMI, Universit�a di Modena e Reggio Emilia, viale Allegri, 15, 42100 Reggio Emilia, Italy

bDEIS, Universit�a di Bologna, v.le Risorgimento, 32, 40136, Bologna, Italy

Received 13 April 1998; received in revised form 31 March 1999; accepted 19 April 1999

Abstract

The paper considers the classic linear assignment problem with a min-sum objective func-
tion, and the most e�cient and easily available codes for its solution. We �rst give a survey
describing the di�erent approaches in the literature, presenting their implementations, and point-
ing out similarities and di�erences. Then we select eight codes and we introduce a wide set of
dense instances containing both randomly generated and benchmark problems. Finally we discuss
the results of extensive computational experiments obtained by solving the above instances with
the eight codes, both on a workstation with Unix operating system and on a personal computer
running under Windows 95. ? 2000 Elsevier Science B.V. All rights reserved.

Keywords: Linear assignment problem; Experimental evaluation; Comparison of algorithms;
Dense matrices

1. Introduction

Given an n × n integer cost matrix [cij], the Linear Assignment Problem (AP) is
to assign each row to a di�erent column in such a way that the sum of the selected
costs is a minimum. Using a binary variable xij = 1 i� row i is assigned to column j,
the problem can be formulated as follows:

(AP) z =min
n∑

i=1

n∑

j=1

cijxij (1)

n∑

j=1

xij = 1 (i = 1; : : : ; n); (2)

∗ Corresponding author.
E-mail address: dellamico@unimo.it (M. Dell’Amico)

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00172 -9

i An update to this article is included at the end

18 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

n∑

i=1

xij = 1 (j = 1; : : : ; n); (3)

xij ∈ {0; 1} (i; j = 1; : : : ; n): (4)

This is one of the most famous and studied problems in mathematical programming,
and it is also a basic topic in combinatorial optimization. Surveys on AP have been pre-
sented by Derigs [29], Martello and Toth [44], Bertsekas [15] and Akg�ul [4], whereas
a complete annotated bibliography has recently been proposed by Dell’Amico and
Martello [28]. There are more than 100 papers on the problem and several algorithms
have been proposed, but, in practice, less than ten e�cient codes are available.
The aim of this paper is to present a short survey of the techniques proposed for

the solution of AP and to give a complete and extensive computational analysis of
the most popular and e�cient algorithms. In particular, we consider sequential codes
available as source listing, either on a diskette accompanying a book, or on the web.
Moreover we restrict our study to dense instances.
Our �rst choice (i.e. to consider only sequential codes) is due to the fact that, at

present, parallel algorithms are too architecture dependent and two main problems arise
when we try to use a code, written for a particular computer, on a di�erent machine.
First the translation of the code may be di�cult due to the possible strong use of the
peculiarities of the architecture. Moreover, even if the translation is carefully made,
the two implementations may have very di�erent performances.
Our second choice (i.e. to consider dense instances) is due to the fact that most

of the literature presents computational experiments on sparse matrices, although there
are important classes of problems which are dense in nature. Consider, e.g., the clas-
sic routing problems (Traveling Salesman Problem (TSP), Vehicle Routing Problem
(VRP), etc.) which have been traditionally solved using the AP as a subproblem, and
which have benchmarks and real-life instances de�ned by almost full matrices. (When
an instance is given by a sparse cost matrix S, we can handle it with a complete matrix
[cij] in which a large positive value (say +∞) is given to each entry (i; j) which does
not exist in S.)
Several papers exist which compare algorithms for AP through computational ex-

periments [18,21,45,29,22,37,15,17,7,38,23,51,31,54,53], but this work di�ers from the
previous ones in four main aspects:
• we consider only original codes, implemented by the respective authors, which can
be easily obtained;

• we have performed a huge computational analysis on randomly generated and bench-
mark problems (we consider 730 random instances from six classes, and 141 bench-
mark instances from the literature);

• we performed our experiments on two of the most common hardware and software
platforms: Sun workstation running under Unix System V and a PC Pentium running
under Windows 95 operating system;

• we consider only dense instances, which are almost neglected in the literature.

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 19

In Section 2 we summarize the main approaches proposed for the solution of AP, then
in Section 3 we describe the algorithms we have selected for our analysis and how they
implement the general approaches in Section 2. Section 4 describes the modi�cations to
the original codes that have been introduced to perform our experiments, and presents
the test instances. The last Section 5 gives the results of our computational experiments
and comments on the performances of the competitors.

2. Solution techniques

Before describing the most important techniques proposed for the solution of AP,
let us introduce some background material.
It is well known that the constraint matrix de�ned by (2) and (3) is totally uni-

modular. Moreover, the right-hand sides of (2) and (3) are integer, so the polyhedron
of the feasible solutions of AP has integral vertices, and one can obtain the optimal
solution of AP by solving the continuous linear program:

C(AP) z =min
n∑

i=1

n∑

j=1

cijxij

(2); (3)

s:t: xij¿0 (i; j = 1; : : : ; n): (5)

By associating dual variables ui and vj with constraints (2) and (3), respectively, the
corresponding dual problem is

D(AP) w =max
n∑

i=1

ui +
n∑

j=1

vj (6)

ui + vj6cij (i; j = 1; : : : ; n): (7)

Let �cij = cij − ui − vj (i; j = 1; : : : ; n) be the reduced costs of C(AP). Given a pair of
solutions x and (u; v), respectively feasible for the primal and for the dual problems,
the optimality conditions (or complementary slackness) are

xij �cij = 0 (i; j = 1; : : : ; n): (8)

The assignment problem is also known as the Weighted Bipartite Matching Prob-
lem. Let �G=(U ∪V; �E) be a bipartite graph with node sets U =V ={1; 2; : : : ; n}, edge
set �E = {[i; j]: i∈U; j∈V; cij ¡∞} and costs [cij] associated with the edges. The
problem is then to �nd a perfect matching of minimum cost on �G. It can be shown
that each feasible basis of C(AP) induces a spanning tree on �G.
Most of the algorithms for AP have a ‘dual’ nature, that is, they build the opti-

mal solution step-by-step, by iteratively adding assignments to a current partial primal
solution (i.e. a solution in which less than n variables is assigned value one, and
(2)–(3) are satis�ed with the ‘=’ sign substituted by the ‘6’ sign). These techniques

20 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

usually consist of two phases: in the �rst phase (preprocessing) a primal partial so-
lution and a dual feasible solution are determined which satisfy the complementary
slackness conditions (8). In the next phase the primal solution is improved by adding
one row–column assignment at a time, until the solution becomes feasible. At each
step of this phase the dual solution is updated so that the complementary slackness
still holds. At the end of the phase the current primal–dual (solution) pair is optimal.
A simple way of implementing the preprocessing phase is to determine a dual feasible
solution as follows:

vj = min{cij: i = 1; : : : ; n} (j = 1; : : : ; n) (column reduction);
ui = min{cij − vj: j = 1; : : : ; n} (i = 1; : : : ; n) (row reduction):

(9)

Then a primal partial solution is determined by selecting (in some order) assignments
(i; j) such that row i and column j are currently unassigned and �cij = 0:
The approaches proposed for the solution of AP can be grouped into three classes:

primal–dual algorithms (based on the identi�cation of shortest paths), pure primal al-
gorithms, and pure dual algorithms. In the next subsections we briey describe the
three approaches. Note that we do not intend to be completely exhaustive, but we give
only some hints on the methods, and we refer the reader to the appropriate litera-
ture for a complete and rigorous description. In particular our description emphasizes
the algorithmic aspects of the various approaches, but does not give a proof of their
correctness.

2.1. Primal–dual (Shortest Path) algorithms

Using the primal–dual approach, Kuhn [39,40] obtained the �rst polynomial method
for the solution of AP, called the Hungarian method. The approach can be summarized
as follows (see e.g. [48] for a complete description):
(0) Determine a dual feasible solution (u; v) by using row and column reduction.
(i) Given the solution (u; v) solve the restricted primal problem. This is equivalent to

�nding a maximum cardinality matching on the bipartite subgraph G′=(U ∪V; E′),
where E′={[i; j]∈E: �cij=0}. Let X be the set of edges in the optimum matching,
R̂⊆U and Ĉ ⊆V be the nodes incident to an edge in X , and de�ne a solution �x
with �xij = 1 if [i; j]∈X , �xij = 0 otherwise.

(ii) if �x is primal feasible (i.e. |X |=n), then stop (an optimal primal–dual pair (�x; (u; v))
has been found), otherwise obtain a new dual solution by setting u i=ui+� for all
i∈ R̂, �vj=vj−� for all j∈ Ĉ, where � is the minimum reduced cost �cij=cij−ui−vj
among those with i∈ R̂ and j ∈ Ĉ. Set u= u; v= �v and go to step (i) (note that
it is not necessary to recompute the maximum cardinality matching from scratch,
but only to reoptimize the existing one).

It is easy to see that the primal–dual pair determined at step (i) satis�es the com-
plementary slackness conditions (8), so if �x is primal feasible then the pair is opti-
mal. When a new dual solution is obtained (step (ii)), the complementary slackness
still holds for the new pair (�x; (u; �v)), the dual solution is feasible and at least one

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 21

pair (i; j) with i∈R; j∈C exists such that cij − u i − �vj = 0, but cij − ui − vj ¿ 0.
Therefore, at the next execution of step (i), graph G′ has at least one new edge.
With the original implementation an O(n3) time is required to perform steps (ii) and
(iii) until a new assignment is identi�ed, hence the overall algorithm runs in O(n4)
time.
The complexity of the Hungarian method was reduced to O(n3) by Lawler [41].

Lawler’s implementation was shown (see [29]) to be equivalent to a successive short-
est path algorithm which can be conveniently described by using the weighted bipartite
matching model. Given the graph �G of Section 2, a partial primal solution x and a
dual solution (u; v), set X = {[i; j]∈ �E: xij = 1} and de�ne a new bipartite digraph
G = (U ∪ V; A) with arc set A= D ∪ R, where D = {(i; j): i∈U; j∈V; [i; j]∈E \ X }
is the set of the direct arcs, and R = {(i; j): i∈V; j∈U; [j; i]∈X } is the set of the
reverse arcs. Each arc (i; j)∈A is assigned the cost �cij if (i; j)∈D and zero if (i; j)∈R.
(Note that solutions x and (u; v) satisfy the complementary slackness conditions.) Let
us call ‘unassigned’ a node of U or V corresponding, respectively, to an unassigned
row or column. One can prove that any dipath of G starting from an unassigned node
of U contains, alternatively, an arc in D and an arc in R. Such paths are called alter-
nating paths. If the dipath, say P, terminates with an unassigned node of set V , then
it is called an augmenting path. Indeed, by removing from X the edges in R ∩ P and
adding to X the edges in D ∩ P, we obtain a new (partial) primal solution X ′ with
|X ′| = |X | + 1 assignments. Remembering that the costs of the arcs are the reduced
costs of C(AP) one can see that �nding a shortest (augmenting) path in G is equiva-
lent to �nding a minimum cost solution with |X | + 1 assignments. Since the reduced
costs are non-negative, then the required path can be determined through Dijkstra’s
algorithm by selecting as root node an unassigned node of U . The growth of the
Dijkstra tree, say T = (VT ; AT), is halted when it reaches an unassigned node, say j,
of V , i.e. when it contains an augmenting path from the root to the leaf j. The dual
solution associated with X ′ is obtained by de�ning � = min{ �cij: (i; j)∈AT ∩ D}, by
setting R̂=U ∪ VT ; Ĉ = V ∪ VT , and by updating the current dual solution as in step
(ii) above. AP can thus be solved by identifying O(n) successive shortest augment-
ing paths. Since the Dijkstra algorithm runs in O(n2) time, the overall computational
complexity of a shortest path algorithm is O(n3).
This reduction of the time complexity is not surprising. Indeed, one can observe

that each shortest augmenting path corresponds to a series of steps (i) and (ii) of the
Hungarian method, which lead from a solution with |X | assignments to a new one with
|X |+ 1 assignments. But the original Hungarian method needs O(n3) times to add an
assignment, whereas a shortest path can be computed in O(n2) time.
At present all the e�cient algorithms proposed in the literature and based on short-

est paths, have O(n3) time complexity when applied to dense instances. The various
algorithms di�er in two points: (a) the preprocessing procedure used to de�ne the
�rst primal–dual pair, and (b) a possible sparsi�cation technique. Sparsi�cation is used
by some algorithms to try to reduce the average computing time. In a �rst phase a
core problem CP is de�ned by selecting a subset of entries from matrix C. Then

22 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

CP is solved giving an optimal primal–dual pair and a check is performed to de-
termine if the primal–dual pair is optimal also for the complete instance (i.e. if the
reduced costs are non-negative for all the elements of matrix C). If the solution is
not optimal the core is enlarged by adding other entries and the procedure is re-
peated.
The shortest path algorithms we have used for our experiments were described in

[37,22,20,15,53]. Both points (a) and (b) above will be discussed in detail in the next
section.

2.2. Primal algorithms

The primal algorithms proposed for AP are basically specialized implementations
of the network simplex algorithm. We have already recalled that a basis of the con-
tinuous relaxation of AP is a spanning tree, say T , of graph �G. A pivot operation
performed by the simplex method induces a transformation of the tree T : an edge
e∈E \ T having-negative reduced cost is added to T , and an appropriately cho-
sen edge is removed from the unique circuit of T ∪ {e}. It is well known that
the simplex algorithm is not polynomial in the input size, but primal algorithms
exist for AP, which run in polynomial time. The key idea of reducing the time
complexity of primal algorithms was independently introduced by Barr et al. [11]
and Cunningham [26], and consists of considering as possible candidates only a par-
ticular subset of the bases called alternating path bases or strongly feasible trees
(SFT). These bases correspond to trees of �G with the following characteristics: (a)
the root node belongs to U and has degree one (as usual the degree of a node is
the number of edges incident to it); (b) all other nodes belonging to U , but the
root, have degree two; (c) xij = 1 for each edge [i; j] with i∈U; j∈V ; (d) xij = 0
for each edge [i; j] with i∈V; j∈U . Using SFT, Hung [34] developed an algorithm
which runs in O(n3 log�) time, where � is the di�erence between the initial and
�nal solution values. Orlin [46] gave the �rst strongly polynomial primal algorithm
which, for dense matrices, runs in O(n4 log n) time. Improved algorithms were pre-
sented by Ahuja and Orlin [1] and Akg�ul [5]. In particular, Akg�ul’s algorithm has an
O(n3) computing time on dense instances, so giving the same time complexity of the
primal–dual algorithms. Unfortunately no e�cient code has been devised from these
results.

2.3. Dual algorithms

Most of the approaches proposed for the solution of AP obtain a primal feasible
solution only at the last step, so they could be classi�ed as ‘dual’ algorithms. In order
to simplify the presentation we have already described the shortest path algorithms,
which indeed have a dual nature, so in this section we describe four main approaches
which can be identi�ed, respectively, as signature, auction, pseudoow and interior
point methods.

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 23

2.3.1. Signature method
Before describing this method it is necessary to observe that given a tree T of

graph �G we can associate both a primal and a dual solution of C(AP), with it. (A dual
solution can be determined by assigning value zero to the dual variable associated with
the root node and then iteratively assigning the other dual values so that the reduced
cost of each edge of the tree is zero.) If the dual solution is feasible (hence the primal
solution is not feasible, unless T corresponds to an optimal solution) we call this tree
a dual feasible tree.
The method de�nes a signature of a dual feasible tree the vector of the degrees of

the nodes of T which belong to U . Using the signatures, Balinski [8] uniquely identi�es
the extreme points of the dual polyhedron and shows that any two extreme points are
joined by a path of at most (n − 1)(n − 2)=2 extreme edges (i.e. he has proved that
the Hirsch conjecture holds). Subsequently (see [9]) he obtained a dual polynomial
algorithm for AP which runs in O(n3). This algorithm performs pivot operations to
transform a basis into an adjacent one, but it cannot be considered an implementation
of a dual simplex method since it may pivot on an edge with zero or positive ow.
Genuinely dual simplex algorithms were proposed by Balinski [10] and Akg�ul [2,3].
Both algorithms use signatures and the idea of restricting the set of the basis to be
considered to the so-called dual strongly feasible trees.
Up to now no e�cient code which implements these techniques is available.

2.3.2. Auction method
The auction method was introduced for the �rst time in [14], where a pseudo-poly-

nomial algorithm for AP was presented. Subsequently, the method was improved
through a scaling technique (see [16]) giving an algorithm which runs in O(n3log(n�)),
for dense instances, where � is the maximum |cij| value. In the following, we briey
describe the original technique and its improvement. Note that this method has usually
been presented for the maximization version of AP, but for congruence with the rest
of the paper we describe its application to a minimization problem.
Consider the dual problem D(AP) and observe that, given a dual vector v, the

associated optimal vector u is

ui =min{cij − vj: j = 1; : : : ; n} (i = 1; : : : ; n): (10)

Thus D(AP) is equivalent to the unconstrained problem

max q(v) (11)

where q(v) =
∑n

i=1 minj(cij − vj) +
∑n

j=1 vj. Given a row index i, let us de�ne as

j(i) = argmin{cij − vj: j = 1; : : : ; n} (12)

the column index associated with the minimum cij − vj value of row i. Note that if
the dual vector u is de�ned as in (10) and we consider the assignment xi; j(i) = 1,
for i = 1; : : : ; n (not necessarily feasible for AP), then the complementary slackness
conditions (8) are satis�ed. During its execution, an auction algorithm maintains a triple

24 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

(x; (u; v)) which is dual feasible and satis�es the complementary slackness conditions.
At each iteration the dual vector v is updated and an optimal solution to AP is obtained
when v can be associated, through (12), to a primal feasible solution (i.e. j(i) 6= j(k)
for i; k = 1; : : : ; n; i 6= k).
The algorithm maintains a set S of assigned rows (initially empty) and, at each

iteration, it selects a row �� 6 ∈ S and performs the following steps. It computes the �rst
and the second minimum of the quantities c��j − vj, i.e. the value u�� (see (10)), and the
value

u′′�� =min{c��j − vj; j = 1; : : : ; n; j 6= j(��)}: (13)

If u�� ¡u′′�� or u�� = u
′′
�� and j(��) 6= j(i); ∀i∈ S then the current vj(i) value is decreased by

the quantity |u��−u′′�� |, row �� is added to S, and the row �̂∈ S such that j(�̂) = j(��), if any,
is removed from S. If otherwise u�� = u′′�� and a row �̂∈ S exists such that j(�̂) = j(��), then
the algorithm performs a labeling procedure, like that of the Hungarian method, which
either �nds an augmenting path with zero reduced cost (so a new row is assigned), or it
determines a value � to be subtracted from the dual values associated with the labeled
columns (so a new vector v is de�ned). In the �rst case, set S is updated according to
the augmenting path found, whereas in the second case we set S = S\{�̂} ∪ {i}. The
algorithm terminates when |S|=n. For dense instances the algorithm runs in O(n3+n2�)
time (where � is again the maximum |cij| value).
The improved algorithm uses the following relaxed version of the complementary

slackness conditions. Given a primal–dual pair and a value �¿ 0, conditions (8) are
considered to be satis�ed if

�cij6� ∀i; j : xij = 1: (14)

This is called an �-relaxation of the problem. The algorithm starts with a large � value
and determines an optimal primal–dual pair for the �-relaxed problem, then it reduces
the value of � and reoptimizes the solution. It is possible to show that a primal–dual pair
is optimal for AP when �¡ 1=n. The optimal �-relaxed primal–dual pair is determined
by means of a method similar to the above one.
First a list L = {1; : : : ; n} \ S containing all the unassigned rows is de�ned. Then

a bidding phase is performed by computing, for each row ��∈L, the value b(��)= vj(��)
+u��−u′′�� − � (called bidding of row �� for column j). In a subsequent assignment phase
the algorithm sets vj(��) to b(��) (observe that this updating preserves the �-slackness
conditions), removes row �� from L and adds �� to set S. If a row i∈ S exists such
that j(i) = j(��) then i is removed from S and added to a second list L2, initially
empty.
When all rows of L have been examined, if |L2| is larger than a given threshold

value, then the algorithm sets L=L2; L2= ∅ and repeats the above procedure. Other-
wise (|L2| is small) if �¡ 1=n then the current solution is optimal, else � is reduced,
L is de�ned again as {1; : : : ; n} \ S and the procedure is repeated.
This implementation of the auction method is known as the “Gauss–Seidel version”.

In a di�erent implementation, called the “Jacobi version”, the bidding b(i) is computed

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 25

for all unassigned rows, instead of that for a single row, then the dual value vj of each
column j which received a bid is updated. The Jacobi version is more e�cient for
parallel implementations, whereas the Gauss–Seidel version is superior for sequential
implementations.
The auction algorithms we have used for our experiments implement the Gauss–

Seidel version and were described in [15].

2.3.3. Pseudoow method
Given a digraph Ĝ = (V̂ ; Â) and a capacity b(i; j)¿ 0 for each arc (i; j)∈ Â, a

pseudoow is a function f : Â → R + satisfying f(i; j)6b(i; j) ∀(i; j)∈ Â. For each
pseudoow f and node k ∈ V̂ the excess ow into k is de�ned as e(k)=∑(i;k)∈ Â f(i; k)
−∑

(k; j)∈ Â f(k; j)+d(k), where d(k) is the supply of node k (d(k) is positive if k is
a source, negative if k is a sink, and null, otherwise). If e(k) = 0 for each k ∈ V̂ the
pseudoow f is called a ow.
Given an instance of AP de�ned by a bipartite graph �G=(U ∪V; �E) (see Section 2)

and a pseudoow f, we can de�ne a bipartite digraph G = (U ∪ V; A), with arc
set A = D ∪ R. The de�nition of sets D and R is similar to that in Section 2.1: D
contains direct arcs, i.e. arcs directed from U to V and R contains reverse arcs, i.e.
arcs from V to U . More precisely, D= {(i; j): i∈U; j∈V; [i; j]∈ �E; f(i; j)¡ 1} and
R = {(j; i): j∈V; i∈U; [i; j]∈ �E; f(i; j)¿ 0} (note that a single edge [i; j]∈ �E with
0¡f(i; j)¡ 1 produces two arcs in A). With each direct arc (i; j)∈D we associate a
capacity b(i; j)=1 and a cost cij, whereas with each reverse arc (j; i)∈R we associate
a capacity b(j; i) = 1 − f(i; j) and a cost −cij. Finally, the supply function is given
value 1 for each node k ∈U and value −1 for each node k ∈V .
The pseudoow method uses a cost scaling technique to determine, by successive

approximations, an optimal solution to AP. Given a value �¿ 0, the algorithm sets
f(i; j)=0 ∀(i; j)∈A (i.e. it de�nes a zero pseudoow) and transforms this pseudoow
into a ow which is optimal for the �-relaxation of the problem (see (14)). Then the
value of � is reduced and a new �-optimal ow is determined. The procedure is iterated
until �¡ 1=n, which guarantees the optimality of the ow for the original problem (see
Section 2.3.2).
The method used to convert a pseudoow into an �-optimal ow uses two main

operations: push and relabel. The push operation is applied to an arc (i; j)∈A to
increase the ow on the arc by one unit (note that since the maximum capacity of
an arc is one, then push can be applied only to arcs with zero ow). After a push
the capacity is saturated, therefore the arc is removed from A and substituted with its
opposite (j; i). The relabel operation is applied to a node k to change the value of its
dual variable preserving the �-optimality. If k ∈U then uk is set to min(k; j)∈ A{ckj−vj},
if instead k ∈V then the value of vk is set to max(k; i)∈ A{cik − ui − �}. Given the dual
variables vj (j=1; : : : ; n), let us call a scaling phase an iteration of the algorithm which
de�nes ui =min(i; j)∈ A{cij − vj} ∀i∈U , sets the initial pseudoow to zero and applies
a series of push and relabel operations, to determine an �-optimal ow. It is possible

26 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

to show (see, e.g. [33]) that during a scaling phase:
(a) the values of the dual variables u monotonically increase, whereas the values of

the dual variables v monotonically decrease;
(b) for each i∈U , the value ui increases by O(n�) and for each j∈V , the value vj

decreases by O(n�).
If we call again � the maximum |cij| value, and we assume that the value of � is

divided by � at each scaling phase, then the maximum number of scaling phases is
1 + blog�(n�)c.
Using the above method, Orlin and Ahuja [47] and Goldberg et al. [32] inde-

pendently developed algorithms which solve AP on sparse graphs with m edges in
O(

√
nm log(n�)) computing time. In particular, the Orlin and Ahuja algorithm can be

seen as a hybrid of the auction algorithm and the shortest path algorithm. We will
discuss in the next section some similarities of the algorithms based on pseudoow,
shortest path and auction.
In our experiments, we have used the pseudoow-based algorithm described in [31],

which runs in O(nm log(n�)) computing time.

2.3.4. Interior point method
Since any extreme point of the polyhedron of AP is integral, then all methods

developed for the solution of a continuous linear problem can be applied to AP. This
is also the case of the interior point method. However, to our knowledge, there is only
one algorithm that solves AP by means of this technique (see [49]). Computational
experiments with that code were presented in [31], where it is shown that the approach
is not competitive, therefore we have tested no interior point method.

3. The competitors

We have selected and tested the eight most popular and easily available codes for
AP. In Table 1 we give the acronym we use to identify the algorithm, a pointer to
the literature, the nature of the method implemented (we indicate by SP the shortest
path method, by AU the auction method and by PF the pseudoow method), and the
language used for the original implementation (we indicate with FOR, PAS and C, the
languages FORTRAN, Pascal and C, respectively).
Four algorithms are pure shortest path methods, one is a mixture of auction and

shortest path technique, two are implementations of a pure auction technique and the
last one is a pseudoow-based algorithm.
The FORTRAN source code of algorithm APC is available in the diskette accom-

panying the book by Simeone et al. [52]. The codes JV and CTCS are widespread
di�used and are available as pseudocode listing in papers [37] and [22], respectively,
or directly from the authors (Tom Volgenant, E-mail: tonv@fee.uva.nl and Paolo
Toth, E-mail: ptoth@deis.unibo.it). The code LAPm is available as a pseudocode
in [53], or as a Pascal listing from the author. The FORTRAN codes NAUC, AFLP

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 27

Table 1
The competitors

acronym APC CTCS JV LAPm NAUC AFLP AFR CSA
reference [20] [22] [37] [53] [15] [15] [15] [31]
method SP SP SP SP SP+AU AU AU PF
language FOR FOR PAS PAS FOR FOR FOR C

and AFR are contained in the diskette accompanying the book by Bertsekas [15] and
are available at the URL: http:==www.mit.edu=people=dimitrib=home.html.
The C language source code of algorithm CSA by Goldberg and Kennedy [31] can

be obtained as a tar uuencoded �le by sending an empty E-mail message, with subject
send csas.tar, to: ftp-request@theory.stanford.edu.

3.1. Algorithm APC

This is a pure shortest path algorithm preceded by a simple initialization procedure.
A column reduction is �rst performed (see (9)) and a partial assignment is determined
by scanning one column j at a time and by setting xij =1 if cij is the minimum value
of the column and row i is unassigned. Then a row reduction is performed (see (9))
and an attempt is made to enlarge the partial assignment. For each row i= 1; : : : ; n, if
column j(i) (see (12)) is unassigned, then xi; j(i) is set to one, otherwise the row �̂ such
that x�̂; j(i) = 1 is scanned. If an unassigned column j such that c�̂; j − vj = c�̂; j(i) − vj(i)
is found, then the partial assignment is improved by setting xi; j(i) = 1; x�̂; i) = 0 and
x�̂; j = 1. The last improvement corresponds to performing a labeling phase like that in
the Hungarian method restricted to alternating paths of length two.

3.2. Algorithm CTCS

The initialization phase of algorithm CTCS is the same as that of algorithm APC. If
the number of assignments in the partial primal solution is smaller than 0:6n, then the
algorithm completes the solution with a standard shortest path technique, thus it operates
exactly as APC. If, instead, the partial solution contains at least 0:6n assignments, then
a sparse matrix Ĉ is obtained by heuristically selecting a subset of elements from matrix
C. The following shortest path phase operates on matrix Ĉ by using an implementation
of APC which works for sparse matrices. Due to the sparsi�cation it may happen that
no feasible solution exists for Ĉ. In this case it is necessary to add more elements of
C to Ĉ and to continue to search for a complete solution, with the updated matrix. If,
instead, a primal–dual pair which is optimal for Ĉ is found, it is necessary to check if
the dual solution is feasible for the complete matrix C. If not, for each pair (i; j) such
that �cij ¡ 0 the assignments of row i and column j are removed, and entry cij is added
to Ĉ (note that, for the sparse matrix Ĉ, due to the optimality of the corresponding dual
solution, an entry such that �cij ¡ 0 cannot exist). If, for a given number of iterations,
no feasible solution has been found on Ĉ, or the solutions found are not optimal for

28 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

C, then the algorithm discards the sparse matrix, and completes the solution by means
of the standard shortest path method.
To complete the description of the algorithm we have to specify how the elements

of matrix Ĉ are selected. Given a parameter � (set to ten in the original code) the
algorithm considers the � + 1 columns 1; bn=�c; 2bn=�c; : : : ; �bn=�c and determines the
average value, say �, of the elements in these columns. Then it computes the threshold
� = b0:5 + 2� log10 n=�c, where � is the number of assignments in the initial partial
solution. Matrix Ĉ is given by the elements of matrix C with cij6�.

3.3. Algorithm JV

This algorithm, originally named LAPJV, is one of the shortest path algorithms
which has received most attention in the literature. The peculiarity of the algorithm is
the massive use of preprocessing procedures to determine the �rst primal–dual pair.
With this algorithm the preprocessing is the most time-consuming phase, but usually the
resulting primal partial solution has a large number of assignments, so a few shortest
paths are needed to complete the solution.
Algorithm JV �rst performs a column reduction and determines the corresponding

partial solution, as done by algorithm APC (see above). Then it executes a so called
reduction transfer procedure, which closely resembles the original auction method (see
[14]). For each unassigned row i the values ui and u′′i are computed (see (10) and(13))
and vj(i) is reduced to vj(i)−(u′′i −ui) (the aim of this updating is to make the assignment
of row i to a column easier, by imposing that the minimum reduced cost of row i is
achieved at two columns).
The second procedure, called augmenting row reduction (ARR) performs a series of

updating of the dual variables v, which are again close to those made by the auction
method. Let us de�ne j′′(i) as a column such that u′′i = ci; j′′(i) − vj′′(i), and let r(j) be
the row currently assigned to column j (with r(j) empty if column j is unassigned).
For each unassigned row i, ARR computes the values ui and u′′i and updates the dual
variables according to the following two cases: ui ¡u′′i or ui = u

′′
i .

In the �rst case (ui ¡u′′i), vj(i) is reduced to vj(i) − (u′′i − ui) and row i is assigned
to column j(i). If r(j(i)) is empty, then the procedure starts a new iteration by con-
sidering a new unassigned row. Otherwise (r(j(i))¿ 0) the assignment of row r(j(i))
to column j(i) is removed and the procedure starts a new iteration with the (now)
unassigned row r(j(i)).
In the second case (ui=u′′i), if one of the two columns j(i) and j

′′(i) is unassigned,
then row i is assigned to the unassigned column, and ARR continues with a new
unassigned row. Otherwise row i is assigned to column j′′(i), the assignment of row
r(j′′(i)) to column j′′(i) is removed, and the procedure continues with the unassigned
row r(j′′(i)).
It is worth noting that a series of executions of procedure ARR, starting with di�erent

unassigned rows, can be seen as a particular implementation of an auction phase,
without the �-relaxation. Jonker and Volgenant have shown that an algorithm which

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 29

iteratively applies procedure ARR, �nds an optimal solution to AP in O(n3�) time,
where � is again the maximum |cij| value. In the original implementation of algorithm
JV, procedure ARR is repeated twice, then the partial solution is completed through
shortest paths.
The shortest path phase has been implemented with particular care and several tricks

have been adopted to accelerate the search of the shortest paths.

3.4. Algorithm LAPm

Similar to algorithm CTCS above, procedure LAPm (originally named LAPMOD)
works with a sparse matrix. Given a parameter � depending on n, for each row i,
LAPm includes the values ci;1; ci;2; : : : ; ci;� in the sparse matrix. Then it examines the
remaining entries of row i looking for a value cij smaller than the average values of
the � entries currently selected. If such an entry exists, one of the entries already se-
lected is substituted with the new entry, and the search continues. The algorithm also
provides for the entry (i; i) to be included in the sparse matrix Ĉ, possibly with a very
large cost (say +∞), thus ensuring that a feasible solution always exists for Ĉ. The
resulting instance is solved through an implementation of algorithm JV which works
with sparse matrices. When a primal–dual pair optimal for Ĉ has been obtained, the
same method used for CTCS is applied to check if the dual solution is feasible for
the full instance. If the solution is unfeasible, the sparse matrix is enlarged (again with
the same technique used for CTCS) and the shortest augmenting path phase of algo-
rithm JV is repeated.

3.5. Algorithm NAUC

The original name of this algorithm, presented in [15], was NAUCTION SP which
stands for “naive auction and sequential shortest path” algorithm. The author describes
the code as follows.
“This code implements the sequential shortest path method for the assignment prob-

lem, preceded by an extensive initialization using the naive auction algorithm. The
code is quite similar in structure and performance to a code of the author [14] and to
the code of Jonker and Volgenant [36,37]. These codes also combined a naive auction
initialization with the sequential shortest path method.”
In practice, the algorithm performs a pre�xed number of auction cycles, each of

which is similar to procedure ARR of algorithm JV. The number of cycles is de�ned
as a function of the sparsity of the matrix and, for dense instances, it is equal to two.
After the auction phase, the partial solution is completed by means of shortest paths.

3.6. Algorithms AFLP and AFR

We have used two di�erent implementations of the auction method. All the algo-
rithms we have considered up to now are implemented using integer variables and

30 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

performing operations with integer arithmetic (which are faster than oating point
operations). To implement the scaling version of the auction method one has two
possibilities.
The �rst one is to use real variables so that it is possible to manage directly values

of � smaller than one: this is the method used by code AFLP (the acronym stands for
Auction with FLoating Point variables).
The second possibility is to multiply all data by a constant K such that the values

assumed by �, after the scaling, are larger than one. In this case it is possible to use
integer variables (note that the number of signi�cant decimal digits of � is given by the
order of magnitude of K , i.e. if K = O(10�); � decimal digits from � are signi�cant).
Unfortunately this technique reduces the set of instances to which the algorithm can
be applied. Indeed, calling M the largest integer value representable with an integer
variable, the method solves only instances with maxi; j(cij)6M=K , instead of instances
with maxi; j(cij)6M , as for the other algorithms.
The code AFR we tested uses integer variables and a forward=reverse technique (the

acronym AFR stands for Auction with Forward=Reverse). In the previous section we
have described the forward version of the auction code. The reverse version consists
in applying the method to the transposed matrix, i.e. the problem to be solved is

max q′(u) (15)

where q′(u)=
∑n

j=1 mini(cij−ui)+
∑n

i=1 ui. In the forward=reverse implementation, the
algorithm alternatively performs forward and reverse cycles. The switching is controlled
by a function of the current number of assignments in the partial solution. For a more
precise description of this algorithm we again use the words of the author.
“This code implements the forward=reverse auction algorithm with �-scaling for sym-

metric n by n assignment problems. It solves a sequence of subproblems and decreases �
by a constant factor between subproblems. This version corresponds to a Gauss–Seidel
mode and solves � subproblems inexactly. The code is an improved version of an
earlier (September 1985) auction code with �-scaling written by Dimitri P. Bertsekas”.

3.7. Algorithm CSA

In [31] Goldberg and Kennedy presented several implementations of the pseudoow
algorithm. After extensive computational experiments they conclude that their imple-
mentation called CSA-Q is best overall, so we have used this code for our tests.
CSA-Q uses the double-push method which consists of performing a pair of push

operations, in sequence. More precisely, given an unassigned node i∈U , then double-
push(i) determines the �rst and the second arc with smallest reduced costs, among
those emanating from i, say (i; j) and (i; k), respectively. Then it sends a unit of ow
through arc (i; j) (i.e. assigns i to j) and, if column j was assigned to a row r(j), it
performs a second push operation by sending a unit of ow through the reverse arc
(j; r(j)) (thus removing the assignment (r(j); j)). Lastly, the dual value ui is set to
cik − vk and the dual value vj is set to cij − cik + vk − �. One can observe the near

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 31

equivalence between the double-push operation and the application of an auction step
made by a bidding phase followed by an assignment phase (see Section 2.3.2). Indeed,
given a row i, both methods de�ne the same dual value for the column j associated
with the minimum reduced cost of row i, and assign=deassign the same elements. The
only di�erences are in the way the calculations are performed and in the computation
of the dual values u, which are explicitly made by CSA-Q, whilst the auction method
takes care of them implicitly.
A second peculiarity of code CSA-Q is the use of the so-called fourth-best heuristic

to speed up the search. At the beginning of the algorithm, for each row i, the four
smallest partial reduced costs cij − vj are determined and the largest of these four
costs is stored in K(i). When the algorithm needs to compute the �rst and the second
smallest reduced cost of a row, the search is performed only among the four costs
previously identi�ed. Since the values of the dual variables v monotonically decrease,
then the partial reduced costs cij− vj strictly increase, hence it is necessary to compute
again the four smallest partial reduced costs only when all, except possibly one, of the
saved elements have partial reduced cost greater than K(i).

4. Codes and test instances

In this section we describe in detail how we have used the original codes introduced
in Section 3. Moreover we introduce the classes of instances used to test the codes.

4.1. Adapting the original codes

The original codes we considered are written in three di�erent languages: FOR-
TRAN, C and Pascal. While compilers for the �rst two languages are available on
most hardware platforms, this is not true for the Pascal language (especially under the
Unix System). Therefore we have performed a one-to-one translation of the codes JV
and LAPm from the original Pascal version to the FORTRAN language. Implementing
the FORTRAN version we have adopted some shrewdness to obtain a code that has
the same e�ciency as the original Pascal code. In particular, we have swapped the row
and column indices. Indeed, in Pascal a matrix is stored ‘by rows’ (i.e. two elements
ci; j and ci; j+1 are stored in adjacent memory positions), whereas in FORTRAN a ma-
trix is stored ‘by columns’ (i.e. the two elements ci; j and ci+1; j are stored in adjacent
positions). Hence, it is convenient to scan the cost matrix by rows, using Pascal, and
by columns, using FORTRAN.
Codes NAUC, AFLP and AFR have been originally implemented in FORTRAN to

work with sparse cost matrices. Since our tests consider only dense instances, one has
to consider the possibility of substituting the pointer-based data structure, used to store
the sparse matrices, with a full matrix. We have modi�ed all the codes accordingly
and we have performed a set of preliminary tests. It resulted that the use of a full
matrix is advantageous only when the auction method is paired with the shortest path

32 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

technique. Therefore the code NAUC we tested utilizes a full matrix, instead of the
original data structure, whereas algorithms AFLP and AFR have not been changed.
Since the original implementation of NAUC stores the sparse cost matrix by rows,
we have swapped the row and column indices. Lastly, the auction codes have been
designed to solve maximization problems, so we run these algorithms with cost matrix
[− cij] instead of [cij].
Algorithm CSA is distributed with a package containing a main procedure which

reads the input data, prepares the internal data structure and then runs the optimization
procedure which solves the problem. In order to use the same main FORTRAN program
to run all codes, we have implemented two interfaces for running CSA. The �rst
interface is a FORTRAN subroutine which receives the cost matrix, stores the costs in
a single vector and calls the second interface, written in C language, which prepares the
data structure and runs the optimization procedure. The CPU time elapsed is calculated
only for the optimization phase. Since CSA requires as input a maximization problem
and the C language stores the matrices by rows, the interface subroutines give the
optimization procedure the opposite of the transposed FORTRAN cost matrix (i.e. we
give CSA the costs dij =−cji, for i; j = 1; : : : ; n).
During a �rst set of preliminary experiments, we encountered some di�culties with

the de�nition of the large positive value we give to an entry that does not exist in
an original instance. In particular, we gave these entries the value 2× 109. The same
value is given to the algorithms for internal use. With this choice, algorithm LAPm
often entered an in�nite loop, especially when we tried to solve geometric instances
(see below). We skipped the problem by giving value 108 to the largest cost of an
entry and giving the value 2× 109 for internal use.

4.2. The classes of instances

To test the performance of the eight competitors, we have used six classes of ran-
domly generated problems and 141 benchmark instances. The size of the cost matrix
varies up to one thousand rows and columns. (It is not easy to determine how much
core memory is used by each of the algorithms tested, especially for the C codes which
dynamically allocate the memory during the run, but instances with up to 106 entries
are easily solved with any “of-the-shelf” computer.)
The random problems have been generated by means of the DIMACS completely

portable uniform random number generator (see [35]).

4.2.1. Random instances
The six random classes we have considered are as follows.
Uniform random class: The entries of the cost matrix are integers uniformly ran-

domly generated in [0; K], with K ∈{10; 102; 103; 106}. This is the most common class
of instances used in the literature to test AP algorithms (see e.g. [29,37,20,31]).
Geometric class: We �rst generate two sets of points, X and Y , each containing n

points with integer coordinates in the square [1×K]×[1×K] with K ∈{10; 102; 103; 106}.

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 33

Then for each pair (i; j), for i; j=1; : : : ; n, we assign to cij the truncated euclidean dis-
tance between the ith point of X and the jth point of Y . This class of instances was
introduced in [31].
No-wait ow-shop class: It is well known that an instance of the scheduling problem

known as no-wait ow-shop can be transformed into an instance of the Asymmetric
Travelling Salesman Problem (ATSP). We have generated ATSP instances as those
proposed in [19] (i.e. derived from no-wait ow-shop scheduling problems with ten
and twenty machines, and up to one thousand jobs) and we have solved AP with the
corresponding cost matrix. This is a new test class for AP.
Two cost class: Each entry of the cost matrix is given cost 1 with probability p and

cost 106 otherwise, where p∈{0:25; 0:5; 0:75}. This class is the dense version of the
analogous class introduced in [31].
Randomized Machol Wien class: This class, obtained by randomization from the

benchmark instances of Machol and Wien [42,43], was �rst introduced in [22].
In particular, cij is assigned an integer value uniformly randomly generated in
[0; (i − 1)(j − 1)].
SDVSP class: In the Single Depot Vehicle Scheduling Problem (SDVSP) we want

to �nd the minimum cost assignment of buses, located in the same depot, to a set of
time-tabled trips. It is known that the problem can be modeled as an AP de�ned by a
particular cost matrix. We have generated SDVSP instances as in [27] and transformed
each one into an AP instance. Since the number of rows (and columns) in the assign-
ment must be almost double the number of trips in the SDVSP instance, we limited
the number of trips to 600. This is a new test class for AP.

4.2.2. Benchmark instances
The �rst set of �ve benchmark instances we used were proposed by Machol and

Wien in [42,43].
Machol Wien class: This is a famous class of di�cult instances de�ned by cij =

(i − 1)(j − 1), for i; j = 1; : : : ; n.
The other benchmarks we used are instances of the Travelling Salesman Problem

(TSP) and of the Capacitated Vehicle Routing Problem (CVRP). It is well known that
the assignment problem de�nes a lower bound for TSP, which has been extensively
used in the literature. Hence, it is important to test the performance of the AP algorithms
on these instances. We used benchmarks with at most 1000 nodes, taken from the
TSPLIB (see [50]). The �rst 75 instances correspond to symmetric TSP (i.e. cij = cji,
for i; j = 1; : : : ; n; i 6= j), whereas the following 19 instances de�ne asymmetric TSPs.
The �rst seven Vehicle Routing Problem instances (available in the TSPLIB [50])

are from Christo�des and Eilon [24], another three instances are from Fisher [30]
and another four instances are from Christo�des et al. [25]. Additional 20 instances
are unpublished problems randomly generated by Augerat et al. [6], with a clustering
technique. More precisely, a random number of clusters of size 10 × 10 is generated
on a 100× 100 square, then n points are randomly generated within the clusters. Each
cost cij is given the truncated euclidean distance between i and j.

34 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

Lastly, we tested the algorithms on the eight dense instances proposed by Beasley
[12] and available in the OR-Library (see [13]).

4.3. Running the codes

The codes in Section 3 have been tested on two very common systems. The �rst
one is a Sun Sparc Ultra 2 workstation running under a Unix operating system (SunOS
version 5.5.1). The second one is a personal computer with a CPU Pentium with clock
at 100 MHz, running under Windows ’95.
On the workstation we used the SUN C and FORTRAN 77 compilers, version 4.0

with the compiler option -O0 which disables the optimization. Therefore the �nal com-
mand lines used to compile are: cc -O0 -c 〈�lename〉 and f77 -O0 -c 〈�lename〉
(the option -c disables the linking phase). The object codes were linked with the f77
utility (command line: f77 〈object �les〉. The Unix function times() was used to
determine the CPU time used by each code.
On the personal computer we used the Watcom FORTRAN 77=32 compiler version

10.6 and the Watcom C32 compiler version 10.6. We used no speci�c compiler in-
struction, but only the option -5, which tells the compilers that the microprocessor
is a Pentium and the option -od which disables the compiler optimization. The �nal
command lines used to compile are: wfc386 -5 -od 〈�lename〉 for the FORTRAN
language and wcc386 -5 -od 〈�lename〉 for the C language. To link the codes we
used the Watcom linker utility and the PharLap TNT DOS extender. With this system
the resulting executable code can be run both under Windows and under MS-DOS.
The command lines used are wlink FILE 〈object �les〉 NAME main.exp, and re-

bind main.exp (the rebind command is used to obtain the �nal executable code
main.exe from the intermediate code main.exp). We run the code in an MS-DOS
window while no other program was running. The Watcom routine gettim() was
used to calculate the CPU time used by each code.

5. Computational experiments

In this section we discuss the behavior of the selected algorithms, when solving the
test instances described in Section 4.2.
For each class, for each value of the possible parameter de�ning the class, and for

each value of n (with n∈{200; 400; 600; 800; 1000}), we have generated and solved
ten instances. A time limit of 500 s was given to each algorithm for solving a single
instance (but the limit was extended to 1500 s for each Machol Wien instance). In
the tables, for each code and for each value of n, we report the average CPU time
with respect to the number of instances solved within the time limit. The symbol
‘tl’ is used to indicate that the time limit was reached for all the ten instances. The
symbol ‘c’ is used when code AFR cannot solve the instances, due to the restrictions

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 35

Fig. 1. Uniform random class, n = 1000, Sun Sparc Ultra 2.

on the magnitude of the costs. The single digit after the CPU time gives the number
of successful runs, when the number of solved instances is between one and nine.
We report in detail the computational experiments performed with the Sun Sparc

Ultra 2 workstation, running under Unix, whereas for the results obtained with the
Personal Computer, running under Windows 95, we give only some qualitative de-
scription and a �gure. Indeed, we have observed that the speeds of the two computers
are comparable (see Figs. 1 and 2) and the performance on the PC is close to that
on the workstation (with a single exception that we will point out in the following).
However, the running times on the PC are sensitive to the environment (total quantity
of memory allocated, number of algorithms linked in the same executable �le, etc.),
so we prefer to present numerical results only with respect to the workstation which
does not present such anomalies.
Fig. 1 depicts the average running times for the uniform random class, and for

instances with n = 1000 (the numerical values are given in Table 2). The maximum
running time for each of the algorithms APC, CTCS, JV, LAPm, NAUC and CSA, is
at most 20% larger than the average time, thus showing a good robustness of these
algorithms when solving uniform random instances. Instead, the maximum running time
of the two pure auction methods, AFLP and AFR, is up to three times the average,
thus showing a strong dependence on the instance. Table 3 gives the results obtained
with the uniform random class, for all values of n and for all values of the range
parameter K (with K = 10; 102; 103; 106).
In Fig. 2 we report the average running times on the personal computer, for the same

instances of Fig. 1 (note that the CPU time of AFLP for K =106 is outside the �gure
since it is about 60 s). Comparing Figs. 1 and 2 one can see that the performances of
the algorithms on the workstation and on the PC are quite similar, the only exceptions

36 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

Fig. 2. Uniform random class, n = 1000, PC Pentium 100.

Table 2
Uniform random class, n = 1000, Sun Sparc Ultra 2 (time in seconds)

Range APC CTCS JV LAPm NAUC AFLP AFR CSA

10 0.42 0.65 3.00 12.15 2.61 tl 7.65 14.45
102 3.24 1.66 2.50 1.43 4.60 tl 16.92 18.29
103 11.18 3.13 4.39 1.55 14.41 22.82 11.69 7.40
106 15.67 17.58 6.76 1.72 7.68 40.99 c 7.52

being algorithms AFLP and AFR that we have already observed have a behavior less
stable than that of the other methods.
For small costs instances (K = 10) the fastest algorithms are APC and CTCS, but

their running time increase with the range. Algorithm LAPm is slower than APC and
CTCS when the costs are small, but it is very fast for the other three ranges. The
average performances of algorithm AFR are not too bad, but the running time for a
single instance may be very high (about 40 s for an instance with K = 103) and the
algorithm cannot be used for K = 106. Finally, the running time of AFLP is always
very large, especially for small costs. Indeed, no instance with K6100 was solved
within the time limit of 500 s.
The results with the geometric class, for instances with n=1000, are summarized in

Fig. 3 (see also Tables 4 and 5). For all algorithms, except for LAPm and AFLP, the
maximum running time never exceeds the average time by more than 30%. LAPm and
AFLP, instead have maximum times up to �ve times larger than the average times.
More speci�cally, LAPm presents a large variance of the running times for n6800,
whereas it is substantially stable for n=1000. Nevertheless, for K ¿ 10, LAPm is the
fastest algorithm, followed by CSA. For K = 10 the fastest code is JV, which is also

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 37

Table 3
Uniform random class, Sun Sparc Ultra 2 (time in seconds)

n APC CTCS JV LAPm NAUC AFLP AFR CSA

cij ∈ [1; 10]
200 0.02 0.05 0.09 0.34 0.09 8.10 0.22 0.28
400 0.07 0.12 0.43 1.90 0.39 73.38 0.85 1.69
600 0.16 0.23 1.03 4.59 0.92 257.17 2.23 4.27
800 0.28 0.42 1.88 7.98 1.65 tl 3.27 8.23
1000 0.42 0.65 3.00 12.15 2.61 tl 7.65 14.45
cij ∈ [1; 102]
200 0.22 0.13 0.11 0.09 0.20 0.47 0.17 0.17
400 1.25 0.41 0.52 0.29 1.28 23.39 0.92 1.38
600 2.41 0.64 0.94 0.59 2.65 134.54 2.45 5.20
800 2.80 1.09 1.60 0.99 3.55 422.72 7 7.91 10.93
1000 3.24 1.66 2.50 1.43 4.60 tl 16.92 18.29
cij ∈ [1; 103]
200 0.24 0.14 0.12 0.09 0.16 0.25 0.15 0.17
400 1.08 0.51 0.56 0.30 0.99 1.14 0.64 0.89
600 3.06 1.13 1.44 0.60 3.08 3.03 1.60 2.21
800 6.10 2.02 2.77 1.02 7.46 11.26 4.81 4.44
1000 11.18 3.13 4.39 1.55 14.41 22.82 11.69 7.40
cij ∈ [1; 106]
200 0.28 0.15 0.32 0.12 0.32 0.53 c 0.19
400 1.35 0.58 1.06 0.34 0.97 2.67 c 0.97
600 4.04 4.58 2.54 0.70 2.74 8.18 c 2.52
800 8.55 9.70 4.47 1.17 4.97 23.92 c 4.41
1000 15.67 17.58 6.76 1.72 7.68 40.99 c 7.52

Fig. 3. Geometric class, n = 1000, Sun Sparc Ultra 2.

38 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

Table 4
Geometric class, n = 1000, Sun Sparc Ultra 2 (time in seconds)

Range APC CTCS JV LAPm NAUC AFLP AFR CSA

10 27.26 12.35 6.80 21.57 9.67 tl tl 24.56
102 25.50 26.54 14.27 4.26 47.52 tl tl 15.32
103 31.42 33.10 17.96 4.74 50.58 tl tl 11.42
106 34.08 35.07 74.57 8.52 90.55 tl c 10.54

Table 5
Geometric class, Sun Sparc Ultra 2 (time in seconds)

n APC CTCS JV LAPm NAUC AFLP AFR CSA

cij ∈ [1; 102]
200 0.33 0.31 0.18 0.40 0.31 7.53 4.85 0.45
400 2.25 1.50 0.86 2.03 1.55 84.83 96.97 2.74
600 6.74 4.06 2.09 5.42 3.32 319.93 161.63 7 7.45
800 15.28 7.81 4.26 11.39 5.94 tl 262.68 1 15.25
1000 27.26 12.35 6.80 21.57 9.67 tl tl 24.56
cij ∈ [1; 102]
200 0.43 0.49 0.30 0.32 0.58 17.39 16.67 0.33
400 2.36 2.62 1.61 0.88 3.78 219.25 169.73 4 1.54
600 6.81 7.55 4.10 2.16 11.29 324.27 4 tl 4.35
800 15.27 15.92 8.41 4.44 25.21 tl tl 10.83
1000 25.50 26.54 14.27 4.26 47.52 tl tl 15.32
cij ∈ [1; 103]
200 0.53 0.56 0.38 0.35 0.64 43.66 22.94 0.27
400 2.97 3.21 1.96 1.03 3.94 267.32 5 199.88 3 1.26
600 8.07 8.68 4.97 2.76 11.95 494.25 1 tl 3.38
800 18.60 19.68 10.40 5.47 27.21 tl tl 6.59
1000 31.42 33.10 17.96 4.74 50.58 tl tl 11.42
cij ∈ [1; 106]
200 0.56 0.58 4.08 1.13 4.19 32.81 c 0.31
400 3.17 3.31 12.86 2.23 13.55 192.36 9 c 1.41
600 8.74 9.06 29.24 5.12 31.44 334.22 6 c 3.38
800 20.17 20.51 48.83 8.73 57.70 tl c 6.45
1000 34.08 35.07 74.57 8.52 90.55 tl c 10.54

competitive for K =102 and 103, but it is dramatically slow for the largest cost range.
By solving geometric instances with K = 106 we have observed that algorithm LAPm
has a di�erent behavior when running on the workstation or on the personal computer.
Indeed, the CPU times on the PC are about one order of magnitude larger than those
on the workstation. However, this happens only with this algorithm (LAPm) and only
with this class and range. All other algorithms and instances have similar running times
on the two systems. We have not been able to �nd any convincing justi�cation for
this behavior.
The barchart in Fig. 4 reports the CPU times used by each algorithm to solve

the no-wait ow-shop instances with 1000 jobs, and 10 or 20 machines, respectively.
Algorithm CSA outperforms all other methods. Algorithms JV, LAPm and AFR are the
second best methods, but their running times are one order of magnitude larger than

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 39

Fig. 4. No-wait ow-shop class, n = 1000, Sun Sparc Ultra 2.

Table 6
No-wait ow-shop, Sun Sparc Ultra 2 (time in seconds)

m jobs APC CTCS JV LAPm NAUC AFLP AFR CSA

200 2.07 1.64 0.88 1.56 1.56 5.44 0.86 0.24
400 15.01 11.45 6.03 9.63 11.17 70.82 8.47 1.10

10 600 47.89 36.99 18.56 27.57 35.65 184.80 17.96 2.37
800 108.90 83.94 40.91 55.98 80.27 338.29 6 47.63 4.21
1000 205.86 159.30 75.89 102.69 152.34 459.27 1 89.66 7.18

200 2.36 1.63 0.88 0.80 1.63 4.36 0.51 0.22
400 17.22 12.74 6.08 5.50 12.70 30.88 4.07 1.00

20 600 54.35 42.91 19.16 17.30 41.30 120.39 19.29 2.32
800 125.98 91.78 43.09 36.70 98.11 302.76 26.75 4.29
1000 242.04 178.82 81.25 70.19 188.82 388.29 5 62.40 7.69

that of CSA. AFLP is about twice as slow as the worst among the other algorithms
and is not able to solve all the instances within the time limit (see Table 6). It is worth
noting that when we increase the number of machines of an instance, while keeping
the same number of jobs, some algorithms (e.g. APC and NAUC) require longer
running times, whereas some other algorithms (e.g. LAPm and AFR) require shorter
computing times. Finally we note that the di�erence between the maximum and the
average computing time never exceeds 10% of the average time, for all algorithms.
Concerning the two cost instances, we observe that the maximum running time of

each algorithm is almost identical to its average running time. Moreover there is no
signi�cant di�erence, when the percentage of high cost entries increases from 25% to
75%. Therefore we decided to give the results only for p=0:50, see Fig. 5 and Table 7.
Algorithms APC and CTCS are very fast, and beat the other methods by at least one
order of magnitude. Algorithm AFLP is not competitive at all, whereas AFR cannot be

40 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

Fig. 5. Two cost class, p = 0:50, Sun Sparc Ultra 2.

Table 7
Two cost class, p = 0:50, Sun Sparc Ultra 2 (time in seconds)

n APC CTCS JV LAPm NAUC AFLP AFR CSA

200 0.02 0.03 0.12 0.20 0.10 9.67 c 1.38
400 0.08 0.12 0.51 0.74 0.44 80.20 c 5.77
600 0.18 0.26 1.15 1.62 1.00 272.40 c 13.09
800 0.33 0.47 2.08 2.80 1.80 tl c 23.91
1000 0.52 0.73 3.29 4.36 2.83 tl c 39.31

used, due to the large cost values. Algorithm CSA is two orders of magnitude slower
than APC.
The randomized Machol Wien instances (see Fig. 6 and Table 8) are solved with

no great e�ort by all the algorithms, with the exception of AFR that cannot solve
instances with n¿600, since the costs are too large. The maximum computing times
are at most 1.2 larger than the average times, thus con�rming that these instances are
substantially not too di�cult. The fastest algorithm is CSA followed by four almost
equivalent codes, namely JV, LAPm, AFLP and NAUC. Algorithm AFR is fast, but
can solve only small instances. It is worth noting that the running time of LAPm
increases linearly with n.
The instances from the single depot vehicle scheduling class (see Table 9) are very

di�cult for the pure auction methods, which are outperformed by all other methods.
Code JV is able to solve these instances in few seconds, and CSA is only slightly
slower. APC, CTCS and NAUC are also not too bad, whereas LAPm is �ve to ten
times slower than JV.
In Tables 10–14 we report the results obtained with the benchmark instances.

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 41

Fig. 6. Randomized Machol Wien class, Sun Sparc Ultra 2.

Table 8
Randomized Machol Wien, Sun Sparc Ultra 2 (time in seconds)

n APC CTCS JV LAPm NAUC AFLP AFR CSA

200 0.73 0.75 0.30 0.56 0.39 0.47 0.19 0.30
400 4.12 4.63 1.57 2.92 2.17 2.28 0.81 1.40
600 12.54 13.88 4.33 7.81 6.16 6.06 c 3.45
800 24.80 26.15 8.67 12.48 12.89 11.66 c 6.18
1000 43.63 46.09 15.41 17.34 22.56 20.90 c 10.30

Table 9
Single depot vehicle scheduling class, Sun Sparc Ultra 2 (time in seconds)

Trips APC CTCS JV LAPm NAUC AFLP AFR CSA

200 1.02 1.29 0.72 6.34 1.52 421.70 1 64.02 2 1.67
400 7.71 10.16 4.92 45.80 11.35 tl tl 7.37
600 21.87 27.17 14.71 143.06 34.92 tl c 16.68

Table 10
Machol Wien class, Sun Sparc Ultra 2 (time in seconds)

n APC CTCS JV LAPm NAUC AFLP AFR CSA

200 6.52 4.62 3.73 9.00 10.75 45.35 114.47 1.70
400 52.95 39.07 28.83 76.15 87.10 748.93 tl 7.28
600 180.10 135.03 97.02 263.32 295.37 tl c 19.90
800 430.93 314.03 228.82 664.317 705.43 tl c 55.82
1000 846.80 613.87 446.47 1323.433 1381.95 tl c 143.97

42 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

Table 11
TSPLIB: Symmetric instances, Sun Sparc Ultra 2 (time in seconds)

Name APC CTCS JV LAPm NAUC AFLP AFR CSA

A280.TSP 3.82 4.32 2.22 7.82 8.15 478.85 105.25 5.62
ALI535.TSP 0.52 0.78 0.43 0.77 0.55 tl 47.45 2.02
ATT48.TSP 0.02 0.03 0.02 0.05 0.05 0.05 0.03 0.02
ATT532.TSP 18.63 18.23 12.78 70.88 78.35 tl tl 6.42
BAYG29.TSP 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02
BAYS29.TSP 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01
BERLIN52.TSP 0.03 0.03 0.03 0.08 0.03 3.52 0.22 0.03
BIER127.TSP 0.65 0.67 0.68 0.92 1.45 tl 104.22 0.37
BRAZIL58.TSP 0.02 0.02 0.01 0.01 0.01 0.18 0.02 0.02
BRG180.TSP 0.01 0.02 0.05 0.03 0.05 0.07 0.05 0.23
BURMA14.TSP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
CH130.TSP 0.37 0.40 0.23 0.92 0.48 14.08 7.58 0.15
CH150.TSP 0.58 0.63 0.37 1.38 0.95 11.13 7.72 0.22
D198.TSP 2.13 2.43 1.60 3.10 5.08 80.15 66.40 1.13
D493.TSP 38.93 43.37 26.20 54.35 84.88 tl tl 8.58
D657.TSP 64.05 72.53 42.07 124.75 166.77 tl tl 14.68
DANTZIG.TSP 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02
DSJ1000.TSP 312.32 324.83 263.87 499.33 tl tl 0.01 18.43
FL417.TSP 9.62 7.48 4.07 21.38 11.68 tl tl 10.48
FRI26.TSP 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02
GIL262.TSP 2.37 2.32 1.25 6.05 4.15 59.17 7.10 0.72
GR17.TSP 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
GR21.TSP 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
GR24.TSP 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01
GR48.TSP 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
GR96.TSP 0.02 0.03 0.02 0.03 0.02 0.18 0.03 0.03
GR120.TSP 0.03 0.03 0.03 0.03 0.03 3.73 0.23 0.12
GR137.TSP 0.03 0.05 0.03 0.05 0.03 16.07 0.03 0.10
GR202.TSP 0.08 0.12 0.07 0.08 0.08 365.83 22.97 0.38
GR229.TSP 0.12 0.17 0.10 0.13 0.10 47.23 0.18 0.30
GR431.TSP 0.43 0.63 0.33 0.33 0.50 tl 13.73 1.47
GR666.TSP 1.18 1.68 0.78 1.12 1.35 tl 235.77 3.22
HK48.TSP 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02
KROA100.TSP 0.20 0.18 0.15 0.47 0.28 16.15 3.63 0.10
KROA150.TSP 0.72 0.77 0.55 1.50 1.15 38.33 9.55 0.27
KROA200.TSP 1.68 1.85 1.07 3.72 2.65 80.60 23.97 0.52
KROB100.TSP 0.20 0.22 0.20 0.50 0.37 10.01 4.72 0.20
KROB150.TSP 0.73 0.80 0.53 1.72 1.12 49.75 21.72 0.33
KROB200.TSP 1.88 2.03 1.23 3.73 2.62 115.00 36.88 0.43
KROC100.TSP 0.20 0.22 0.15 0.47 0.33 5.77 2.33 0.12
KROD100.TSP 0.23 0.23 0.17 0.50 0.33 9.78 2.98 0.12
KROE100.TSP 0.22 0.23 0.22 0.50 0.30 12.42 1.10 0.12
LIN105.TSP 0.28 0.35 0.27 0.57 0.68 36.98 55.77 0.27
LIN318.TSP 7.62 8.05 5.17 13.90 18.03 tl tl 2.45
LINHP318.TSP 7.58 8.05 5.17 13.90 18.02 tl tl 2.47
P654.TSP 53.12 50.57 23.38 100.12 96.98 tl tl 20.60
PA561.TSP 3.78 4.00 1.90 1.22 3.72 4.40 1.35 3.63
PCB442.TSP 19.55 20.90 11.90 35.70 34.68 tl tl 9.07
PR76.TSP 0.10 0.10 0.10 0.22 0.27 96.10 58.13 0.18

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 43

Table 11 (Contd.)

Name APC CTCS JV LAPm NAUC AFLP AFR CSA

PR107.TSP 0.15 0.20 0.13 0.53 0.45 151.88 94.43 0.35
PR124.TSP 0.48 0.48 0.37 1.03 1.08 48.87 156.28 0.28
PR136.TSP 0.45 0.55 0.35 1.17 1.15 295.43 492.90 0.20
PR144.TSP 0.72 0.77 0.55 1.45 1.67 tl 304.85 0.50
PR152.TSP 0.80 0.87 0.60 1.77 1.80 tl tl 0.72
PR226.TSP 2.60 2.82 1.83 4.70 5.12 tl tl 1.48
PR264.TSP 3.67 4.00 2.38 7.23 9.33 tl tl 1.57
PR299.TSP 6.92 7.77 5.57 13.62 17.67 tl tl 3.78
PR439.TSP 14.23 15.15 9.98 36.83 47.53 tl tl 4.82
RAT99.TSP 0.12 0.13 0.08 0.42 0.17 0.48 2.70 0.10
RAT195.TSP 1.07 1.28 0.62 2.73 1.60 5.92 12.65 0.52
RAT575.TSP 26.72 35.12 15.47 57.92 40.90 452.62 tl 6.65
RAT783.TSP 61.32 98.07 39.00 194.80 105.35 tl tl 10.82
RD100.TSP 0.20 0.20 0.15 0.52 0.33 6.78 0.62 0.08
RD400.TSP 10.57 11.40 6.37 28.13 21.60 tl 254.28 2.25
SI175.TSP 0.08 0.12 0.08 0.08 0.13 2.95 0.13 0.17
SI535.TSP 0.52 0.80 0.45 0.60 1.15 71.43 16.78 1.00
ST70.TSP 0.05 0.05 0.05 0.12 0.08 0.07 0.12 0.03
SWISS42.TSP 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01
TS225.TSP 1.27 1.15 0.78 4.35 3.03 tl tl 1.52
TSP225.TSP 2.53 2.96 1.73 4.13 4.93 103.35 96.37 1.97
U159.TSP 0.88 0.92 0.62 1.80 2.13 tl 339.15 1.27
U574.TSP 48.00 53.42 32.25 87.25 113.15 tl tl 11.07
U724.TSP 93.50 105.37 60.32 150.15 213.55 tl tl 21.00
ULYSSE1.TSP 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01
ULYSSE2.TSP 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01

Average on the
solved instances 11.08 12.31 7.86 20.98 21.87 202.61 154.83 2.51

The Machol Wien instances (see Table 10) are very di�cult for all methods. The
two pure auction methods are not able to solve the instances with n¿ 400 within the
1500 s of the time limit. The fastest of the other methods is CSA which has running
times 3–4 times shorter than JV, which is the second best algorithm.
For the other benchmark problems we have added a row, at the bottom of each

table, with the average time over all test instances of the same class (for the unsolved
instances, a computing time equal to the time limit has been considered).
The symmetric TSP instances (see Table 11) are all very di�erent from each other,

both in size (n ranges from 17 to 1000) and in the structure of the cost matrix.
However, the relative behavior of the algorithms is quite insensitive to the instance,
with only one exception that we will describe in the following. If we do not consider
the pure auction methods, the remaining algorithms solve the instances with n6400
in less than 20 s, and the largest ones in a few minutes. Algorithm CSA is very fast,
indeed its average running time over all instances is less than one half that of the
second best code, namely JV, and about four times shorter than those of APC and
CTCS. The remaining algorithms LAPm and NAUC are slower. The auction codes
AFLP and AFR were not able to solve within the time limit about one third of the

44 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

Table 12
TSPLIB: Asymmetric instances, Sun Sparc Ultra 2 (time in seconds)

Name APC CTCS JV LAPm NAUC AFLP AFR CSA

BR17.ATS 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
FT53.ATS 0.02 0.04 0.01 0.02 0.01 0.05 0.01 0.07
FT70.ATS 0.02 0.04 0.02 0.03 0.02 0.40 0.01 0.13
FTV33.ATS 0.01 0.01 0.01 0.02 0.01 0.10 0.01 0.01
FTV35.ATS 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.01
FTV38.ATS 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01
FTV44.ATS 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01
FTV47.ATS 0.02 0.02 0.01 0.01 0.01 0.13 0.09 0.02
FTV55.ATS 0.02 0.02 0.01 0.02 0.01 0.18 0.37 0.03
FTV64.ATS 0.01 0.02 0.01 0.02 0.02 0.20 0.02 0.03
FTV70.ATS 0.02 0.02 0.01 0.02 0.02 0.23 0.23 0.02
FTV170.ATS 0.10 0.11 0.07 0.07 0.09 1.62 2.65 0.15
KRO124P.ATS 0.02 0.03 0.02 0.04 0.02 0.04 2.65 0.22
P43.ATS 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03
RY48P.ATS 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.07
RBG323.ATS 0.48 0.20 0.32 0.17 0.43 17.30 0.50 0.95
RBG358.ATS 0.95 0.28 0.33 0.20 0.62 20.93 0.77 1.97
RBG403.ATS 1.20 0.35 0.38 0.23 0.65 32.87 0.77 3.22
RBG443.ATS 1.45 0.43 0.52 0.29 0.80 41.50 1.00 2.77

Average 0.23 0.09 0.09 0.06 0.15 6.09 0.48 0.51

Table 13
Vehicle Routing Problems, Sun Sparc Ultra 2 (time in seconds)

Name APC CTCS JV LAPm NAUC AFLP AFR CSA

Eil22.VRP 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
Eil23.VRP 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01
Eil30.VRP 0.02 0.01 0.01 0.01 0.02 0.07 0.07 0.02
Eil33.VRP 0.02 0.01 0.01 0.01 0.02 0.05 0.07 0.02
Eil51.VRP 0.02 0.03 0.02 0.05 0.04 0.08 0.02 0.02
Eil76.VRP 0.05 0.07 0.05 0.17 0.08 0.10 0.10 0.02
Eil101.VRP 0.10 0.12 0.08 0.33 0.20 1.57 0.20 0.10
Fis45.VRP 0.01 0.02 0.01 0.04 0.03 1.34 0.11 0.05
Fis72.VRP 0.04 0.05 0.02 0.10 0.03 0.27 0.07 0.10
Fis135.VRP 0.32 0.35 0.17 0.78 0.46 2.53 1.77 0.35
M-N101.VRP 0.17 0.15 0.09 0.40 0.29 2.15 1.43 0.18
M-N121.VRP 0.32 0.35 0.20 0.60 0.55 1.47 3.05 0.23
M-N151.VRP 0.41 0.46 0.25 1.16 0.68 4.55 0.96 0.23
M-N200.VRP 0.92 1.04 0.55 2.34 1.62 4.32 2.85 0.53

Average 0.17 0.19 0.11 0.43 0.29 1.32 0.77 0.13

instances, and the running times for some of the solved instances are very long. A
very exceptional case is DSJ1000, an instance with 1000 rows and columns, which is
quite di�cult for all methods, but for AFR which solves it with a running time that
is surprisingly short.
The asymmetric TSP instances (see Table 12) have at most 443 rows and columns

and are generally easy for all algorithms. Indeed, the maximum running time is about

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 45

Table 14
OR-Library, Sun Sparc Ultra 2 (time in seconds)

Name APC CTCS JV LAPm NAUC AFLP AFR CSA

A100.TXT 0.03 0.02 0.02 0.02 0.03 0.07 0.03 0.05
A200.TXT 0.15 0.12 0.11 0.09 0.18 0.15 0.20 0.18
A300.TXT 0.18 0.12 0.12 0.08 0.18 0.93 0.13 0.17
A400.TXT 1.60 0.45 0.60 0.28 1.70 20.96 0.60 1.40
A500.TXT 1.79 0.67 0.85 0.45 2.77 38.45 1.79 3.48
A600.TXT 2.68 0.98 1.20 0.55 2.90 114.04 2.12 7.63
A700.TXT 4.50 1.34 1.42 0.75 3.46 237.43 6.15 9.12
A800.TXT 6.60 1.77 1.90 0.95 4.35 499.25 5.15 12.20

Average 2.19 0.68 0.78 0.40 1.95 113.91 2.02 4.28

three seconds, if we exclude code AFLP which runs up to twenty times slower than
the other codes. The fastest algorithms are LAPm, JV and CTCS.
The Vehicle Routing Problems (see Table 13) are also not very large (at most 200

rows and columns) and are easy. Indeed, algorithms APC, CTCS, JV and CSA solve
each instance in less than one second, whereas the maximum running time, due to
AFLP, is smaller than �ve seconds. The benchmark problems by Augerat et al. [6],
not reported in the tables, were solved within at most 0.2 s by all the algorithms.
To solve the benchmark instances from the OR-Library (see Table 14) the best code

is LAPm, which determines the optimal solution of each instance in less than one
second. Algorithms CTCS and JV are also very fast, whereas AFLP is again very slow
(up to 400 times slower than LAPm).

6. Conclusions

From the computational results it is not possible to obtain a precise ranking of the
eight algorithms considered, but it is possible to evaluate their relative behavior.
We can �rst note that AFLP has almost always the longest computing times, and

often exceeds the time limit. AFR has a similar behavior, although it is sometimes
competitive with other algorithms. Moreover, several instances cannot be solved with
this code, due to the restrictions on the values of the cost matrix. Hence, we can state
that both AFLP and AFR are not competitive when solving dense instances, and we
will not consider them any more in the following.
The other auction algorithm, NAUC, is beaten, on average, by three or four other

codes on each class of instances, and in no entry is it the winner. Algorithm CTCS
shows a better average performance, indeed it is generally the third or the fourth
best code on each class, but it is never the winner in a class. APC is the fastest
code for the two cost class, and has a behavior, on average, similar to that of CTCS
for the other classes. Algorithm LAPm is the winner for the uniform random and
the geometric classes, and for the instances from the OR-library. No dominance with
respect to NAUC, CTCS and APC exists for the remaining classes. Code JV has a

46 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

good and stable average performance for all the classes, and it is the best algorithm for
the uniform random (together with LAPm) and for the single-depot class. Finally, the
performances of CSA strongly depends on the class, indeed it is certainly the winner
for classes no-wait ow-shop, randomized Machol Wien, Machol Wien and Symmetric
TSP. On the other classes, it is either the second best code, either the worst one (classes
uniform random, two cost and OR-library).

Acknowledgements

We thank an anonymous referee for his detailed comments which improved upon a
�rst version of the paper. Partially supported by MURST (Italian Ministry of University
and Scienti�c Research) and by CNR (National Council for the Research).

References

[1] R.K. Ahuja, J.B. Orlin, The scaling network simplex algorithm, Oper. Res. (Suppl. 1) (1992) S5–S13.
[2] M. Akg�ul, A sequential dual simplex algorithm for the linear assignment problem, Oper. Res. Lett. 7

(1988) 155–158.
[3] M. Akg�ul, Erratum. A sequential dual simplex algorithm for the linear assignment problem, Oper. Res.

Lett. 8 (1989) 117.
[4] M. Akg�ul, The linear assignment problem, in: M. Akg�ul, H.W. Hamacher, S. T�ufek�ci (Eds.),

Combinatorial Optimization NATO ASI Series F, vol. 82, Springer, Berlin, 1992, pp. 85–122.
[5] M. Akg�ul, A genuinely polynomial primal simplex algorithm for the assignment problem, Discr. Appl.

Math. 45 (1993) 93–115.
[6] P. Augerat, J.M. Belenguer, E. Benavent, A. Corber�an, D. Naddef, G. Rinaldi, Computational results

with a branch and cut code for the capacitated vehicle routing problem, Tech. Rep. RR949-M, IMAG,
Grenoble, France, 1995.

[7] E. Balas, D. Miller, J. Pekny, P. Toth, A parallel augmenting shortest path algorithm for the assignment
problem, J. ACM 38 (1991) 985–1004.

[8] M.L. Balinski, The Hirsch conjecture for dual transportation polyhedra, Math. Oper. Res. 9 (1984)
629–633.

[9] M.L. Balinski, Signature methods for the assignment problem, Oper. Res. 33 (1985) 527–536.
[10] M.L. Balinski, A competitive (dual) simplex method for the assignment problem, Math. Program. 34

(1986) 125–141.
[11] R.S. Barr, F. Glover, D. Klingman, The alternating basis algorithm for assignment problems, Math.

Program 13 (1977) 1–13.
[12] J.E. Beasley, Linear programming on Cray supercomputers, J. Oper. Res. Soc. 41 (1990) 133–139.
[13] J.E. Beasley, Or-library: distributing test problems by electronic mail, J. Oper. Res. Soc. 41 (1990)

1069–1072.
[14] D.P. Bertsekas, A new algorithm for the assignment problem, Math. Program. 21 (1981) 152–171.
[15] D.P. Bertsekas, Linear Network Optimization: Algorithms and Codes, The MIT Press, Cambridge, MA,

1991.
[16] D.P. Bertsekas, J. Eckstein, Dual coordinate step methods for linear network ow problems, Math.

Program. 42 (1988) 203–243.
[17] D.P. Bertsekas, D.A. Castañon, Parallel synchronous and asynchronous implementations of the auction

algorithm, Parallel Comput. 17 (1991) 707–732.
[18] R.E. Burkard, U. Derigs, Assignment and Matching Problems: Solution Methods with FORTRAN

Programs, Springer, Berlin, 1980. R.E. Burkard, E. Cela, Linear assignment and extensions, Tech.
Rep. 127, Institut f�ur Mathematik, Technische Universit�at Graz (1998).

M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48 47

[19] G. Carpaneto, M. Dell’Amico, P. Toth, Exact solution of large-scale, asymmetric traveling salesman
problems, ACM Trans. Math. Software 21 (1995) 394–409.

[20] G. Carpaneto, S. Martello, P. Toth, Algorithms and codes for the assignment problem, in: B. Simeone,
P. Toth, G. Gallo, F. Ma�oli, S. Pallottino (Eds.), Fortran Codes for Network Optimization, Ann.
Oper. Res., Vol. 13, Baltzer, Basel, 1988, pp. 193–223.

[21] G. Carpaneto, P. Toth, Solution of the assignment problem, ACM, Trans. Math. Software 6 (1980)
104–111.

[22] G. Carpaneto, P. Toth, Primal-dual algorithms for the assignment problem, Discrete Appl. Math. 18
(1987) 137–153.

[23] D.A. Castañon, Reverse auction algorithms for assignment problems, in: D.S. Johnson,
C.C. McGeoch (Eds.), Network Flows and Matching: First DIMACS Implementation Challenge,
American Mathematical Society, Providence, RI, 1993, pp. 407–430.

[24] N. Christo�des, S. Eilon, An Algorithm for the vehicle dispatching problem, Oper. Res. Quart. 20
(1969) 309–318.

[25] N. Christo�des, A. Mingozzi, P. Toth, The vehicle routing problem, in: N. Christo�des, A. Mingozzi,
P. Toth, C. Sandi (Eds.), Combinatorial Optimization, Wiley, Chichester, 1979, pp. 318–338.

[26] W.H. Cunningham, A network simplex method, Math. Program. 11 (1976) 105–116.
[27] M. Dell’Amico, M. Fischetti, P. Toth, Heuristic algorithms for the multiple depot vehicle scheduling

problem, Manage. Sci. 39 (1993) 115–125.
[28] M. Dell’Amico, S. Martello, Linear assignment, in: M. Dell’Amico, F. Ma�oli, S. Martello (Eds.),

Annotated Bibliographies in Combinatorial Optimization, Wiley, Chichester, 1997, pp. 355–371.
[29] U. Derigs, The shortest augmenting path method for solving assignment problems – motivation and

computational experience, in: C.L. Monma, (Ed.), Algorithms and Software for Optimization – Part I,
Ann. Oper. Res., Vol. 4, Baltzer, Basel, 1985, pp. 57–102.

[30] M. Fisher, Optimal solution of vehicle routing problem using minimum k-trees, Oper. Res. 42 (4)
(1994) 626–642.

[31] A.V. Goldberg, R. Kennedy, An e�cient cost scaling algorithm for the assignment problem, Math.
Program. 71 (1995) 153–177.

[32] A.V. Goldberg, S.A. Plotkin, P. Vaidya, Sublinear-time parallel algorithms for matching and related
problemst, J. Algorithms 14 (1993) 180–213.

[33] A.V. Goldberg, R.E. Tarjan, Finding minimum-cost circulation by successive approximation, Math.
Oper. Res. 15 (1990) 430–466.

[34] M.S. Hung, A polynomial simplex method for the assignment problem, Oper. Res. 31 (1983)
595–600.

[35] D.S. Johnson, C.C. McGeoch (Eds.), Network Flows and Matching: First DIMACS Implementation
Challenge, American Mathematical Society, Providence, RI, 1993.

[36] R. Jonker, A. Volgenant, Improving the Hungarian assignment algorithm, Oper. Res. Lett. 5 (1986)
171–175.

[37] R. Jonker, A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment
problems, Computing 38 (1987) 325–340.

[38] J.L. Kennington, Z. Wang, An empirical analysis of the dense assignment problem: Sequential and
parallel implementations, ORSA J. Comput. 3 (1991) 299–306.

[39] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logistics Quart. 2 (1955)
83–97.

[40] H.W. Kuhn, Variants of The Hungarian method for the assignment problem, Naval Res. Logistics Quart.
3 (1956) 253–258.

[41] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New
York, 1976.

[42] R.E. Machol, M. Wien, A hard assignment problem, Oper. Res. 24 (1976) 190–192.
[43] R.E. Machol, M. Wien, Errata, Oper. Res. 24 (1977) 364.
[44] S. Martello, P. Toth, Linear assignment problems, in: S. Martello, G. Laporte, M. Minoux,

C. Ribeiro, (Eds.), Surveys in Combinatorial Optimization, Annals of Discrete. Mathematics, Vol. 31,
North-Holland, Amsterdam, 1987, pp. 259–282.

[45] L.F. McGinnis, Implementation and testing of a primal-dual algorithm for the assignment problem,
Oper. Res. 31 (1983) 277–299.

48 M. Dell’Amico, P. Toth /Discrete Applied Mathematics 100 (2000) 17–48

[46] J.B. Orlin, On the simplex algorithm for networks and generalized networks, Math. Program. Stud. 24
(1985) 166–178.

[47] J.B. Orlin, R.K. Ahuja, New scaling algorithms for the assignment and minimum cycle mean problems,
Math. Program. 54 (1992) 41–56.

[48] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Englewood Cli�s, NJ, 1982.

[49] K.G. Ramakrishnan, N.K. Karmarkar, A.P. Kamath, An approximate dual projective algorithm for
solving assignment problems, in: D.S. Johnson, C.C. McGeoch (Eds.), Network Flows and Matching:
First DIMACS Implementation Challenge, American Mathematical Society, Providence, RI, 1993,
pp. 431–452.

[50] G. Reinelt, Tsplib – A travelling salesman problem library, ORSA J. Comput. 4 (1991) 376–384.
[51] B.L. Schwartz, A computational analysis of the auction algorithm, European. J. Oper. Res. 42 (1994)

161–169.
[52] B. Simeone, P. Toth, G. Gallo, F. Ma�oli, S. Pallottino (Eds.), Fortran Codes for Network Optimization,

Annals of Operation Research, Vol. 13, Baltzer, Basel, 1988.
[53] A. Volgenant, Linear and semi-assignment problems: a core oriented approach, Comput. Oper. Res. 23

(1996) 917–932.
[54] H. Zaki, A comparison of two algorithms for the assignment problem, Comput. Opt. Appl. 41 (1995)

23–45.

Update

Discrete Applied Mathematics
Volume 140, Issue 1–3, 15 May 2004, Page ix–x

 https://doi.org/10.1016/S0166-218X(04)00158-1DOI:

 https://doi.org/10.1016/S0166-218X(04)00158-1

Discrete Applied Mathematics 140 (2004) ix–x
www.elsevier.com/locate/dam

ERRATUM

Editorial Note: DAM Software Section�

Dr. C.J. Leonard, Publishing Editor

Due to an oversight by the Publisher, the following articles have appeared in Discrete
Applied Mathematics without any indication that these papers were supposed to be in
the Mathematical Software Section of the journal. The Publisher wishes to apologise
for this oversight to the authors of the articles and also to the Mathematical Software
Section editors.

The construction of cubic and quartic planar maps with prescribed face degrees
Discrete Applied Mathematics, Volume 128, Issues 2–3, 1 June 2003, Pages
541–554
Gunnar Brinkmann, Thomas Harmuth and Oliver Heidemeier
X-ref: 10.1016/S0166-218X(02)00549-8

Local search algorithms for the k-cardinality tree problem
Discrete Applied Mathematics, Volume 128, Issues 2–3, 1 June 2003, Pages
511–540
Christian Blum and Matthias Ehrgott
X-ref: 10.1016/S0166-218X(02)00548-6

Heuristics and meta-heuristics for 2-layer straight line crossing minimization
Discrete Applied Mathematics, Volume 127, Issue 3, 1 May 2003, Pages 665–678
Rafael Mart;< and Manuel Laguna
X-ref: 10.1016/S0166-218X(02)00397-9

Fortran subroutines for computing approximate solutions of weighted MAX-SAT
problems using GRASP
Discrete Applied Mathematics, Volume 100, Issues 1–2, 15 March 2000, Pages
95–113
Mauricio G.C. Resende , Leonidas S. Pitsoulis and Panos M. Pardalos
X-ref: 10.1016/S0166-218X(99)00171-7

Algorithms and codes for dense assignment problems: the state of the art
Discrete Applied Mathematics, Volume 100, Issues 1–2, 15 March 2000, Pages
17–48

� PII of original article S0166-218X(02)00549-8 S0166218X02005486 S0166218X02003979
S0166218X99001717 S0166218X99001729 S0166218X99000505 S0166218X99000487

0166-218X/$ - see front matter ? 2004 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-218X(04)00158-1

x Dr. C.J. Leonard /Discrete Applied Mathematics 140 (2004) ix–x

Mauro Dell’Amico and Paolo Toth
X-ref: 10.1016/S0166-218X(99)00172-9

Separating lifted odd-hole inequalities to solve the index selection problem
Discrete Applied Mathematics, Volume 92, Issues 2–3, June 1999, Pages 111–134
Alberto Caprara and Juan Jos;e Salazar Gonz;alez
X-ref: 10.1016/S0166-218X(99)00050-5

A software package of algorithms and heuristics for disjoint paths in Planar Networks
Discrete Applied Mathematics, Volume 92, Issues 2–3, June 1999, Pages 91–110
Ulrik Brandes, Wolfram Schlickenrieder, Gabriele Neyer, Dorothea Wagner and Karsten
Weihe
X-ref: 10.1016/S0166-218X(99)00048-7

Please note that submissions for the Mathematical Software Section are welcomed
and should be addressed to Professors S. Martello and P. Toth at smartello@deis.unibo.it
and ptoth@deis.unibo.it

Further information on submission for the Software Section and other sections can
be found in the Guide for Authors at the back of this journal, or at the Elsevier Author
Gateway http://authors.elsevier.com/

	Update

