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Abstract
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l. Introduction

Many experimental studies in the framework of advanced materials science recently showed the poten-
tial of realizing smart composites embedding pores or inhomogeneities of special shape. Indeed, physical
and chemical properties of microstructured materials are highly affected by the form of the inhomo-
geneities embedded in the background matrix. Therefore, the size and shape of the inclusions can be
properly designed with the aim to give smart materials with specific performances. As an example, Park
et al. [1] displayed a method of synthesizing dumbbell-shaped polymer nanoparticles with dimensions of
some hundred nanometers and large aspect ratios to obtain photonic materials with specific optical
properties. In such a study, particles having the shape of a pair of overlapping spheres can be obtained
starting from core-shell spherical particles, as shown in Figure 1 [2]. Under proper polymerization con-
ditions, an additional lobe forms and grows on the surface of the nanoparticle, thus giving rise to a
dumbbell-shaped particle (e.g., [3—7]). This phenomenon allows realizing three-dimensional (3D) photo-
nic crystals, which deserved a lot of interest in the last decade as they exhibit band gap formation during
electromagnetic wave propagation. This occurrence leads to the realization of a variety of high-tech dis-
posals like filters, mirrorless lasers, and other smart devices with tunable electromagnetic properties [8].
As shown by Velikov [9], non-spherical particles can also be obtained by exploiting ion irradiation
applied to monodisperse silica nanoparticles of spherical shape to obtain oblate or prolate ellipsoids.
Moreover, dispersed dumbbell particles exhibit nematic phase behavior, which is the working principle
of liquid crystals based on colloidal particles [10].

Dumbbell-shaped inhomogeneities can also take place due to coalescence and growth of spherical
pores during synthesis and manufacturing processes of various materials, with special reference to metal
alloys, sintered ceramics, sprayed coatings, foamed metals, and so on. As an example, the pore coales-
cence induced by specific heat treatments in foamed titanium has been investigated by Shen et al. [11].
Based on metallographic observations, simulations of the 3D microstructure are developed in that work
to reproduce the evolution of the microstructure during foaming, thus allowing realizing predictive finite
element (FE) analyses.

A homogenization scheme to assess the effective elastic properties of sintered porous materials includ-
ing merging spherical pores has been addressed in Manoylov et al. [12] based on a statistical approach.
Various distribution functions of merging pores are considered in that study to predict the elastic moduli
of sintered synthetic sandstone and various metallic foams varying the total porosity. However, it is
remarked that merged spherical pores have been simulated by considering prolate spheroids of the same
volume, thus approximating the real shape of the voids. This preliminary attempt confirms that an accu-
rate investigation of the properties of microstructured materials including inhomogeneities of non-
ellipsoidal shape has not been well developed. However, the (quite usual) approximation of inhomo-
geneities of various shapes as “equivalent” ellipsoids of identical aspect ratio and/or equal volume can
lead to rough predictions [13]. Moreover, Forster et al. [2] found that polymer dumbbell nanoparticles
can self-assemble into a dense crystalline packing having a packing fraction higher than the densest

Figure 1. (a) Dumbbells synthesized starting from spherical core-shell nanoparticles through seeded emulsion polymerization
(from Park et al. [1]). (b) SEM image of a crystal structure formed by polymer dumbbells in an aqueous suspension and self-
assembled through an external electric field (from Forster et al. [2]).

L/D stands for the length/diameter ratio, whereas the white bar represents 0.5 pum.
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known packings of spheres and ellipsoids. In this case, the approximation by ellipsoidal shape usually
adopted for calculating the effective properties of clusters of particles having irregular shape does not
provide correct results for this kind of inhomogeneities, which require instead an appropriate procedure.
For these motivations, accurate investigations were already performed to define the effective conductive
properties of composites containing inhomogeneities of complex shapes [14-16]. In particular, the com-
ponents of the resistivity contribution tensor of such inhomogeneities were calculated analytically and
then compared with the predictions obtained for equivalent spheroids. Later, the study was also
extended to assess the effective elastic properties of composites containing inhomogeneities of complex
shapes [17,18].

The present work lays within this direction. It addresses indeed the thermal conductivity problem of
a 3D isotropic medium enclosing an insulating inhomogeneity having the shape of two overlapping
spheres of different size. This allows assessing the effective thermal conductivity of a wide range of
materials. It is worth noticing that the same approach can be performed to evaluate other physical
properties, like the overall electric conductivity and the effective diffusivity in non-homogeneous media
involving such kind of inhomogeneity.

The system considered here is subjected to a stationary, remotely applied and arbitrarily oriented heat
flux. The solution in terms of temperature field is sought as the sum of two contributes: the first one is
the temperature field related to a homogeneous medium, whereas the second one denotes the corrective
term that allows satisfying the Neumann boundary condition at the surface of the insulated inhomo-
geneity. Based on the geometrical layout, reference is made to toroidal coordinates. The unknown tem-
perature field satisfying the Laplace equation in then expressed in terms of Mehler—Fock transforms
involving the Legendre functions. This formalism allows obtaining an analytical expression of the solu-
tion in the transformed domain as a convergent integral of two unknown functions. The fulfillment of
the BCs leads to a system of two independent Fredholm integral equations, which is solved numerically
by applying the Gauss—Laguerre quadrature rule. The aforementioned procedure is employed both for
the problems of a remotely applied heat flux directed along the axis of symmetry of the inhomogeneity
(axisymmetric problem) and a heat flux applied orthogonal to it. The components of the resistivity con-
tribution tensor are finally assessed as surface integrals involving the temperature distributions on the
spheres calculated for the two basic cases. The study generalizes the results reported in Lanzoni et al.
[16] for the case of media embedding two overlapping spherical pores of equal size.

The paper is organized as follows. The formulation of the problem is reported in section 2. In partic-
ular, the problem of a heat flux directed along the symmetry axis is handled in section 3, whereas a heat
flux applied orthogonally to the symmetry axis is addressed in section 4. The components of the resistiv-
ity contribution tensor are assessed in section 5, together with a comparison with the analytical predic-
tions obtained for equivalent spheroids. Finally, conclusions are drawn in section 6.

The results obtained here allow evaluating the overall conductivity properties of materials with
microstructures involving non-conductive inhomogeneities resembling dumbbell-shaped according to
the usual homogenization schemes (e.g., non-interaction approximation, self-consistent scheme, and
Maxwell scheme).

2. Formulation of the problem in toroidal coordinates

Let us consider a pore formed by two intersecting spheres of different sizes (see Figure 2). The sphere in
the upper part of the xy-plane has radius R; and is centered at the point (0, 0, z;), whereas the sphere in
the lower part has radius R, and is centered at (0, 0, z,). An insulated inhomogeneity embedded in an
infinite conductive homogeneous medium subject to a stationary remotely applied heat flux is consid-
ered here. Accordingly, the boundary condition on the pore surface requires the vanishing of the normal
component of the heat flux. Following Morse and Feshbach [19] and Lebedev et al. [20], we introduce a

toroidal coordinate system (a, B, y) defined by the following relations:[AQ: 2][AQ: 3] ' [fAq2]: equations have been

. . . . renumbered properly and
_asinha cosy _asinha siny B asinf corectly quoted within the

x= = z= :
cosha — cosB’ Y= Cosha — cosfB’ cosha — cos 3 main text

where a denotes the distance of the poles from the origin, a > 0, a €[0, ®), B €[—, 7), and y € [0, 27).

[AQ3]: Greek symbols and
other variables are ok
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Figure 2. Sketch of the coalescing inhomogeneity referred to a toroidal coordinate system (a) and section of the coalescing
inhomogeneity in the xz plane (b).

Two constant values of the bipolar coordinate 8, namely, 8; > 0 for the upper sphere and 8, < 0 for
the lower sphere, define the surfaces of the coalescing spheres. The surfaces of the spheres above and
below the xy-plane read x* +)? + (z — z;)> = R,? and x*> +)? + (z+ 2,)> = R,?, respectively, with:

B, = arccos(z1/R), B,= — arccos(zz/R,), (2)

being a = \/ R? -2 = \/ R,? — 23 in equation (1) the polar distance of the bipolar system.
The temperature distribution 7" under steady-state heat flux satisfies the Laplace equation:

V2T =0. (3)
By introducing a new function [21]:
T(«x,
Pl )= Bl @
vcosha — cos B
condition (3) turns out to be:
PP b PP P
W—Fcotha%—i—ﬁ—kz—o (5)
The Mehler—Fock transform [22,23] with respect to «:
®(7,B) =7tanh7rr J ®(a, B)P_ 2 +ir(cosha)sinha da, (6)
0

Please remove the
white space in "do"
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and its inverse:
O(a,B) = JCT)(T,B)P_UZHT(COSha)da, (7)
0

can be used to solve equation (5). Such a condition is reduced to the following ordinary differential equa-
tion (ODE):

.
TP 2o, (8)
B
which admits the general solution:
®(1,B8) = A(r) cosh7B+ B(7) sinh 7. 9)
The heat flux is given by the isotropic Fourier law:
itis "(W m-K-1)"

where k is the heat conduction coefficient (W m¥ V! K¥Y"). Then, the boundary condition on the pore
surface requires:

q-n=0, at B=B,>0and B=p,<0, (11)

where n is the outer unit normal on the double-sphere surface (Figure 2), coinciding with the unit vector
— eg. Thus, from equation (11), the temperature field must satisfy the Neumann boundary condition at
the surface of both the intersecting spheres as:

%:0, at B=pB, >0 and B =B, <0. (12)

3. Applied flux along the z symmetry axis

Initially, we deal with the axisymmetric problem corresponding to a remote heat flux ¢, = (0, 0, go)
along the direction of the symmetry z-axis. We split the temperature field into the sum 7= T, + T,
where T is the fundamental contribution induced by the uniform heat flux in a homogeneous medium
and T denotes the corrective temperature field due to the presence of the coalesced spherical cavities.
According to equation (1)s, the fundamental contribution is given by:

40 qoa sin
- = - F 1
K c k cosha —cosB’ (13)

unless an arbitrary constant defining the reference temperature. The field 7| is clearly harmonic and
skew-symmetric with respect to 8. Then, equation (3) implies that the field 77 must also be harmonic.
According to Morse and Feshbach [19], the corrective contribution turns out to be:

Ti(a B) = %\/cosha —cosf3 J P_i34ir(cosha) [ui(7) sinh 78 + uy(7) cosh 78] d7, (14)
0

Minstead of " "

The unknown functions u(7), u,(7) must be found by imposing the boundary conditions (12) at
B = By, B> (where B; > 0 and B, < 0), namely,
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o]

) J [uy (7)sinh 78 + u, (7) cosh7B] P_; 5 (coshear) dr+

' (15)
coshacosB — 1

(cosha — cos B)S/2 .

sin B
2 (cosha — cosB

JT [ua(7) sinh 78 +u; (7) cosh 78] P_, >, ;z(coshar) d7 =
0

Now, using the orthogonality relation [24]:

8(1—m)
7 tanhr7’

JPI/H,-T(cosh @) P_i/5 4 m(cosha) sinha da = (16)
0

where 6 is the Dirac delta, and the result (A.5) derived in the Appendix of Lanzoni et al. [16] one gets the
following Fredholm integral equation of the second kind for the unknown functions u; and u, that must
be imposed at B = B4, B:

sin T . u>(7) sinh + uy(7) cosh
B J Uk(7,m) [u1(n) sinh mB, + up(n) cosh nB,] dn+ 217 B 1T B
2 tanh 7o
0 (17)
B 2v/2 cot |B,| sinh 7(7 — |B;]) — 27 cosh 7(7m — |B;|) be 1 2
3 sinh 77 T
leave "000"
where the subkernel takes the form: leave 000" |
T P_ i h P_ i h ( P_ ir(s) P i
Uk(T,”fl)ZJ 1/2+ir(cosha) P_ys ip(cosha) sinhadazj 0001/2 + i () P12 4 in(s) is. (18)
cosh a — cos B, s —cos B
0

[25, 28] 1

Note that Ui(, n) = Ui(n, 7) [25] and the integral in equation (18) converges since P_, » . ;;(cosh a)
decays as e /% as « tends to infinity. The numerical calculation of the subkernel Uy(r, n) is addressed as
detailed in Appendix B in Lanzoni et al. [16].

In matrix form, the system (17) becomes:

AG) u() + JU(T, 7) B(n) u(n) dn=1(). (19)
0

please insert some white spaces

where: / just after " "
1 cosh 78, sinh 73, ur(m)

Aln) = tanh T [cosh 73, sinh 7,82}’“(”) - [uz ’
1 Ui(7,m) sin, 0 [ sinhny  cosh 77/31]
v =3 [ 0 Us(7,m) sin/sj’ B Linh nB, cosh B, |’ 0
fr) — 2V2 [cot |B;| sinh 7(m — |B;|) — 27 cosh (7w — |,81|)]
"7 3 sinh 77 | cot |B,| sinh (7 — |By]) — 27 cosh (7w — |By]) |’
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3.1. Numerical solution of the Fredholm integral equation

The numerical solution to the Fredholm integral equation (19) can be obtained using the Nystrom
method. We apply the Gauss—Laguerre quadrature rule for the semi-infinite interval to equation (23),
obtaining (cf. Lanzoni et al. [16]):

A u@@) + Y w Uz, ) B(n) u(n) =1(7), (21)
=1

where 1, (j = 1, 2,..., n) are the Gauss—Laguerre quadrature points, coinciding with the roots of the
Laguerre polynomial L,(n) of degree n, and:

m; e

(n+ 1) Lo i (g U= 2 =

Wj =
are the corresponding weights [26]. Equation (21) evaluated at the quadrature points then yields:

A(my) u(n;) + Z Wi U(n;, nj) B(”’]j) “(”’Ij) =1(n,), (i =1,2,.., n) (23)
=1

This is a system of 27 linear algebraic equations in 2n scalar unknowns that can be solved for u(n;) by
standard techniques.

4. Applied flux orthogonal to the symmetry axis

In this section, we consider the non-axisymmetric problem corresponding to the heat flux directed along
the y-axis orthogonal to the symmetry axis: gy = ¢ e,. In this case, the basic contribution T} reads:

90 goa sinha siny
Tola,B)= —2y= 2 "~ "7 24
o(, B) K k cosha —cosB (24)
The field 7, is harmonic and even with respect to 8, and thus, the field 7' is also harmonic and even
with respect to 8. The most general harmonic function in toroidal coordinates, which is even with respect
to B and varies with sin vy, has the following representation [19]:

Ty(a,B) = % v/cosha — cos B, sinvy }[ul(T) sinh 78, + uz(7) cosh 78] P_11/2+,.T(cosh a)dr, (25)
0

unless an arbitrary constant defining the reference temperature. In equation (25), P_l1 2t in is the first-
order Legendre function of the first kind with complex index [20,27] which is vanishing at infinity. The
unknown functions wu(t) must be found by imposing the boundary condition (12) at
B=pB,>0and B=,<0, namely, (with k = 1, 2):

]

sin B '
2 (cosha —kcos[ak) J [uy () sinh 78, + u, (1) cosh 78] P1_1/2+I.T(cosh o) dr+
0

(26)
sinh a sin 3,

(cosha — cos B,()S/2 .

JT [u1 (T)cosh 7B, + uy (7)sinh 73] Pl_l/zﬂT(COSh a) dr= —
0

Based on the relation [24]:
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is" " instead of "."

1 +472

a7 tanh 007 @7)

JP1_1/2+iT(cosh a) P1_1/2+in(cosha) sinha da =
0

and the result (A.10) reported in Lanzoni et al. [16] one gets the following system of two Fredholm inte-
gral equations of the second kind for the unknown functions u(7), u»(7) (with k = 1, 2):

: ™ aF ' "k" is slant: "K"
anhs <T + 4> [u1 (1) cosh 7B + uy(7) sinh 78, ] +
ny | - (28)
i 2 h _
sin B J Ui(t,m) [u1(n) sinh nB; + uz(n) coshnB,] dn= — £ (1 + 472 u 773,()’
i 3 sinh r7r

0

being U,(7, i) the symmetric subkernel:

_(cosha) Pl_l/2+ im(cosha)

cosh @ — cos B,

Tplo
Ui(7, m) zj LR
0

TP, ()P, (s)
sinhadazj a2 g (29)
s — cos 3,

As before, one can write system (27) in matrix form as follows:

A u(m) + JU(T, ) B(n) u(y) dn=1(r), (30)
0

|please increase the white space after "," |

where:
Alr) = < 2 1) [cosh 78, sinh T,BI:|\L - [ul(n)}
7= fanhrr \" " 4) | cosh 78, sinh 78, = uy(m) ]’
1 [Ui(r,m) sinB, 0 sinhmB, cosh 77/31]
U —— =
(7.m) 2 [ 0 Uy(1,m) sinBQ]’ [sinh nB, cosh 1B, |’ (31)

f() = _M [Sinh T(m — |,81|)]

3 sinh 7 [sinh (7 — |B,])

System (30) is solved numerically using the Gauss—Laguerre quadrature, as done for system (21).

The dimensionless temperature field and the heat flow distributions for an inhomogeneity character-
ized by B, = m/3, B, = —mr/4 are shown in Figure 3. In particular, Figure 3(a) and (c) deals with a heat
flux acting along the symmetry axis, whereas Figure 3(b) and (d) concerns a heat flux transversal to the
symmetry axis. Figure 3(c) and (d) highlights the fact that the obtained heat flux is tangent to the surface
of the inhomogeneity, as required by the BCs (12). Note also from the maps displayed in Figure 3(a) and
(b) that the heat flow field far from the inhomogeneity tends to assume a constant value, as required by
the condition that the corrective contributions (14) and (25) must vanish at infinity to preserve the value
of the applied heat flux.

5. Resistivity contribution tensor

The resistivity contribution tensor R for a pore or insulating inhomogeneity can be calculated combining
equations (1.1) and (1.2):]AQ: 4]

1
[AQ4] itis "... equations (10) R-qp= V*L T'nds, (32)
and (11):"
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(b)

Figure 3. Temperature and heat flow fields for 8, = /3, B, = — /4, for the remote heat flux q, along the axial (a and c) and
transversal (b and d) directions.

where qq is the remote heat flux vector, and V; and S are the volume and surface of the pore, respec-
tively. In particular, component Rs33 can be calculated using the axisymmetric solution given in section
3. The flux of temperature on the cavity surface 8 = B, B is given by the surface integral:

&= | Tt pynar (33
S
where n = —eg is the outer unit normal on the surface. Let x denote the position vector on the double-
sphere surface, then using equation (1) one finds (k = 1, 2):
0 d
ndd= X X x dady=
da dy

a’sinha da dvy (34)

(cosha — cos B;)° ’\

= {sinh & sin B cos vy, sinh a sin B siny, | — cosh & cos B }

itis"." instead of ""
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5.1. Heat flux along the symmetry axis

In the case of remote heat flux directed along the symmetry axis of the pore (z-axis), the sole non-
vanishing component of the temperature flux vector (33) across the pore is (k = 1, 2):

[ee]

2

1 — cosh

= 27Ta22 J cosha cos fy 5 T'(a,B;) sinhada. (35)
“— J(cosha — cosp,)’

The substitution of the total temperature field T = T, + T; defined by equations (13) and (14) into
equation (35) yields the total heat flux ¢. = .9 + ¢, where (k = 1, 2):

]

2
1 — cosh
¢,V = —2ma’ q_ko Z sin [By| J coma o B’Zomha do
k=1

: cosha — cos B;)

— cos
:——wa3 Zsm |,8k| By
“cosBy)

and

b, = . 90503 Z ij uy () sinhm;B, + uz(n;) coshm;B,] x

o (37

J (1- coshaCOSBk);;I;haP_l/Hm, (cosha) da. ﬂ

(cosha — cos By,

Using (A.5), equation (37) leads to the following expression (k = 1, 2):

/2
d)z(l) = — %? wa’ Z sign(B;) ij [u1(n;) sinh m;B, + uz(n;) coshn;B;] x
(38)
cot |By| sinh m;(m — |:8k|) — 2m; coshmy (7 — |Bi)
sinh n;7
Then, the axial component of the resistivity contribution tensor is as follows:
R..= _b: (39)
V*qo
where:
_ za322:2+3 00.5,1331{—005331{’ (40)
3= sin” (B |

is the total volume of the inhomogeneity.

5.2. Heat flux orthogonal to the symmetry axis

In the case of remote heat flux orthogonal to the symmetry axis (namely, along y-axis), the sole non-
vanishing component of the temperature flux vector (33) across the pore is (k = 1, 2):
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Figure 4. Normalized variations of the components of the resistivity contribution tensor for some selected values of 3, varying 3,.

[AQ: 6]

[AQ6]: The caption becomes: "Normalized variations of the components R, (a) and R,, (b) of the resistivity contribution tensor
for some values of B, varying ;.

21

2 “ -
¢y:a225ianJ sinh’a ~da JT(a, B,) sinydy. (41)
k=1

) (cosha — cos By) )

The substitution of the total temperature field 7 = T, + T; defined by equations (24) and (25) into
equation (41) yields the total heat flux ¢, = (by(o) + d>y(1) where (kK = 1, 2):

. 13 2 . .
(by(o 7Ta3 Z s1n,8kJ sinh’ « du 7Ta3 Z cos B;) sm,Bk’ (42)

cosha — cosB,)* = 3(1—cosBy)’

and

¢y(1) = - LI Z sin B, ij [u1(m,) sinh B, + u(m;) coshn,;B,] x
j=1

1
s/zP—1/2+in,-

e} . h2
J @ (cosha) da.

. (cosha — cos By)

Then, based on expressions (42) and (43), the transversal components of the resistivity contribution
tensor can be assessed as follows:

b

R :Rxx = T >
: V*qo

(44)

where V* is the volume of the inhomogeneity given in equation (40).

The variation of the dimensionless components of the resistivity contribution tensor is displayed in
Figure 4(a) and (b) varying 8; for some values of 8,. The dotted curve refers to the symmetric layout of
two equal overlapping spheres reported in Lanzoni et al. [16] for which 8; = 8,. As shown in those fig-
ures, the curves exhibit non-monotonic trends. In detail, for 81, B> < /2, i.e., when the inhomogeneity
assumes a concave shape that can be inscribed into a prolate spheroid, the minima for the dimensionless
component R.. (and, correspondingly, the maxima for R,, component) occur when 8, = —f;. This is
confirmed by the fact that, for 8; < 7/2, the minima of the R.. curves related to 8, < —r/2 lie on the
dotted curve that holds for 8; = —B, (the black dashed curve in Figure 3(a) and (b)). Similarly, the
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(a} 3.0p

E= k RZ?.
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B]fﬂ: ﬁi)(Tf

Figure 5. Normalized variations of the components of the resistivity contribution tensor of an equivalent insulating spheroid for
some selected values of 3, varying 3. Solid and dash-dotted curves are obtained for approximating spheroids with aspect ratios
given by equations (48) and (49), respectively[AQ: 7].

|[AQ7]: The caption becomes: "Normalized variations of the components R, (a) and Ry, (b) of the resistivity contribution tensor of an........

maxima of the R,, curves lie on the dotted curve for B; < m/2. Conversely, for 8, (or |82) = 7/2 (i.e.,
when one of the two spheres resembles a portion of an oblate spheroid), the extrema of both the compo-
nents of the resistivity contribution tensor occur for B, # —f, i.e., for asymmetric dumbbell-shaped
inhomogeneities. As an example, for 8, = —m/2, the extrema of both R, and R.. occur at §;20.37.
Note that, in general, when 3, (or —f8,) = /2, the stationary points of R, and R.. do not occur for the
same value of coordinate 3;. Note also that —k R.. = —k R, = 3/2 when B, — B, = m, as expected for a
spherical pore (see Lanzoni et al. [16]).[AQ: 5]

[AQ5]: sentence is ok.

5.3. Approximation by spheroidal inhomogeneities

Let us now compare the results obtained in equations (39) and (44) with those available for oblate and
prolate spheroidal insulating inhomogeneities of the aspect ratio p = b,/a, (see, for example, Kachanov
and Sevostianov [13]), where a is the radius of the spheroid and b, is the semi-axis of the spheroid along
the z-axis, namely,

1 1

kRy=kR,= ———, kR.=——, 45
where:
2 —1_arctan Y2, oblate shape (p<1)
_P (1_g) ) p/1-p? P
ﬁ)_mag(p)— | p+\/pz_—l (46)
2p\//ﬁln Pyt prolate shape (p > 1).

The components of the resistivity contribution tensor for an insulating inhomogeneity formed by two
overlapping spheres of different size can be approximated with good accuracy by the corresponding
components calculated for an insulating spheroid that has the same volume and the same height along
the z-axis and, in turn, the following aspect ratio:

[Ri(1+ cosB;)+Ry(1+ (:os,Bz)]3/2

p= > (47)
\/2 [R}(2+ 3 cosB; — cos’B) +R3(2+3 cos B, — cos’B,)]
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namely,

(1+cos,6’1 1—|—cos[32> (1 —cosB)(1 —cospB,) 48
sin B, sin 3, 54 cos(B; —B,) —3cosB; —3cosfB, (48)
The normalized variations of the resistivity contribution tensor components provided by approximat-
ing spheroids for selected values of B, (the same values of Figure 3) varying 3, are plotted in Figure 5.
In general, these curves are close to those related to coalescing spheres in the neighboring of the points
for which B8; — B> = , namely, when the inclusion resembles a sphere. Indeed, the approximation based
on “equivalent” spheroids provides exact results for p = 1. In such a case, itis g = 1 and f, = 1/3, thus
reproducing a spherical pore (k R.. = k R,, = —3/2). Except such specific layout, the best approxima-
tion is retrieved for R,, when B, = —3m/4 for almost the entire range 0 < 8, < 7. In such cases, the
gap between the results provided by approximating spheroids and those related to the coalescing spheres
is lower than 5% (see the pink curves in Figures 4(b) and 5(b)). When the inclusion resembles a dumb-
bell (i.e., for low values of both 8; and 8,), the gap between the solution provided by the approximating
spheroids and that of the intersecting spheres noteworthy increases. This result confirms previous analy-
ses of literature about the rough predictions occurring when spheroids are adopted to approximate
inclusions having concave surfaces (e.g., Kachanov and Sevostianov [13]). About R.., approximating
spheroids lead to good predictions for 81 > /2 and 8, > —/2. In those cases, the maximum relative
error between the approximated results and those related to coalescing spheres turns out to be 15%.
When B; and —f8, — 7, the inclusion resembles a penny-shaped crack. For such a situation, the proce-
dure reported in sections 3 and 4 fails due to errors affecting the numerical solution of the Fredholm
integral equations. Conversely, the approximation based on the “equivalent” spheroids provides p — 0,
g— m/(2p) and fo — 0, thus giving R\, = R, = —1/kand R.. — + .

When the inhomogeneity formed by the overlapping spheres assumes a lenticular shape (i.e., 8; and
—B> > 7/2), the accuracy of the approximated results can be increased by keeping a spheroid having
the same volume of the inhomogeneity and the radius equals to the polar distance (namely, a; = a), thus
giving the following aspect ratio:

1 <2+3c0s31 —cos’B;  2+3cosB, — cos3BZ>
P=3 sin’ B, sin’B, '

(49)

As an example, the dash-dotted curves in Figure 4(a) denote the R.. component provided by approxi-
mating spheroids based on expression (49) in the range 7/2 < B for B, = 7/2, B> = 37/4, and B, =
—PB,. For all these cases, the maximum relative gap among the exact results and the approximated, ones
turns out to be 12%.

6. Conclusion

The problem of two non-conducting coalescing spheres of different size embedded in a 3D body sub-
jected to an arbitrarily oriented and remotely applied steady-state heat flux is studied here. The tempera-
ture field is obtained as the sum of the fundamental solution for a homogeneous body plus a corrective
term which allows satisfying the BCs at the surface of the inhomogeneity.

A system of two Fredholm integral equations is then obtained and solved based on the Nystrom
method, which is handled by performing the Gauss—Laguerre quadrature. The investigation is handled
for the two cases of a heat flux directed along the symmetry axis and orthogonal to it. The obtained tem-
perature fields are then used to assess the components of the second-rank resistivity contribution tensor.
The study generalizes the results reported in Lanzoni et al. [16] for two non-conductive coalescing equal
spheres. As shown in the present analysis, all the components of the resistivity contribution tensor exhi-
bit a non-monotonic behavior with respect the size of the spheres expressed through 8, and 8, coordi-
nates. In particular, for an inhomogeneity resembling a prolate spheroid, namely, for both B8, and
B> < /2, R.. shows a minimum and, at the same time, R, shows a maximum for 8; = B8,. Conversely,
when B, (or B,) = /2, the extrema for both R.. and R, occur for 8, (or 8;) < /2, i.e., when the inter-
secting spheres have different size.
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The approximation based on “equivalent” spheroids having the same height and volume of the coales-
cing spheres gives good predictions only for some geometrical layouts. In detail, R,, component is rea-
sonably well approximated by spheroids when B8, < —#r/10 and B8, > /5, whereas component R.. is
well approximated in the range 7/5 < 81 <0.77 for —37/4 < 3. Out of these intervals, the approximat-
ing spheroids generally lead to rough predictions. When the inhomogeneity assumes a lenticular shape,
the accuracy provided by approximating spheroids to predict the R.. component can be enhanced by
keeping the radius of the spheroid equals to the polar distance and its volume as that of the inhomogene-
ity. However, it is worth noticing that the limiting cases of tangent spheres (8; and 8, — 0) and a penny-
shaped crack (8; and —B,— ) are not accurately recovered by the proposed formulation owing to
numerical errors. A forthcoming work will be devoted to study the resistivity contribution tensor in the
limiting case of two touching spheres.

Such results can be used as a benchmark to design composites materials containing inclusions of prop-
erly designed shapes to optimize thermal properties, electric conductivity, and so on. Further works will
be devoted to the analysis of conductive intersecting spheres, thus involving challenging BCs.
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