
Eur. Phys. J. C (2021) 81:103
https://doi.org/10.1140/epjc/s10052-021-08868-5

Regular Article - Theoretical Physics

Renormalized Schwinger–Dyson functional

Enore Guadagnini1,a , Vittoria Urso2,b

1 Dipartimento di Fisica E. Fermi dell’Università di Pisa, and INFN Sezione di Pisa, Largo B. Pontecorvo 2, 56127 Pisa, Italy
2 Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento, and IIT di Lecce, Piazza Tancredi 7, 73100 Lecce, Italy

Received: 15 July 2020 / Accepted: 12 January 2021 / Published online: 1 February 2021
© The Author(s) 2021

Abstract We consider the perturbative renormalization of
the Schwinger–Dyson functional, which is the generating
functional of the expectation values of the products of the
composite operator given by the field derivative of the action.
It is argued that this functional plays an important role in
the topological Chern–Simons and BF quantum field the-
ories. It is shown that, by means of the renormalized per-
turbation theory, a canonical renormalization procedure for
the Schwinger–Dyson functional is obtained. The combina-
toric structure of the Feynman diagrams is illustrated in the
case of scalar models. For the Chern–Simons and the BF
gauge theories, the relationship between the renormalized
Schwinger–Dyson functional and the generating functional
of the correlation functions of the gauge fields is produced.

1 Introduction

The Schwinger–Dyson equations [1,2] of quantum field the-
ory can be derived [3,4] from the invariance of the func-
tional integration under field translations. The structure of
the Schwinger–Dyson equations is determined by the action
functional, which is involved in the computation of the vac-
uum expectation values of the fields. Let the action S[φ]
be a function of a set of fields denoted by φ(x). The basic
Schwinger–Dyson equation takes the form

〈
δS[φ]
δφ(x)

φ(y1)φ(y2) · · · φ(yn)

〉

= i
n∑
j=1

δ(x − y j )〈φ(y1) · · · φ(y j−1)φ(y j+1) · · · φ(yn)〉,

(1.1)

a e-mail: enore.guadagnini@unipi.it (corresponding author)
b e-mail: vittoria.urso@gmail.com

where the vacuum expectation value 〈P[φ]〉 of a field oper-
ator P[φ] is given by

〈P[φ]〉 =
∫
Dφ ei S[φ] P[φ]∫

Dφ ei S[φ] . (1.2)

Recently, developments of the Schwinger–Dyson equations
have been applied in the study of various subjects like, for
instance, the renormalization theory [5,6], condensed mat-
ter investigations [7,8], and bound states and strong inter-
actions [9–18]. Standard Schwinger–Dyson equations have
been used also in the case of topological quantum field the-
ories with and without matter [19–21].

We are interested in a particular generalisation of Eq. (1.1)
which concerns the computation of the expectation values of
the products of the composite operator δS[φ]/δφ(x),

F(x1, x2, . . . , xn) =
〈

δS[φ]
δφ(x1)

δS[φ]
δφ(x2)

· · · δS[φ]
δφ(xn)

〉
. (1.3)

The generating functional ZSD[B] of the expectation values
(1.3) is called the Schwinger–Dyson functional and is defined
by

ZSD[B] = 〈ei
∫
dx B(x) δS[φ]/δφ(x)〉, (1.4)

where B(x) denotes a classical source.
The functional (1.4) plays an important role in the low-

dimensional gauge field theories of topological type, like the
Chern–Simons and BF quantum field theories [22–24]. In
these models, the derivative of the action with respect to the
components of the connection is proportional to the curvature
(plus possible additional contributions which are related to
the gauge-fixing lagrangian terms), that combined with the
topology of 3-manifolds determines the values of the Wilson
line observables [22].

In facts, when the gauge structure group of these topolog-
ical models is abelian, the Schwinger–Dyson functional pro-
vides the complete solution for the gauge invariant observ-
ables [22,25].
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For instance, when the first homology group [25] H1(M)

of the 3-manifold M is trivial, one can compute [22] the
observables of the abelian Chern–Simons theory defined in
M by means of perturbation theory. The action for the con-
nection A is given by 2πk

∫
A∧ d A and the variation of the

action with respect to the fields is proportional to the curva-
ture FA = d A. By introducing the coupling

∫
B ∧ d A of the

curvature with an external classical source B = Bμ(x)dxμ,
one finds

Z̃ SD[B] ≡ 〈e2π i
∫
B∧d A〉 = e−i π/2k

∫
B∧B, (1.5)

that specifies the expectation values of the Wilson lines asso-
ciated with links in M . Quite remarkably, an appropriate gen-
eralization [22] of this procedure furnishes the solution of the
abelian Chern–Simons theory in a generic closed and ori-
ented 3-manifold M . Indeed, when the first homology group
H1(M) is not trivial, for each element of the torsion subgroup
[25] of H1(M) one can introduce a corresponding classical
background connection. Then one needs to take the sum of
the Schwinger–Dyson functionals that are computed in the
presence of each background connection. Somehow, in the
functional integration, the values of the curvature correspond
to the local degrees of freedom – which do not depend on the
topology of the manifold M – whereas the effects of topology
are taken into account by the background connections.

In the case of the non-abelian SU (N ) Chern–Simons the-
ory, the structure of the gauge orbits, which are associated
with the SU (N ) connections, does not admit [26] a simple
description based on the homology group H1(M). Yet, in
the characterization of the local degrees of freedom which
are not related with the manifold topology, the non-abelian
curvature FA = 2d A + i[A, A] appears to play a funda-
mental role. In fact, the value FA(x) of the curvature in the
point x is specified [4,27] by the value of the gauge holon-
omy associated an infinitesimal loop centered in x , and each
infinitesimal loop does not depend on the topology of M . Let
us present a rough sketch of a possible argument that can be
used to make this statement more precise.

SU (N ) gauge connections can be described by one-forms
defined in M with values in the SU (N ) Lie algebra. The local
value {A(x)} of each configuration A can also be specified
by the set {Hγ [A]} of the holonomies,

Hγ [A] = Pei
∫
γ A

,

which are associated with all the possible closed oriented
paths {γ } in M with a given base-point x0 ∈ M , which rep-
resents the starting/final point of each closed path γ . This
correspondence is denoted by

{A(x)} ↔ {Hγ [A]}. (1.6)

In turn, the value of the holonomies Hγ [A] as a function
of the paths can be determined by combining the local val-

ues {FA(x)} of the curvature with smooth deformations of
the paths. In order to illustrate this point, let us consider a
nontrivial reference path γ0, with parametrization xμ(τ) in
which 0 ≤ τ ≤ 1. Let the holonomy Ĥγ0(s) with 0 ≤ s ≤ 1
be defined by

Ĥγ0(s) = Pei
∫ s

0 dτ A(τ ), (1.7)

in which A(τ ) = Aμ(x(τ ))(dxμ(τ)/dτ). Note that Hγ0 [A] =
Ĥγ0(1). An infinitesimal deformation γ0 + δγ of the path
γ0 can be described by the parametrization xμ(τ) + εμ(τ)

with εμ(τ) 	 1. At first order in εμ, one has Hγ0+δγ 

Hγ0 + ΔHγ0 , where the infinitesimal modification ΔHγ0 of
the holonomy,

ΔHγ0 = i
∫ 1

0
ds Ĥγ0(s) εμ(s)

×ẋν(s)Fμν(x(s)) Ĥ
−1
γ0

(s) Hγ0 [A], (1.8)

is specified by Ĥγ0(s) and by the values {FA(x)} of the cur-
vature. If the path γ is homotopically equivalent to γ0, the
value of the associate holonomy Hγ [A] is expected to be
determined by Hγ0 [A] with the help of a set of infinitesimal
transformations of the path. As shown in Eq. (1.8), the cor-
responding infinitesimal modifications of the holonomy can
be fixed by means of Ĥγ0(s) and the local values {FA(x)} of
the curvature. If the 3-manifold M is simply connected, any
closed path γ is homotopic with γ0. If M is not simply con-
nected, for each generator g of the fundamental group π1(M)

one can choose a representative path γg and, in agreement
with Eq. (1.7), one can compute the corresponding holon-
omy Ĥγg (s). For each set of homotopic paths, the associated
holonomies can be determined by combining Ĥγg (s) with
the local values {FA(x)} of the curvature. Thus relation (1.6)
should develop into

{A(x)} ↔ {Hγ [A]}
↔ {Ĥγ1(s), Ĥγ2(s), . . . , Ĥγg (s), . . . ; FA(x)}. (1.9)

Consequently, in the computation of the functional inte-
gration, the sum over the configurations {A(x)} can then
be envisaged to be decomposed into a sum over the val-
ues {FA(x)} of the curvature and a sum over the values of
the holonomies associated with the paths which represent
the generators of the fundamental group π1(M). The val-
ues of the curvature should correspond to the “purely local”
degrees of freedom which are independent of the topology
of the manifold M . Whereas the values of the holonomies
{Ĥγ1(s), Ĥγ2(s), . . . , Ĥγg (s)} should describe the effects of
the nontrivial topology of M .

How to carry out the precise disentanglement of the
“purely local” degrees of freedom – described by the cur-
vature – and the “topology dependent” degrees of freedom
in the functional integration is an open problem. In order to
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investigate this issue in the case of the nonabelian Chern–
Simons and BF theories, in the present article we analyze
a preliminary question which is related to the perturbative
computation of the renormalized generating functional of the
vacuum expectation values of the products of the nonabelian
curvature FA(x) in different points of spacetime. Indeed, for
the topological abelian gauge theories the renormalization is
trivial, whereas in the non-abelian case the renormalization
task is not trivial. The main purposes of our article is to show
how the renormalization of the corresponding Schwinger–
Dyson functional ZSD[B] is canonically determined by the
standard renormalization procedure [28,29] for the correla-
tion functions of the gauge connections.

We demonstrate that, in the Chern–Simons and BF theo-
ries, the renormalized Schwinger–Dyson functional is related
with the generating functional Z [J ] of the correlation func-
tions of the gauge connections by some kind of duality
transformation. Therefore the standard perturbative proce-
dure called “renormalized perturbation theory” [4] provides
a canonical renormalization for ZSD[B]. Note that we are
not interested in the matrix elements the composite operator
δS[φ]/δφ(x) between generic states; this issue can be stud-
ied by means of standard techniques [4,29,30]. Motivated by
the results of the topological models with an abelian gauge
group, we shall concentrate on the vacuum expectation values
of products of operators δS[φ]/δφ(x). In this case, the rela-
tionship that we derive between ZSD[B] and Z [J ] shows that
the standard technique [4,29,30] for the study of the renor-
malization properties of the composite operator δS[φ]/δφ(x)
greatly simplifies.

Let us remember that the renormalization of the lagrangian
field theory models is expected [31,32] to be independent of
the global aspects of the manifold that do not modify the
short-distance behaviour of the theory. Therefore, since the
nonabelian curvature FA(x) describes degrees of freedom
which do not depend on the topology of the manifold, we
shall consider the renormalization properties of ZSD[B] in
flat spacetime.

The combinatoric structure of the Feynman diagrams –
entering the perturbative computation of ZSD[B] – is illus-
trated in the simple case of the field theory models φ3 and φ4

in four dimensions in Sect. 2. By means of the Wick contrac-
tions [3,4] of the field operators, we examine the Feynman
diagrams which are associated with the expectation values
(1.3). We demonstrate that the short distance behaviour of the
products of the composite operator δS[φ]/δφ(x) – that in d
dimensional spacetime has dimension (d−1)– is really deter-
mined by the ultraviolet properties of operators of dimensions
(d − 2) and/or (d − 3). For instance, when the interacting
lagrangian entering the action S[φ] is a cubic function of a
scalar field φ(x), ZSD[B] can be related to the ordinary gen-
erating functional Z [J ] of correlation functions of the field
φ(x). In general, it turns out that the connected component

of ZSD[B] is the union of a local functional of B(x) and a
non-local part which is specified by the expectation values
of field components φ(x) and possibly φ2(x).

Applications and extensions of the results of Sect. 2 are
presented in Sect. 3, where low dimensional gauge theories of
topological type are considered. For the nonabelian SU (N )

Chern–Simons model and the I SU (2) BF gauge theory in
R

3, the relationship between the renormalized Schwinger–
Dyson functional and the generating functional of the cor-
relation functions of the gauge fields is produced. Section 4
contains the conclusions.

2 Structure of the Feynman diagrams

The case of a cubic interaction lagrangian is relevant for the
topological gauge theories in low dimensions. So, let us first
consider the field theory model which is defined by the action

S[φ] =
∫

d4x
(

1
2
∂μφ ∂μφ − 1

2
m2φ2 + 1

3
gφ3

)
, (2.1)

where φ(x) is a real scalar field and the real parameter g
denotes the coupling constant. The generating functional
Z [J ] of the correlation functions of the field φ(x) is defined
by

Z [J ] = 〈ei
∫
d4x J (x) φ(x)〉. (2.2)

The renormalization of Z [J ] is obtained by means of the
standard procedure denominated “renormalized perturbation
theory” [4]. In this scheme, the lagrangian parameters assume
their renormalized values and, in order to maintain the valid-
ity of the normalization conditions at each order of perturba-
tion theory, local counterterms are introduced, which cancel
exactly all the contributions to these parameters which are
obtained in the loop expansion. The normalization condi-
tions for the model defined be the action (2.1) concern the
values of the mass, of the coupling constant and the wave
function normalization. Finally, in order to complete the list
of the normalization conditions, one needs to require the
absence of a proper vertex which is linear in the field. Let
Γ [ϕ] be the effective action which corresponds to the sum
of the one-particle-irreducible diagrams with external legs
represented by ϕ(x). In agreement with the structure of the
lagrangian (2.1), the additional normalization condition is
given by (δΓ/δϕ(x)) |ϕ=0 = 0. Note that, in the case of the
φ4 model, the vanishing of the proper vertices which are lin-
ear and cubic in powers of the fields is a consequence of the
symmetry ϕ → −ϕ which is imposed to the effective action.
In the case of gauge fields, the analogue of the condition
(δΓ/δϕ(x)) |ϕ=0 = 0 is automatically satisfied.

Let us now consider the perturbative computation of the
mean values (1.3). The perturbative expansion [3,4] of a
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generic expectation value (1.2) can be written as

〈P[φ]〉 = 〈P[φ] ei SI [φ] 〉0

〈 ei SI [φ] 〉0
, (2.3)

where SI [φ] denotes the integral of the interaction lagrangian

SI [φ] = 1
3
g

∫
d4x φ3(x), (2.4)

and the vacuum expectation value of the time-ordered prod-
uct of the fields

〈P[φ] ei SI [φ] 〉0 ≡ 〈0| T
(
P[φ] ei SI [φ]) |0〉 (2.5)

corresponds to the sum of the Feynman diagrams which
are obtained by means of the Wick contractions [32] of
the fields. The set of the connected diagrams is denoted by
〈P[φ] ei SI [φ] 〉c0. The Feynman propagator reads

〈0| T (φ(x) φ(y)) |0〉
= φ(x) φ(y) = i 〈x | 1

−∂2 − m2 + iε
|y〉. (2.6)

The composite operator δS[φ]/δφ(x) takes the form

δS

δφ(x)
≡ Eφ(x) = [−∂2 − m2]φ(x) + gφ2(x)

= ∇φ(x) + gφ2(x), (2.7)

where we have introduced the simplifying notation ∇φ(x) ≡
[−∂2−m2]φ(x). The Schwinger–Dyson functional (1.4) can
be written as ZSD[B] = exp(iWSD[B]) where iWSD[B] is
given by the sum of the connected diagrams

iWSD[B] =
∑
n

in

n!
∫

d4x1 · · · d4xn B(x1)

· · · B(xn) 〈Eφ(x1) · · · Eφ(xn) e
i SI [φ] 〉c0. (2.8)

Note that the overall multiplying factor, which is given by
the sum of the vacuum-to-vacuum diagrams, is not included
in the set of the connected diagrams (2.8) contributing to
ZSD[B]. Indeed, as a consequence of the normalisation –
shown in Eqs. (1.2) and (2.3) – of the generating functional
(1.4), the multiplying factor of the numerator simplifies – or
cancels – with the same factor of the denominator.

Let us examine the perturbative evaluation of 〈Eφ(x1) · · ·
Eφ(xn) ei SI [φ] 〉c0. In agreement with the Wick Theorem, let
us first consider all the possible Wick contractions of the

operator ∇φ(x). Since
[−∂2 − m2

]
φ(x) φ(y) = iδ4(x−y),

the Wick contraction of ∇φ(x) with the fields contained in
ei SI [φ] gives

〈 ∇φ(x) ei SI [φ] 〉0 = i〈∇ φ(x)SI [φ] ei SI [φ] 〉0

= 〈(−gφ2(x)) ei SI [φ] 〉0, (2.9)

and consequently

〈Eφ(x) ei SI [φ] 〉c0

= 〈(∇φ(x) + gφ2(x)) ei SI [φ] 〉c0 = 0. (2.10)

Let us now consider 〈Eφ(x1)Eφ(x2) ei SI [φ] 〉c0. Because of
Eq. (2.9), the contraction of ∇φ(x1) with the fields contained
in ei SI [φ] gives a vanishing result as a consequence of the sum
with the term gφ2(x1), as shown in Eq. (2.10) for the case
of 〈Eφ(x) ei SI [φ] 〉c0. So we must consider the contraction of
∇φ(x1) with Eφ(x2), which produces

∇ φ(x1)Eφ(x2) = i[−∂2 − m2]δ4(x1 − x2)

+2ig φ(x2) δ4(x1 − x2). (2.11)

Thus one finds

〈Eφ(x1)Eφ(x2) e
i SI [φ] 〉c0 = i[−∂2 − m2] δ4(x1 − x2)

+2igδ4(x1 − x2)〈φ(x2) e
i SI [φ]〉c0. (2.12)

The normalization condition (δΓ/δϕ(x)) |ϕ=0 = 0 on the
absence of the tadpole implies 〈φ(x2) ei SI [φ]〉c0 = 0. There-
fore

〈Eφ(x1)Eφ(x2) e
i SI [φ] 〉c0 = i[−∂2 − m2] δ4(x1 − x2).(2.13)

The same arguments illustrated above give

〈Eφ(x1)Eφ(x2)Eφ(x3) e
i SI [φ] 〉c0

= −4 g δ4(x1 − x2) δ4(x2 − x3). (2.14)

The structure of the diagrams associated with 〈Eφ(x1)

Eφ(x2) · · · Eφ(xn) ei SI [φ] 〉c0, for generic n ≥ 4, can be
obtained by first considering all the Wick contractions of
the field operators of the type ∇φ. The combinatoric of these
contractions can easily be obtained by taking into account the
symmetric role of the operators Eφ(x1)Eφ(x2) · · · Eφ(xn) in
the computation of WSD[B], as shown in Eq. (2.8). For the
connected diagrams, we find

〈Eφ(x1)Eφ(x2) · · · Eφ(xn) e
i SI [φ] 〉c0 = 0, if n is odd, (2.15)

and

〈Eφ(x1)Eφ(x2) · · · Eφ(xn) e
i SI [φ] 〉c0

= 〈φ(x2) φ(x4) · · · φ(xn) e
i SI [φ] 〉c0

×(n − 1)!! (2ig)n/2 δ4(x1 − x2) · · · δ4(xn−1 − xn),

if n is even. (2.16)

Equations (2.15) and (2.16) show that the expectation value
〈Eφ(x1)Eφ(x2) · · · Eφ(xn) ei SI [φ] 〉c0 is completely specified
by the expectation value 〈φ(x2) φ(x4) · · · φ(xn) ei SI [φ] 〉c0.
Therefore the standard renormalization procedure for the
correlation functions of the field φ(x) canonically defines
the renormalization for 〈Eφ(x1)Eφ(x2) · · · Eφ(xn) ei SI [φ] 〉c0.
Equation (2.10) implies

i
∫

d4x B(x) 〈Eφ(x) ei SI [φ] 〉c0 = 0, (2.17)
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The contact terms (2.13) and (2.14) give origin to a local
contribution to WSD[B]. In particular, we find

i2

2!
∫

d4x1d
4x2 B(x1)B(x2) 〈Eφ(x1)Eφ(x2) e

i SI [φ] 〉c0

= i
∫

d4x
{
− 1

2
∂μB∂μB + 1

2
m2B2

}
, (2.18)

i3

3!
∫

d4x1d
4x2d

4x3 B(x1)B(x2)B(x3)

×〈Eφ(x1)Eφ(x2)Eφ(x3) e
i SI [φ] 〉c0

= i
∫

d4x
[

2
3
gB3

]
. (2.19)

The expectation values 〈φ(x2) φ(x4) · · · φ(xn) ei SI [φ] 〉c0, with
n ≥ 4, correspond to non-local amplitudes. By collecting
all the results on 〈Eφ(x1)Eφ(x2) · · · Eφ(xn) ei SI [φ] 〉c0 with
n ≥ 4, we get

∞∑
n=4

in

n!
∫

d4x1 · · · d4xn B(x1) · · · B(xn)

×〈Eφ(x1) · · · Eφ(xn) e
i SI [φ] 〉c0

=
∞∑
p=2

i (2p)(2p − 1)!! (2ig)p
(2p)!

∫
d4x1 · · · d4x2p

×B(x1) · · · B(x2p)

×〈φ(x2) φ(x4) · · · φ(x2p) e
i SI [φ] 〉c0

×δ4(x1 − x2) · · · δ4(x2p−1 − x2p)

=
∞∑
p=2

(−ig)p

p!
∫

d4x1 · · · d4xp B
2(x1) · · · B2(xp)

×〈φ(x1) φ(x2) · · · φ(xp) e
i SI [φ] 〉c0

= 〈ei
∫
d4x(−g)B2(x)φ(x) ei SI [φ] 〉c0 = Z [(J = −gB2)].(2.20)

The sum of the contributions (2.17)–(2.20) shows that the
renormalized Schwinger–Dyson functional for the φ3 model
satisfies

ZSD[B] = ei R[B] Z [ J̃ [B]], (2.21)

where

R[B] =
∫

d3x
{
− 1

2
∂μB∂μB + 1

2
m2B2 + 2

3
gB3

}
, (2.22)

and

J̃ [B](x) = −gB2(x). (2.23)

The expectation values (2.13) and (2.14) determine the local
functional R[B] of Eq. (2.22). As shown in Eq. (2.21), the
renormalization of ZSD[B] is specified by the standard renor-
malization of Z [J ].

The structure of the results for the φ3 model admits
appropriate generalizations which depend on the form of the
lagrangian of each field theory. Let us consider for instance

Fig. 1 One loop diagram of the
φ4 model contributing to
〈φ2(x)φ2(y)〉

the φ4 model which is specified by the action

S[φ] =
∫

d4x
(

1
2
∂μφ ∂μφ − 1

2
m2φ2 − 1

4
gφ4

)
. (2.24)

One has

δS

δφ(x)
= [−∂2 − m2]φ(x) − gφ3(x). (2.25)

The perturbative expansion of the Schwinger–Dyson func-
tional ZSD[B] can be examined by means of the method
described above. We find

ZSD[B] = eiQ[B]

×
〈
exp

{
i
∫

d4x
[
−2gB3(x) φ(x) + 3

2
gB2(x) φ2(x)

]}〉
,

(2.26)

in which

Q[B] =
∫

d4x
[
− 1

2
∂μB(x)∂μB(x)

+ 1
2
m2B2(x) + 3

4
gB4(x)

]
. (2.27)

In this case, ZSD[B] is related to the expectation value of a
term in which, in addition to a coupling with the field operator
φ(x), a coupling with the operator φ2(x) is also present. Note
that the short distance behaviour of the composite operator
φ2(x) is taken into account by the standard renormalization
of the generating functional Z [J ] of the correlation functions
because φ2(x) has canonical dimension 2. For instance, the
one-loop correlation 〈φ2(x)φ2(y)〉 is described by the dia-
gram of Fig. 1 (with removed external legs), which enters
the ordinary renormalization of the φ4 theory. Thus, for this
model also, the renormalization of ZSD[B] can be specified
by the standard renormalization procedure.

As these examples have shown, the connected component
WSD[B] of the renormalized Schwinger–Dyson functional
contains a local part, expressions (2.22) and (2.27), which
is determined by the form of the lagrangian of each specific
model, and a non-local contribution which is related to the
vacuum expectation values of field operators of dimension 1
or 2, i.e. the fields φ(x) and φ2(x). This universal feature can
be used to specify the renormalized values of the parameters
of each model by the introduction of appropriate normaliza-
tion conditions written in terms of the operator [δS/δφ(x)].
Equivalently, some of the vacuum expectations values of the
products of [δS/δφ(x)] are uniquely specified and do not
receive perturbative changes. For example, in the φ3 model,
relations (2.13) and (2.14) are exact and are not modified by
loop corrections.
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3 Topological models

In this section we consider gauge theories of topological type
in R

3. The action of the SU (N ) quantum Chern–Simons
theory [24,33,34] in the Landau gauge is given by

S = k

4π

∫
d3x

{
εμντ

[
1
2
Aa

μ∂ν A
a
τ − 1

6
f abc Aa

μA
b
ν A

c
τ

]

−Ma∂μAa
μ + ∂μca

(
∂μc

a − f abc Ab
μc

c
) }

, (3.1)

and then

δS

δAa
μ(x)

=
(

k

4π

) [
εμντ

(
∂ν A

a
τ (x) − 1

2
f abc Ab

ν(x)A
c
τ (x)

)

+∂μMa(x) + ∂μcb(x) f abdcd(x)
]
. (3.2)

The Schwinger–Dyson functional ZSD[La
μ] is defined by

ZSD[La
μ] =

〈
exp

(
i
∫

d3x La
μ(x)

[
δS/δAa

μ(x)
])〉

, (3.3)

and the generating functional Z [Jaμ] of the correlation func-
tions for the gauge field Aa

μ(x) is given by

Z [Jaμ] = 〈exp

(
i
∫

d3x Jaμ(x)Aa
μ(x)

)
〉. (3.4)

In order to examine the diagrams entering the vacuum expec-
tation values of the product of fields δS/δAa

μ(x1) · · · δS/δAb
ν(xn),

one needs to use the following relationship between the prop-
agators of the fields

εμσλ∂σ Aa
λ(x)A

b
ν(y) + ∂μMa(x)Ab

ν(y)

= i

(
4π

k

)
δab δμ

ν δ3(x − y), (3.5)

which can be derived from the action (3.1), or it can be
checked directly by means of the expressions

Aaμ(x)Abν(y) = δab
(

4π

k

) ∫
d3 p

(2π)3 eip(x−y) εμνλ
pλ

p2 , (3.6)

Aa
μ(x)Mb(y) = −δab

(
4π

k

) ∫
d3 p

(2π)3 eip(x−y) pμ

p2 . (3.7)

The presence of the operator ∂μcb(x) f abdcd(x) in the
Eq. (3.2) does not modify the perturbative relations between
the expectation values of the operators δS/δAa

μ(x1) · · · δS/δAb
ν(xn)

– that have been derived in Sect. 2 by using the Wick con-
tractions of the fields – because this additional term has no
contractions with the gauge fields Aa

μ(x) and the auxiliary
field Ma(x). Thus, by means of the arguments presented in
Sect. 2, one gets

ZSD[La
μ] = ei F[La

μ] Z [ Ĵ [L]aμ], (3.8)

D D

Fig. 2 Diagram D and the associated diagram D′ contributing to ZSD

where

F[Laμ] = − k

4π

∫
d3x εμντ

{
1
2 L

a
μ∂ν L

a
τ + 1

3 f abcLaμLbν L
c
τ

}
, (3.9)

and

Ĵ [L]aμ(x) = k

8π
εμντ f abcLb

ν(x)L
c
τ (x). (3.10)

In addition to the local component which is described the
function F[La

μ] of Eq. (3.9), the connected component of
ZSD[La

μ] contains powers of La
μ greater than (or equal to)

four. In particular, for each connected diagram D contribut-
ing to Z [Jaμ] there is a corresponding connected diagram D′
contributing to ZSD[La

μ]. In agreement with Eq. (3.8), D′
can be obtained from D by the introduction of the “effective
classical vertex” (3.10) in each external leg of D, as depicted
in Fig. 2. Clearly, the renormalization of the amplitude asso-
ciated with each diagram D defines a canonical renormal-
ization of the amplitude corresponding to D′. So, Eq. (3.8)
provides a definition of the renormalized Schwinger–Dyson
functional ZSD[La

μ].
Equation (3.8) also specifies the leading term of the oper-

ator product expansion [4]

[δS/δAa
μ(0)] [δS/δAb

ν(x)] →
∑
n

Cn(x)On . (3.11)

Indeed the value of the coefficient function C1(x) for the
identity operator O1 = 1 is determined by expression (3.9)

C1(x) =
(

k

4π

)
δabεμνλ∂λδ

3(x), (3.12)

and it does not receive perturbative corrections.
The Schwinger–Dyson functional for the abelian Chern–

Simons theory can be obtained in the f abc → 0 limit. In this
case, Eq. (3.8) becomes

ZSD[Lμ] = exp

{
−i

k

4π

∫
d3x εμντ 1

2
Lμ∂νLτ

}
. (3.13)

When Lμ(x) coincides with the de Rham–Federer current
[35–38] associated with a link L (with support on a Seifert
surface [25] which bounds the link L ), expression (3.13)
represents precisely the exponent of the linking matrix corre-
sponding toL . For this reason, in the abelian Chern–Simons
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theory the Schwinger–Dyson functional provides the solu-
tion [22] for the link observables.

Finally, let us consider the I SU (2) BF theory [39–43] in
R

3, with fields Aa
μ(x) and Ba

μ(s) and gauge-fixed action in
the Landau gauge

S =
∫

d3x εμνλ
{

1
2
Ba

μF
a
νλ(A)

+g
[

1
2
Aa

μ∂ν A
a
λ − 1

6
εabc Aa

μA
b
ν A

c
λ

]}

+
∫

d3x
{
Ma∂μAa

μ + Na∂μBa
μ

+∂μca(∂μc
a − εabc Ab

μc
c)

+∂μξ
a
(∂μξa − εabc Ab

μξ c − εabcBb
μc

c)
}
, (3.14)

where the real parameter g denotes a coupling constant and

Fa
μν(A) = ∂μA

a
ν − ∂ν A

a
μ − εabc Ab

μA
c
ν . (3.15)

The non-vanishing propagators for the components of the
connection and the auxiliary fields are given by [43]

Aa
μ(x)Bb

ν(y) = δab
∫

d3k

(2π)3 eik(x−y) εμνλ

kλ

k2 ,

Ba
μ(x)Bb

ν(y) = −g δab
∫

d3k

(2π)3 eik(x−y) εμνλ

kλ

k2 , (3.16)

and

Aa
μ(x)Mb(y) = δab

∫
d3k

(2π)3 eik(x−y) kμ

k2 ,

Ba
μ(x)Nb(y) = δab

∫
d3k

(2π)3 eik(x−y) kμ

k2 . (3.17)

In this model one has

δS

δAa
μ(x)

= εμνλ
[(

∂νB
a
λ − εabc Ab

νB
c
c

)
+ g

2
Fa

νλ(A)
]

−∂μMa − εabc
[
∂μcacc − ∂μξ

a
ξ c

]
, (3.18)

and

δS

δBa
μ(x)

= 1
2
εμνλFa

νλ(A) − ∂μNa − εabc∂μξ
a
cc. (3.19)

The Schwinger–Dyson functional ZSD[La
μ, Ha

μ] is defined
by

ZSD[La
μ, Ha

μ] =
〈
e
i
∫
d3x

[
La

μ

(
δS/δAa

μ

)
+Ha

μ

(
δS/δBa

μ

)]〉
, (3.20)

where La
μ(x) and Ha

μ(x) are classical sources. The generat-
ing functional Z [Jaμ, Ka

μ] of the correlation functions for the
gauge field Aa

μ(x) and Ba
μ(x) is given by

Z [Jaμ, kaμ] = 〈ei
∫
d3x

[
Jaμ Aa

μ+Ka
μB

a
μ

]
〉. (3.21)

With several field components, the construction and the sum
of the Feynman diagrams becomes rather laborious. We get

ZSD[La
μ, Ha

μ] = eiG[La
μ,Ha

μ] Z [ J̃ aμ, K̃ a
μ], (3.22)

in which

G[La
μ, Ha

μ] = −
∫

d3x εμνλ
{
Ha

μ∂νL
a
λ + εabcHa

μL
b
νL

c
λ

+ g
2
La

μ∂νL
a
λ + g

3
εabcLa

μL
b
νL

c
λ

}
, (3.23)

and

J̃ aμ = εμνλεabc
[
Hb

ν L
c
λ + g

2
Lb

νL
c
λ

]
,

K̃ a
μ = 1

2
εμνλεabcLb

νL
c
λ. (3.24)

In addition to the contact terms, which are specified by
the local functional G[La

μ, Ha
μ], in the BF theory there are

additional expectation values that can be displayed in their
exact form. For instance, since the vacuum polarization van-
ishes, from Eq. (3.22) one derives the following relation for
the connected mean value∫

d3xd3yd3zd3t La
μ(x)Lb

ν(y)L
c
λ(z)H

d
ρ (t)

×
〈

δS

Aa
μ(x)

δS

Ab
ν(y)

δS

Ac
λ(z)

δS

Bd
ρ (t)

〉c

= −i
3

4π

∫
d3x d3y

(x − y)λ

|x − y|3 ελμνε
μρτ ενσξ εabcεade

×Hb
ρ (x)Lc

τ (x)L
d
σ (y)Le

ξ (y). (3.25)

Actually in both the Chern–Simons and the BF theories, the
connected components of the Schwinger–Dyson functional
containing up to six powers of the external classical sources
are exhibited in closed form because of the vanishing of the
loop corrections to the two-points and three-points correla-
tion functions of the gauge fields [29,34,43].

4 Conclusions

For renormalizable quantum field theories we have shown
that, in the perturbative computation of the correspond-
ing Schwinger–Dyson functional ZSD , the use of stan-
dard renormalized perturbation theory provides a canonical
renormalization procedure for ZSD . In facts, the short dis-
tance behaviour of the products of the composite operator
δS[φ]/δφ(x) turns out to be determined by the ultraviolet
properties of the field operators of dimensions 1 (and possi-
bly 2). The explicit combinatoric of the Wick contractions of
the field operators and the resulting structure of the Feynman
diagrams have been illustrated in the simple cases of the φ3

and φ4 models. We have shown that the connected compo-
nent of ZSD is the union of a local functional of the classical
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source and a non-local part which is specified by the expec-
tation values of field components. The arguments that have
been presented in these scalar models naturally extend to a
generic theory.

In order to study possible applications of the Schwinger–
Dyson functional in gauge field theories of topological type,
for the non-abelian Chern–Simons and BF gauge theories,
the relationship between the renormalized Schwinger–Dyson
functional and the generating functional of the correlation
functions of the gauge fields has been derived. In these cases,
the vanishing of the loop corrections for the two-points and
three-points correlation functions implies that the connected
components of the renormalized Schwinger–Dyson func-
tional containing up to six powers of the external classical
sources have been produced in closed form. In these topo-
logical models, the derivative of the action with respect of
the gauge fields is proportional to the curvature of the con-
nection (plus gauge-fixing contributions). So relations (3.8)
and (3.22) could possibly be used for the introduction of
appropriate field variables – similar to the local gauge invari-
ant variables decomposition [44] – which simplify the func-
tional integration when the theory is defined in topological
non-trivial manifolds.
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