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Abstract: Objective: Interstitial fibrosis/tubular atrophy (IFTA) is a common, irreversible, and
progressive form of chronic kidney allograft injury, and it is considered a critical predictor of kidney
allograft outcomes. The extent of IFTA is estimated through a graft biopsy, while a non-invasive test
is lacking. The aim of this study was to evaluate the feasibility and accuracy of an MRI radiomic-
based machine learning (ML) algorithm to estimate the degree of IFTA in a cohort of transplanted
patients. Approach: Patients who underwent MRI and renal biopsy within a 6-month interval from
1 January 2012 to 1 March 2021 were included. Stable MRI sequences were selected, and renal
parenchyma, renal cortex and medulla were segmented. After image filtering and pre-processing,
we computed radiomic features that were subsequently selected through a LASSO algorithm for
their highest correlation with the outcome and lowest intercorrelation. Selected features and relevant
patients’ clinical data were used to produce ML algorithms using 70% of the study cases for feature
selection, model training and validation with a 10-fold cross-validation, and 30% for model testing.
Performances were evaluated using AUC with 95% confidence interval. Main results: A total of
70 coupled tests (63 patients, 35.4% females, mean age 52.2 years) were included and subdivided into
a wider cohort of 50 for training and a smaller cohort of 20 for testing. For IFTA ≥ 25%, the AUCs in
test cohort were 0.60, 0.59, and 0.54 for radiomic features only, clinical variables only, and a combined
radiomic–clinical model, respectively. For IFTA ≥ 50%, the AUCs in training cohort were 0.89, 0.84,
and 0.96, and in the test cohort, they were 0.82, 0.83, and 0.86, for radiomic features only, clinical
variables only, and the combined radiomic–clinical model, respectively. Significance: An ML-based
MRI radiomic algorithm showed promising discrimination capacity for IFTA > 50%, especially when
combined with clinical variables. These results need to be confirmed in larger cohorts.
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1. Introduction

End-stage kidney disease (ESKD) is a major cause of morbidity and mortality world-
wide, with a high impact on health systems due to the high costs of renal replacement
therapies (RRT) [1]. ESKD has a growing incidence due to increasing rates of chronic
diseases such as diabetes and hypertension, with a projection of 5 million people receiving
RRT in 2030 [2]. Kidney transplantation represents the treatment of choice for ESKD re-
gardless of the cause [3], improving both patients’ survival and quality of life with respect
to dialysis [4–6]. With constant advances in surgical techniques and medical manage-
ment substantially reducing the risk of early post-transplant complications, the current
focus is set on improving the long-term survival of kidney grafts. IFTA is a common,
irreversible, and progressive form of chronic allograft injury, with a multi-factorial ae-
tiology (ischemia-reperfusion damage, episodes of rejection, and immunosuppressive
medication nephrotoxicity), characterized by the deposition of extracellular collagen and
development of tubular atrophy with rarefaction of peritubular capillaries [7,8]. Interstitial
fibrosis/tubular atrophy is unanimously considered a critical predictor of kidney allograft
outcomes [9]. Since treatments for rejection and other causes of graft dysfunction bear
substantial toxicity and could have limited efficacy, the extent of irreversible graft scarring
is crucial information for the clinician in order to evaluate the risks and benefits of specific
therapies. The assessment of IFTA is based on the pathological evaluation of renal graft
biopsies and its extent is estimated according to the updated Banff classification [10], which
differentiates three grades depending on the percentage of the affected cortical tissue: <25%
grade one, ≥25% and <50% grade two, and ≥50% grade three. Kidney graft biopsy is
considered a relatively safe procedure when performed by a skilled operator; nevertheless,
it is an invasive manoeuvre, and its risks are not negligible, with significant bleeding
occurring in up to 4% of patients and minor complications in almost one-fifth [11–13].

Radiomics is a quantitative imaging approach that extracts information from diagnos-
tic images produced by routine examinations in the form of numeric continuous variables.
Those variables describe intrinsic characteristics of the imaged region of interest that may
be related to specific aspects of tissue or its cellular, metabolic, and genetic character-
istics. Although radiomics-based works have been developed and validated mainly in
oncologic settings [14], there is a growing interest in adopting these techniques to study
non-cancerous tissues [15].

In this study, we aimed to evaluate whether radiomics applied to the analysis of
kidney-graft MRI may potentially assess a binary outcome of IFTA grading according to
Banff classification using different models based on clinical data, radiomic data, and a
combination of both.

2. Materials and Methods
2.1. Study Design, Ethics, and Population

We conducted a single-centre retrospective study to explore the feasibility and potential
of MRI radiomics in reproducing the histologic IFTA grading in kidney graft biopsies. This
study was approved by the “Area Vasta Emilia Nord” Ethical Committee (protocol number
0007669/21, 11 March 2021). Whenever it was impossible to contact the patients, informed
consent was waived according to the study’s retrospective nature.

We included all consecutive kidney-transplanted patients in a clinical follow-up at
the Nephrology and Dialysis Unit of University Hospital of Modena who received a graft
biopsy and a contrast-enhanced MRI within six months on clinical indication from 1 January
2012 to 1 March 2021.

Among acquired sequences, SShT2 weighted and post-contrast fat-saturated T1 3D
GRE sequences were adopted because of the possible presence of tissue information re-
lated to organ water content and vascularization. Two radiologists made a preliminary
analysis of MRI images to select sequences with more stable acquisition parameters among
different exams. Axial SSh T2 weighted sequence and post-contrast fat-saturated T1 3D
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GRE sequence in the venous phase (Supplementary Table S1) were selected due to lower
variability and better reproducibility.

Exclusion criteria were unsuitable biopsies (inadequate material) or MRI examinations
(incomplete transplanted kidney coverage, artifacts, absence of contrast administration, or
adoption of a different acquisition protocol with highly divergent acquisition parameters)
(Figure 1).
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Figure 1. Patient and exam inclusion flow chart. p.n.: patient number; e.n.: exam number, referring
to the number of couples of MR/biopsy tests.

Each suitable pair of tests (MRI and biopsy within six months) was considered sepa-
rately for patients who underwent multiple MRI exams and biopsies.

Our work is a pilot study primarily aimed at exploring the potential of kidney graft
MRI radiomics and how radiomic features were related to IFTA. We also attempted to
evaluate the accuracy of clinical and radiomic signatures in the assessment of a binary
IFTA-based outcome. For the data preparation, we followed the methodology suggested
by the Image Biomarker Standardisation Initiative (IBSI) [16]. Hence, we chose a hold-
out validation method among the whole cohort to assess our model performance metric.
The initial cohort was thus divided into two cohorts, one composed of 70% of samples,
used firstly for feature selection and then for model training and validation (10-fold cross-
validation), and the other with the remaining 30% of samples used for testing the final
model. Samples in the training and validation sets were chosen randomly, but a similar
distribution of the primary binary outcome in both sets was maintained.

2.2. Clinical Data

Relevant clinical and laboratory data were collected from patient records after the
acquisition of informed consent and personal data treatment agreement from all subjects
involved in the study. These included age, sex, ethnicity, BMI, transplant type, transplant
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age, estimated glomerular filtration rate (eGFR) according to CKD-EPI equation at biopsy,
and proteinuria/creatininuria ratio on single void urine sample immediately before biopsy.

2.3. Kidney Graft Biopsy

All biopsies were performed on clinical indication by one of three expert nephrologists
in hospitalized patients, who were adequately informed and provided written consent for
the procedure.

Adequate blood pressure control was ensured before the procedure; coagulation
parameters and platelet levels were assessed before biopsy; a minimum level of patient
collaboration was required. In brief, graft kidney biopsy was carried out with the patient
in a supine position, with adequate local anaesthesia and under real-time ultrasound
assistance, using a 16- or 18-gauge spring-loaded automatic needle (Bard Magnum, C.R.
Bard Inc., Murray Hill, NJ, USA) and targeting the lower pole of the transplanted kidney
through a percutaneous anterior abdominal approach. In general, two cores of renal tissue
were obtained and allocated to light microscopy, immunofluorescence, and, whenever
indicated, electron microscopy technique for diagnosis. Biopsies were revised by one
expert nephropathologist (FF) according to the updated Banff classification; the amount
of IFTA in renal cortical tissue was assessed using light microscopy through analysis of
multiple slides with different stains and reported as deciles and terciles classes (<25%,
>25%, >50%). Due to the reduced dimensions of the cohort, we decided to build a model
for predicting a binary IFTA outcome. The deciles and terciles IFTA values were thus used
as thresholds for our two examined binary IFTA outcomes: IFTA > 25% and IFTA > 50%.

2.4. Image Data Acquisition and Analysis

All the included MRI scans were acquired using a 1.5 T scanner (Philips Achieva,
The Best, The Netherlands). SSh T2 sequences were performed without the injection of
contrast medium in the axial and coronal planes, and those providing an axial view of the
transplanted kidney (short axis) were selected. Axial post-contrast fat-saturated T1 3D GRE
sequences were acquired with a dynamic protocol in the arterial phase with bolus tracking
technique and after 30, 60, and 90 s, respectively, from the threshold. The last phase was
selected due to higher reproducibility among different examinations in terms of contrast
distribution. Acquisition parameters of selected sequences are reported in Supplementary
Table S1.

Image pre-processing was conducted following IBSI guidelines [16], and the whole
radiomic pipeline is summarized in Supplementary Figure S1. Among the included exams,
we decided to split the cohort into a training cohort (70%), with which our predictive model
was trained and the feature selection process was carried out, and a separate test cohort
(30%), with which the model’s final performance was tested. The test cohort was never
used in the training step. The splitting process was randomized with a balanced separation
of the IFTA > 25% binary outcome. The two included exam sequences (T1 3D and T2 2D)
were spatially resampled with the B-Spline interpolation method. T1 3D sequences were
resampled to an isotropic voxel of 2 × 2 × 2 mm3 to obtain rotationally invariant features.
T2 2D sequences were resampled to a voxel isotropic in two dimensions of 2 × 2 × 3 mm3,
and consequently, features from that image set were computed only in 2 dimensions (2D
features). Then, we performed an image intensity normalization using a chosen range, set
to −3 standard deviations (σ) and +3σ from the mean value of the analysed ROI. Finally, the
images were binned by intensity, grouping the original intensity values into five bins (fixed
bin number) with the aim of reducing image noise and computational burden, according to
the IBSI guidelines.

After the image pre-processing steps, we computed radiomic features from the
image sets. Features (intensity-based, shape-based, and second-order) were extracted
both from the original images and filtered images, namely wavelets (high–low, low–
high, high–high, low–low filters), Laplacian of Gaussian (LoG) with sigma of 1 and
3 mm, and gamma modifier filters [17]. Radiomic features were calculated using an
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in-house software pipeline employing the widely used pyRadiomics package (v. 3.0.1)
running on Python (v. 3.7.9). The list of the extracted radiomic features is compliant
with the image biomarker standardization initiative guidelines [16] and can be found at
https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on 29 August 2024).

Since the study is focused on transplanted non-cancerous organs, we chose to avoid
the extraction of shape features that were not expected to have a clear correlation with the
outcome of interest (IFTA), which is different from tumour shape in oncologic studies. As
detailed before, from T2 2D images, we extracted only features derived from 2D matrices,
while for T1 3D images, the whole set of features derived from 2D and 3D matrices was used.

A radiologist (FM) blinded to the clinical outcomes segmented the transplanted kid-
neys using 3D Slicer software version 4.10.1 [18]. For T2 2D images, the manual contouring
tool was used to select the whole parenchyma (Figure 2A), the medulla (Figure 2B), and the
cortex (Figure 2C) obtained through previous segment subtraction. For T1 3D postcontrast
images, the semiautomatic contouring tool based on intensity levels was used for the
delineation of the whole parenchyma only since it was not possible to differentiate cortex
and medulla reliably (Figure 2D). A different tool was adopted because, on T2-weighted
sequences, the intensities of parenchyma and surrounding tissue were too similar to be
reliably differentiated by the semiautomatic contouring tool. Moreover, the higher number
of images of T1 3D sequences, caused by a lower thickness, made the manual contouring
tool too slow to be adopted.
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Figure 2. (A,B,D) Gradient Echo T1 weighted 3D venous-phase post-contrast sequence segmented 

in whole parenchyma by using the intensity-levels based semiautomatic contouring tool of 3D Slicer 
Figure 2. (A,B,D) Gradient Echo T1 weighted 3D venous-phase post-contrast sequence segmented in
whole parenchyma by using the intensity-levels based semiautomatic contouring tool of 3D Slicer
software, and depicted in axial view (A), sagittal view (B) and coronal view (D). (C) Single-shot T2
weighted sequences segmented with 3D Slicer software manual contouring tool, respectively subdi-
vided in medulla (yellow) and cortex (red). (E) Three-dimensional rendering of whole parenchyma
using T1 3D semiautomatic segmentation.

https://pyradiomics.readthedocs.io/en/latest/features.html
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2.5. Statistical Analyses and Model Building

Associations of ordinal clinical features and IFTA were evaluated using the Kendall
rank correlation coefficient “τ” to investigate a possible correlation without assuming a
linearity between the two variables. The association between transplant type (categorical
variable) and IFTA was assessed using the Spearman rank correlation coefficient. To reduce
the dimensionality of our extracted features set, we employed a selection process based
on the association between radiomic features and the two aforementioned binary IFTA
outcomes (IFTA > 25% and IFTA > 50%), assessed through a least absolute shrinkage and
selection operator (LASSO). LASSO is a regression analysis method that performs feature
selection and regularization to enhance the prediction accuracy and interpretability of the
statistical model it produces. It incorporates a shrinkage penalty term in its optimization
function that is proportional to the absolute value of the regression coefficients. Therefore,
LASSO drives the coefficients of less relevant variables to zero. This results in a model
that retains only a subset of the predictors, deeming them most essential for predicting the
outcome variable. The parameter λ controls the strength of the regularization. The choice
of λ determines the level of penalty applied: larger values of λ create simpler models by
forcing more coefficients to zero, thus preventing overfitting. In comparison, smaller values
allow more complex models by retaining more features in the model. In our application,
λ was chosen using 10-fold cross-validation (CV). In addition, LASSO handles sets of
collinear features by increasing the weight of one of them while setting the others to zero.
Because IFTA was considered binary, we used a binomial function to perform our LASSO
regression. Relevant features were thus selected by setting a threshold on the LASSO
regression coefficients associated with the involved radiomic features.

We built two Ensemble Subspace Discriminant (ESD) models to predict IFTA > 25%
and IFTA > 50% using the selected features. ESD models are based on an ensemble
technique that combines multiple discriminant analysis classifiers. These classifiers are
trained on distinct random subsamples of the feature space, aiming to improve model
robustness and accuracy by aggregating predictions from multiple models. Three models
were built for both outcomes using radiomic features (radiomic model), clinical variables
(clinical model), and a combination of both (combined model). Therefore, we trained a
total of 6 ML models through a 10-fold cross-validation method, with which we computed
model performance on the training cohort using areas under the curve (AUCs) with 95% CI.
Similarly, we calculated the models’ performances on our test cohort, which was composed
of new cases unseen by the previously trained models.

Feature selection and model-building were conducted using MATLAB (The Math-
Works Inc., version R2012b).

3. Results
3.1. Study Population

During the study period (from 1 January 2012 to 1 March 2021), 254 graft biopsies were
performed for clinical indication in 194 transplanted patients. For 94 of these 254 procedures,
an MRI performed within six months from the kidney biopsy was available for 80 patients
(twelve patients had two pairs of tests, and one patient had three pairs of tests). A total
of 24 MRI examinations were judged unsuitable and excluded from the study (Figure 1),
including 70 paired tests performed on 63 patients.

Those 70 paired tests were randomly subdivided into a training set of 50 tests and
a test set of 20 tests, with a fixed proportion of IFTA over 25% and 50% in the two sets.
Clinical variables from the whole study population and the two cohorts (training and test
sets) are reported in Table 1.
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Table 1. Clinical characteristics of the included patients/paired tests. DBD donation after brain death;
DCD donation after cardiac death; LD living donor.

Clinical Variables Total (n = 70) Training Set (n = 50) Test Set (n = 20)

Sex (M:F) 45:25 33:17 12:8

Ethnicity (Caucasian/Sub-Saharan) 62:8 45:5 17:3

Age (years) (mean ± SD) 52.19 ± 12.76 54.10 ± 12.36 47.41 ± 12.78

RM/Biopsy interval (days) (median, IQR) 16, 4–48.75 16, 4–48.75 15, 4.75–49

RM/Biopsy interval > 90 days (n, %) 13 (18.57%) 10 (20%) 3 (15%)

BMI (median, IQR) 24.59, 22.47–27.30 25.39, 22.68–27.90 23.50, 22.46–25.39

eGRF at biopsy (median, IQR) 25.68, 11.88–35.51 26.90, 13.08–34.95 20.17, 11.10–38.08

Proteinuria/creatininuria, g/g (median, IQR) 0.79, 0.30–2.10 0.74, 0.21–2.09 0.79, 0.35–2.00

Transplant type (n, %)

DBD 59 (84.29%) 42 (84.00%) 17 (85.00%)

DCD 2 (2.86%) 2 (4.00%) 0 (0.00%)

LD 9 (12.86%) 6 (12.00%) 3 (15.00%)

Transplant age (years) (median, IQR) 0.78, 0.31–6.36 1.03, 0.36–0.77 0.62, 0.24–1.78

IFTA % (median, IQR) 20, 10–30 20, 10–37.5 20, 10–30

IFTA ≥ 25% (n, %) 29 (41.42%) 21 (42.00%) 8 (40.00%)

IFTA ≥ 50% (n, %) 14 (19.72%) 11 (22.00%) 3 (15.00%)

3.2. MRI Radiomic Feature Selection and Radiomic Signatures

Feature extraction produced 2595 features (1120 2D-spaced from T2 sequences and
1475 3D-spaced from T1 sequences). To select radiomic features associated with the outcome
of interest, we performed a binomial LASSO feature selection for both MRI sequences.
Selected features for IFTA ≥ 25% and IFTA ≥ 50% were merged in two radiomic signatures
associated with the outcomes. These signatures are reported in Table 2 with every selected
radiomic feature and its respective LASSO regression coefficient.

Table 2. T1 and T2 radiomic features used for the prediction of IFTA ≥ 25% and IFTA ≥ 50% with
their respective LASSO regression coefficients at the chosen penalization parameter.

IFTA ≥ 25% LASSO RC IFTA ≥ 50% LASSO RC

T1 Logsigma30mm3D glrlm
LongRunLowGrayLevelEmphasis 1.8 T1 logsigma30mm3D glcm ClusterShade −0.071

T1 waveletHHL glcm Idmn −2.6 × 103 T1 waveletHLH glcm Idmn 0.0071

T1 waveletHHH firstorder Skewness 2.4 T1 squareroot firstorder Kurtosis 1.6

T1 logarithm glszm SizeZoneNonUniformity 1.5 T1 exponential glcm Imc2 −8.5

T1 exponential glcm Imc2 −84 T1 exponential gldm
SmallDependenceLowGrayLevelEmphasis 610

T1 exponential gldm
SmallDependenceLowGrayLevelEmphasis 2.6 × 103 T1 gradient glcm Imc2 57

T2 waveletLH firstorder Mean 8.4 T2 logsigma30mm3D firstorder Median 0.0012

T2 waveletLH firstorder Median 2.5 T2 waveletLH glszm ZoneEntropy −1.9

T2 waveletLH glszm ZoneEntropy −88 T2 waveletHH glcm Idmn 2.3

T2 waveletHH glcm Imc1 3.7 T2 waveletHH glcm Imc1 −0.67

T2 waveletHH ngtdm Busyness 2.4 T2 waveletHH ngtdm Busyness 0.10

T2 waveletLL glcm MaximumProbability −2.9 × 103 T2 logarithm gldm
SmallDependenceLowGrayLevelEmphasis −0.34

T2 exponential glrlm
ShortRunLowGrayLevelEmphasis 8.9 T2 exponential glrlm

LongRunHighGrayLevelEmphasis 0.56
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3.3. Clinical Variables and Signature

The association between meaningful clinical variables and IFTA in our cohort was
evaluated using the Kendall test (Supplementary Table S2). Among analysed variables,
transplant age and proteinuria/creatininuria ratio at biopsy were associated with the
outcome. Other relevant clinical variables were combined with radiomic features in a
clinical model since they are considered prognostic factors and are thus commonly used in
clinical practice.

3.4. Machine Learning Model Performances

Model performances are reported in Table 3, providing AUCs with respective 95%
CI for IFTA ≥ 50% and ≥25% both in training and in test sets. The models showed a
better performance for IFTA ≥ 50%. Radiomics performed slightly better than clinical-only
models, and models using both radiomic and clinical variables showed a marked increase
in AUC. Models showed higher AUCs, especially for IFTA ≥ 50%, in the training set than
in the test set. The decrease in AUC from training to test set was particularly significant
for the model, including both radiomic and clinic characteristics (for IFTA ≥ 50%, AUC
0.96, 95%CI 0.84–0.98, and 0.86, 95% CI 0.41–0.99, for the training and test set, respectively)
(Figure 3).
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Figure 3. AUC of the two models based on clinical, radiomic and mixed model. (A,C) AUC
obtained using an internal 10-fold cross validation method on the training cohort ((A) IFTA ≥ 25%,
(C) IFTA ≥ 50%). (B,D) AUC obtained applying models deployed on training cohort to a validation
cohort composed by new tests ((B) IFTA ≥ 25%, (D) IFTA ≥ 50%).
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Table 3. Areas under the curve (AUCs) with respective 95% confidence intervals of different models
(radiomic-based, clinical-based, mixed) for IFTA ≥ 50% and ≥25% in the training and test sets.

Model Performance AUC 95% Confidence Interval

IF
TA

≥
25

% Training

Radiomic Model 0.80 (0.64/0.90)

Clinical Model 0.64 (0.45/0.79)

Mixed Model 0.83 (0.66/0.93)

Test

Radiomic Model 0.60

Clinical Model 0.59

Mixed Model 0.54

IF
TA

≥
50

% Training

Radiomic Model 0.89 (0.84/0.94)

Clinical Model 0.83 (0.75/0.91)

Mixed Model 0.94 (0.90/0.98)

Test

Radiomic Model 0.82

Clinical Model 0.83

Mixed Model 0.86

4. Discussion

In this cohort of 63 transplanted patients who underwent graft biopsy and contrast-
enhanced MRI within six months (for a total of 70 coupled procedures), radiomic features
were extracted from T2-weighed and post-contrast T1-weighted MR images and selected
according to their association with histology outcome (IFTA), and relevant clinical variables
of all patients were collected. Using those data, different ML-based MRI radiomic algo-
rithms were deployed. They demonstrated a good discrimination capacity for IFTA > 50%,
especially when radiomic features were merged with clinical variables (AUCs for clinical–
radiomic combined model were 0.96 and 0.86 in the training set and test set, respectively).

Diagnostic kidney graft biopsy currently remains an essential procedure to provide
a precise diagnosis and guide the management of transplanted patients. However, the
decision to proceed to biopsy could not always be as straightforward, especially with the
increased complexity of patients’ co-morbidities and treatments potentially interfering
with adequate haemostasis (antiplatelets or anticoagulants). Moreover, the prediction of
severe chronic parenchymal damage (i.e., IFTA > 50%) in the transplanted kidney may
justify avoidance of graft biopsy to diagnose rejection since the patient would likely not
be a candidate for further immunosuppressive treatment. In addition, a higher degree
of parenchymal scarring has been reported as a risk factor for bleeding, at least in native
kidneys [19]. Although biological parameters, such as eGFR and proteinuria, are com-
monly used in clinical practice to estimate the degree of chronic injury, their reliability
is questionable [20]. Consequently, the development of robust and non-invasive tools to
detect the presence of extensive IFTA in kidney grafts would represent a step forward in
personalizing patients’ management.

In recent years, increased attention has been devoted to using MRI for the study of
transplanted kidneys, with a specific focus on multiparametric/functional techniques [7,21,22]
and elastography [23]. Indeed, even if results are promising, especially for the prediction of
kidney fibrosis, the availability of these techniques has not been widespread yet.

Radiomics is an advanced technique that allows the extraction and analysis of a
large number of quantitative features from medical images, acquired during the course
of the routine clinical pathway of the patient. Available data in non-oncological kidney
diseases are scarce, with only a few available studies investigating T2-weighted MR-based
radiomics for the evaluation of autosomal dominant polycystic kidney disease progres-
sion [24,25] and decreased glomerular filtration rate during chronic lithium treatment [26],
or US-derived radiomics in the classification of IgA nephropathy [27]. Few studies have
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evaluated the potential role of US-based radiomics in the assessment of post-transplant
renal function [28–30] or the identification and discrimination of different stages of chronic
kidney disease [31–34]. Zhu et al. [35] studied radiomics signatures on elastography ul-
trasound images to predict kidney injury progression. Recently, Zhi et al. [36] integrated
clinical variables and MRI radiomic features into a convolutional neural network, report-
ing stable performance in discriminating the cause of kidney allograft dysfunction in a
cohort of 252 patients from China. Several studies [21,37,38] have confirmed the correlation
between renal function indicators (serum creatinine, albuminuria, and eGFR) and conven-
tional quantitative fMRI parameters. Furthermore, radiomic studies based on MRI images
carry the intrinsic issue of dealing with the variability of the image sets in the context of
multicentric studies.

We selected T2 and post-contrast T1 MR-derived radiomic features with the highest
association with histopathological IFTA in transplanted patients who underwent graft
biopsy and MRI. In our cohort of patients, models produced to assess IFTA ≥ 50% showed
a good performance. In particular, the combined model (with clinical and radiomics
variables) lowered its performance, in terms of AUC, from 0.96 in the training set to 0.86
in the test set. With respect to models produced to assess IFTA > 25%, their performances
can be considered poor, with a much higher decrease in terms of AUC from training to
test sets. As expected, the decrease in AUC from training to test set was stronger for the
combined model, probably due to the higher number of variables used to build the model.
Notwithstanding the small size of the test set, the consistency of AUC in training and test
sets in the prediction of IFTA > 50% seems to suggest that our methodology allowed for
a reduction in overfitting. These results highlight the presence of valuable information
in MRI images, which may be predictive of the chosen threshold of the histological IFTA
grading. Indeed, MRI T2 relaxation time is related to kidney tissue water content, which
is a sensitive indicator of IFTA [36], and T1 postcontrast images are influenced by organ
vascularization and penetration of contrast medium through the whole parenchyma, which
could be reduced by advanced parenchymal scarring. The information that more than
half of kidney parenchyma is affected could be clinically meaningful, preventing further
invasive procedures since they would not alter patients’ management.

The main limitation of our study is the small sample size; moreover, its limited number
of events (IFTA ≥ 25% and ≥50%) in the test set does not allow us to derive definitive
conclusions, emphasizing the feasibility of our proposed study. In addition, the number of
selected features, based on the relevance of their associated LASSO coefficient, could be
high compared to the sample size. Thus, a more extensive training cohort combined with
an external validation test set to exclude the risk of overfitting needs must be accounted
for in future studies to confirm our results. In addition, the single-centre design implied
a lack of external validation, which could also produce a bias due to the different clinical
protocols employed in the image acquisition step. We tried to overcome this limitation by
building a sub-cohort of patients for feature selection and model training and a separate
sub-cohort for testing. Another limitation of the study was its retrospective nature, which
prevented us from designing specific MR sequences that were more fit for radiomic feature
extraction. Hence, some sequences were affected by high parameter variability; in fact, only
SSh T2 and post-Gd fat-saturated T1 3D sequences were selected. However, the selection
of both T1 and T2 weighting and post-contrast images probably allowed us to collect
most MRI-based information for transplanted kidney tissue characterization. Moreover,
including transplanted patients referred to MRI for clinical reasons could have led to a
selection bias. Finally, we acknowledge that the allowed temporal interval between biopsy
and MRI (within six months) may be considered to be long enough for important changes
in kidney tissue to develop. Nevertheless, less than 20% of the enrolled patients had an
interval longer than three months. Furthermore, since IFTA is a chronic condition following
kidney transplantation, we did not expect a relevant IFTA modification in the considered
time interval.



Information 2024, 15, 537 11 of 13

Another limitation is that, in our research, we only used one segmentation, which was
manually performed by an expert radiologist. This approach may represent a limitation of
our study, as it does not allow for an evaluation of how alternative segmentation methods
might have impacted the outcomes. The impact of the segmentation method in MRI
images could be addressed in future work to further validate and potentially enhance the
robustness of our findings.

The major strength of this study is our effort to pursue the standardization guidelines,
especially critical in the pre-processing step for MRI images due to their intrinsic nature,
following IBSI indications [14], despite the retrospective nature of the study and the small
sample size. Shape features were not extracted. While these may be of interest when
collecting radiomics in oncology, where size, shape, and borders are expected to correlate
with the nature of the tissue and its histology, diagnosis, and prognosis, in the case of
a transplanted organ, they are not likely to introduce meaningful, informative value.
Still, they could add unwanted complexity to the analysis and increase the probability
of observing false associations and overfitting. Another strength of our study is that the
ground truth of our prediction models is represented by kidney graft biopsy, which is
currently considered the gold standard for histopathological diagnosis of kidney allograft
(and IFTA quantification), in opposition to the only available study on MRI radiomics in
kidney transplant patients [36], where a relevant proportion of predicted diagnosis was
assigned based on clinical judgment.

5. Conclusions

In conclusion, this preliminary study shows that MR-derived radiomics of kidney
grafts is feasible and may add informative value to clinical factors in predicting an IFTA
binary outcome (>50%). Prospective studies, possibly with predefined MR acquisition
parameters, are necessary to confirm this hypothesis. Further studies are needed to evaluate
the potential role of MR radiomics as a predictor of long-term graft dysfunction. Our data
establish a new radiological/histopathological correlation, which could support future
clinical applications; should the good performance of MR radiomics be confirmed, it
could be used as a non-invasive tool to assess and monitor chronic parenchymal injury in
kidney-transplanted patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/info15090537/s1, Table S1: Acquisition parameters of every
included study; Table S2: Associations between clinical variables and IFTA as a continuous variable
computed using Kendall’s Tau correlation coefficient/Spearman for transplant type variable; higher
absolute value of τ corresponds to higher correlation between variables and outcome; Figure S1:
Radiomic pipeline followed in our study.
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