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Abstract
The research field on tunnel-FETs (TFETs) has been rapidly developing in the last ten years, driven
by the quest for a new electronic switch operating at a supply voltage well below 1V and thus
delivering substantial improvements in the energy efficiency of integrated circuits. This paper
reviews several aspects related to physics based modeling in TFETs, and shows how the description
of these transistors implies a remarkable innovation and poses new challenges compared to
conventional MOSFETs. A hierarchy of numerical models exist for TFETs covering a wide range of
predictive capabilities and computational complexities. We start by reviewing seminal contributions
on direct and indirect band-to-band tunneling (BTBT)modeling in semiconductors, from which most
TCAD models have been actually derived. Then we move to the features and limitations of TCAD
models themselves and to the discussion of what we define non-self-consistent quantum models,
where BTBT is computed with rigorous quantum-mechanical models starting from frozen potential
profiles and closed-boundary Schrödinger equation problems. We will then address models that solve
the open-boundary Schrödinger equation problem, based either on the non-equilibrium Green’s
function NEGF or on the quantum-transmitting-boundary formalism, and show how the
computational burden of these models may vary in a wide range depending on the Hamiltonian
employed in the calculations. A specific section is devoted to TFETs based on 2D crystals and van
der Waals hetero-structures. The main goal of this paper is to provide the reader with an introduction
to the most important physics based models for TFETs, and with a possible guidance to the wide and
rapidly developing literature in this exciting research field.

Keywords: energy efficient switches, tunnel FETs, modeling and simulations, quantum transport,
semi-classical transport, van-der-Waals transistors

Abbreviations and acronyms

BJT Bipolar junction transistor

BTBT Band-to-band tunneling

CB Conduction band

CMOS Complementary metal-oxide-semiconductor

CMS Coupled mode-space

CNT Carbon nanotube

DFT Density functional theory

DG Double gate

DOS Density of states
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EHBTFET Electron–hole-bilayer TFETs

EMA Effective mass approximation

FET Field effect transistor

GAA NW Gate-all-around NW

HH Heavy holes

JDOS Joint DOS

LDOS Local DOS

LH Light holes

MOSFET Metal-oxide-semiconductor FET

NEGF Non-equilibrium Greenʼs function

NW Nanowire

PAT Phonon-assisted tunneling

PMI Physical model interfaces

QCTP Quantum-corrected tunneling path

QTB Quantum transmitting boundary

SG Single gate

SOI Silicon-on-insulator

SRH Shockley–Read–Hall

SS Sub-threshold swing

TAT Trap-assisted tunneling

TCAD Technology computer aided design

TFET Tunnel FET

TMD Transition-metal dichalcogenides

UTB Ultra-thin body

vdW van der Waals

WKB Wentzel Kramers Brillouin

1. Background and introduction

The progress in the computing and information technologies
over the past four decades has been the enabler of a countless
number of applications. In a foreseeable future, nanoelec-
tronics will deliver self-powered, energy autonomous families
of sensing, computing and communicating devices for many
scenarios in the frameworks of the internet-of-things and
internet-of-humans. As of today, however, power consump-
tion is the main hindrance to the progress of the computing
technologies: indeed integrated circuits simply do not have
the energy budget necessary for the full exploitation of their
potential performance. This utilization wall led to the so
called dark silicon age where, at any point in time, significant
fractions of the gates available on a chip are idle or sig-
nificantly underclocked [1]. The origin of the utilization wall
is that, in the CMOS technology generations after about the
beginning of years 2000, it has been impossible to scale the
power supply voltage, VDD, as prescribed by the Dennardian
scaling [2, 3], so that VDD reached a plateau value of about
1 V. The dark silicon age officially marks the transition from
the Dennardian scaling, where progress in CMOS technolo-
gies was measured in terms of improvements in transistor
speed and number, to a new era where progress will be mainly
measured in terms of energy efficiency.

A number of measures and design techniques against the
power crisis have been devised at circuit and system level
[4, 5], which in CMOS technology nodes from 130 to 90 nm
allowed to improve the delay while reducing VDD down to
about 1 V. After the 90 nm technology node, however, it has
been impossible to further scale VDD and reduce the delay, so
that designers had to find new avenues to convert geometrical
scaling into performance enhancements. The most important
of such avenues was parallelism, so that after 2005 the
number of microprocessor cores started to double at each new
technology cycle [6, 7]. The parallelism is not a solution to
the utilization wall limit though, because its effectiveness
ceases when each hardware unit approaches the minimum
energy per operation [5, 6], and in fact the number of cores in
microprocessors has already started to saturate.

The scaling of the power supply is probably the most
effective measure to improve energy efficiency. The mini-
mum VDD for digital circuits has been discussed by several
authors [8], and different authors driven by different per-
spectives found that VDD could in principle be as small as a
few K TB /e (i.e. about 0.1 V at room temperature), where KB,
T and e are respectively the Boltzmann constant, absolute

Figure 1. Sketch of the essential physics behind the electron
injection from the source to the channel region of either an n-type
MOSFET or an n-type tunnel FET. (a) MOSFET: where electrons
are injected for energies above the top-of-the-barrier and according
to the Fermi–Dirac occupation function in the source region; (b)
tunnel FET: where electrons of the source are injected from the
valence band, whose maximum sets an upper limit to the electron
energy. A qualitative band-diagram is shown for both the OFF and
the ON state of the tunnel FET.
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temperature and electron charge. It should be recalled that
reducing VDD by a factor of ten results in a 100× save in
dynamic power. A serious challenge to this aggressive VDD

scaling is the requirement to maintain the ratio [ION/IOFF]
between on current ION and off current IOFF to values of about
106: in fact [ION/IOFF] is ultimately set by the sub-threshold
swing, SS, of the transistors. Consequently, several novel
devices have been recently investigated [9, 10], to overcome
the fundamental 60 mV/dec limit of the SS in CMOS tran-
sistors at room temperature [11].

CMOS transistors based on BTBT, usually referred to as
TFETs, are the device concept most systematically developed
and investigated in the last five to ten years [12]. The basic
idea behind this device is to overcome the 60 mV/dec limit
set by thermionic electron emission in CMOS transistors by
injecting electrons in the channel (for an n-type device) from
the valence band of the source, rather than from the con-
duction band (CB) as in conventional MOSFETs.

In fact in a nanoscale n-type MOSFET, illustrated in
figure 1(a), electrons are injected from the source via ther-
mionic emission and for energies above the top of the CB
profile (neglecting the tunneling component below the top of
the barrier, which should not be confused with a BTBT
process). Consequently, when VG is reduced and the top of the
barrier is raised, IDS is suppressed following the decay at large
energy of the source occupation function. For energies larger
than the source Fermi level, EFS, the occupation decays as a
Boltmann function, which leads to the well known thermally
activated SS.

In the n-type TFET sketched in figure 1(b), instead,
electrons are injected via BTBT from the valence band of the
source region to the CB of the channel region. Hence the top
of the valence band produces an energy filtering mechanism
which suppresses the thermal tail of source electrons, pro-
vided that the source is not heavily degenerate, that is pro-
vided that EFS is not several K TB below the top of the
valence band. Such a transport mechanism is very different
from a thermionic emission, and can in principle produce a
subthreshold swing smaller than 60 mV/dec (at room temp-
erature), and fairly independent of temperature.

The research field of TFETs has witnessed a rapid
expansion in the last five to ten years and a lot of new material
systems and device concepts have been proposed, with a
number of papers devoted to performance benchmarking
between TFETs and TFETs based circuits against mainstream
CMOS transistors and circuits. While it is beyond the scope
of this work to review the vast field of BTBT FETs, our aim is
to review some of the methodologies developed and
employed for the numerical modeling of TFETs. As can be
seen, we do not even intend to cover all relevant modeling
aspects, in fact we will not address compact models, and we
will leave out also the methodologies employed for a circuit
level benchmarking of TFETs against conventional CMOS
transistors.

The present review paper is organized as follows.
Section 2 describes a number of models for BTBT ranging
from bulk materials subject to a uniform electric field, to
nano-structured devices where quantum confinement results

in significant changes of the band-structure compared to bulk
materials. This broad section starts by reviewing seminal
models in bulk materials, and then addresses models for
complete device simulations including TCAD oriented mod-
els and more computationally intensive, full quantum trans-
port models. Sections 3 and 4 describe several simulation case
studies and comparisons to experiments concerning TFETs
fabricated respectively with group IV or with III–V semi-
conductors and III–V based hetero-structures. Section 5
focuses on the recent but very vital field of TFETs based
ontwo-dimensional (2D) semiconductors and, in particular,
on van der Waals hetero-structures. In section 6 we finally
propose a few concluding remarks.

2. Modeling of band-to-band-tunneling in
Tunnel-FETs

In this section we review the main models developed for
BTBT, focusing on their applications to TFETs. Models for
BTBT have been developed since the 50s and applied to a
large variety of devices such as reverse-biased diodes
[13, 14], conventional MOSFETs (where BTBT takes place at
the drain under high drain biases) [15, 16], and non-volatile
memories [17–19]. The recent developments in TFETs have
driven a renewed interest in this topic and many models have
been revisited or originally proposed, in particular dealing
with BTBT in the presence of quantum confinement, which
was not so important in diodes and non-volatile-memories
and thus not so much investigated.

Before entering the details of the individual models, it is
worth recalling that BTBT is a quantum-mechanical mech-
anism corresponding to a flux of electrons from the valence to
the CB. In principle a BTBT model should provide an energy
resolved current spectrum. On the other hand, in a semi-
classical modeling framework BTBT can be viewed as a
carrier generation mechanism, where a hole is generated in
the valence band at the beginning of the tunneling path, and
an electron is generated in the CB at the end of the tunneling
path. The two points of view are however equivalent, as
illustrated pictorially in figure 2: in fact the current in the

Figure 2. Sketch explaining the conversion between tunneling
currents per unit energy DJ , the electron (Jn) and hole (Jh) currents
inside the bands, and the BTBT generation rates, Ge and Gh. Case
with uniform electric field F.
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forbidden gap corresponds to electron and hole currents
flowing respectively at the left and right side of the tunneling
path. These currents become null at the classical turning
points, which results in a non null derivative of the currents
over space, hence in a generation rate in the current continuity
equation. As a result, the current densityDJ in the energy bin
DE corresponds to a generation rate of holes (left side of the
tunneling path) and electrons (right side) given by:

=
D
D

( ) ∣ ∣ ( ) ( )G E F
J E

E
, 1T

where F is the electric field.
We now start reviewing the main models and modeling

approaches for BTBT and first of all identify different cate-
gories. Since the BTBT current is due to tunneling inside the
forbidden gap, we can identify models describing direct
tunneling between valence and CB extrema both located at
the Γ point, as well as indirect, phonon-assisted BTBT
models that describe tunneling between valence and CB
extrema located at different points of the Brillouin zone. In
silicon, for example, indirect BTBT occurs between the
maximum of the valence band in Γ and the minima of the CB
in Δ. We can also classify the models based on the dimen-
sionality of the involved carrier gases: models for 3D carrier
gases are adequate for diodes and bulk-like or thick body
MOSFETs; on the other hand, TFETs with ultra-thin-body
architectures as well as devices such as the electron–hole-
bilayer-TFETs, EHBTFETs, based on tunneling between
quantized electron and hole gases require more advanced
models. Those models are mainly based on the solution of the
Schrödinger equation with open boundary conditions, such as
the NEGF method. Since the computational burden of such
approaches is very large, in particular when dealing with
phonon assisted tunneling (PAT) and in large devices, alter-
native models have been developed which are based on the
post-processing of the subband minima and wave-functions
obtained by solving the Schrödinger equation with closed
boundary conditions: in the following we will refer to such
models as non-self-consistent quantum models.

2.1. Models for direct BTBT in bulk semiconductors

Kane proposed his BTBT theory in his seminal paper in 1959
[13]. The paper made use of perturbation theory to write the
Schrödinger equation as a sum of interband and intraband
coupling elements. Here we provide a different, simpler proof
of his results based on the Landauer conduction formula and
WKB approximation. We start with a so-called local model,
that is a model that assumes a constant electric field along the
tunneling path and an uniform structure.

For the derivation we start by writing the general
expression of the current density using the Landauer’s con-
duction formula [20]:


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where e is the positive electron charge, ÿ is the reduced Plank
constant, A is the area of the device in the direction normal to
tunneling, k̂ is the transverse wave-vector, ^( )T E k, is the
transmission probability and fv, fc are the local occupation
functions. For simplicity, hereafter we set fv = 1 and fc = 0,
even if this implies that equation (2) gives non-zero current
when zero bias is applied at the tunneling junction [21]; this
problem is solved for example in [14]. The fc and fv will
appear explicitly in the models in the section 2.2, but here we
remain consistent with [13] and set fv = 1 and fc = 0. We now
convert the tunneling current per unit energy in a generation
rate according to equation (1), hence following the physical
picture illustrated in figure 2. In particular, we evaluate the
integral in equation (2) by moving to polar coordinates; we
further assume that the transmission depends on the energy E
and only on the magnitude k̂ of the wave-vector k̂ and thus
obtain

 òp
p=

+¥

^ ^ ^( ) ∣ ∣ ( ) ( )G E
e F

E k k k
4

2 T , d , 3T 3 0

where the tunneling probability in equation (3) can be
expressed by using the WKB approximation [22]:
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and the p 92 factor is discussed in [23]. In order to evaluate
the integral in equation (4) we need an E versus k relation
valid in the energy gap, that is connecting the valence band to
the CB. Moreover, since direct BTBT is an elastic process,
total transverse momentum and energy need to be conserved.
We employ here the Kane’s two-band dispersion relation:
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where m0 is the rest electron mass, = +- - - -( )m m mr c v
1 1 1 1,

= ^∣( )∣k k k,x is the magnitude of the wave vector. Inside the
gap, since kx is imaginary (and thus = - ( )k kImx x

2 2), it is
easier to express the energy as a function of
k = - = - ^[ ( ) ]k k kIm x

2 2 2 2 . The±sign in equation (5)
indicates that inside the gap we have two possible energy
values for given κ.

We now set x = 0 at E = 0, that is at the point where
the top of the valence band crosses the constant energy line
that we use as reference. Assuming the electric field F is
uniform and along x direction, the energy is given by

= ∣ ∣E e F xgap . Neglecting the  k ( )m22 2
0 term in

equation (5c), the imaginary part of kx inside the bandgap can
be written as:
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After determining the classical turning points of the
valence and CBs, which deviate from xi = 0 and

= ∣ ∣x eE Ff G due to non-null parallel momentum k̂ , the
transmission coefficient can be obtained by evaluating the
integral over x in equation (4), that leads to
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By substituting equation (7) in equation (3) we find that the
integral over k̂ can be evaluated analytically and finally reach
the well-known formula [13]:
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The local models, such as the one presented above, tend
to grossly overestimate the current when the electric field
rapidly changes over small distances. In order to overcome
this issue within the semiclassical modeling framework, the
so-called non-local models were introduced [24, 25]. One
main goal of these models was to account for the creation of
carriers at either side of the tunneling barrier (see also
figure 2), in contrast to the local models which unphysically
assign electron and hole generation at the same position [26].

As an illustrative example, a non-local direct BTBT
model based on Kane’s two band dispersion can be obtained
using an analytical expression for the imaginary wave-vector
κ inside the forbidden gap derived from equation (5) as:
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where the energy E is inside the gap, namely we
have   +( ) ( )E x E E x EV V G.

Making use of equation (4) and assuming that only
small k̂ values result in significant tunneling probability,

we expand ( )kIm x for small k^[ ]k as k= + ^ ( )k kIm x
2 2
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where we implicitly assume that the physical system is uni-
form along the y and z direction. In principle the integration
extremes xi and xf should depend on k̂ . A further simplifi-
cation is thus introduced by evaluating xi and xf as the clas-
sical turning points corresponding to =k̂ 0. Inserting the
expression for T into equation (3) and evaluating the integral

over k̂ , we have:
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where we have now reintroduced the local occupation func-
tions at the beginning and at the end of the tunneling path.
The GT from equation (11) corresponds to a generation of
holes at position xi and a generation of electrons at position xf.
The electric field F used in equation (1) is here replaced by
the derivative of the valence band energy at the beginning of
the tunneling path. By considering different energies E in the
range [ ]E E,min MAX between minimum value of EC(x) and the
maximum value of EV(x), equation (11) provides the gen-
eration rate of electrons and holes along the whole structure.
In this respect, the parameter km represents the maximum
value of k̂ and it is given by:

 
=

- -⎜ ⎟⎛
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m E E m E E
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2

,
2

. 12m
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2
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2

Equation (11) is precisely the formula used in the
dynamic-path non-local model implemented in some com-
mercial simulators [25].

A similar expression has been used in [27], where the
integral of the wave-vector along the tunneling path is per-
formed by solving the equation of motion of the imaginary
energy dispersion in the gap using the Monte Carlo method.

We will return to the discussion of non-local tunneling
models in section 2.4.

2.2. Direct BTBT in quantized systems: non-self-consistent
quantum models

In the presence of quantization, different modeling approa-
ches can be followed depending on the different alignment
between tunneling and quantization directions. In fact, in a
planar device, tunneling can be in-line with the quantization
direction, as in the EHBTFET [28], or it can be transverse to
the quantization direction. In this paragraph we give more
details for the case with tunneling aligned with quantization
because the picture changes more dramatically compared to
the transverse quantization case, for which expressions
similar to equation (11) have been proposed, where only the
prefactor is different due to the different dimensionality of k̂
[29, 30]. We will return to this point in section 2.4.

The models we are reviewing here consider BTBT as a
post-processing calculation after the electrostatics has been
determined by the self-consistent solution of the closed
boundary Schrödinger and Poisson equations (quantum
mechanical approach), or the semi-classical continuity
equations. This is unlike the NEGF approach or similar
quantum transport formalisms (see section 2.5), where
transport and electrostatics are inherently coupled and the
Schrödinger equation is solved with open boundary condi-
tions along the transport direction.
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For tunneling along the quantization direction, the int-
egral over the total energy in equation (2) is replaced by a
discrete sum since the energy spectrum of the carrier gas
consists of a set of discrete subband levels. Using the Fermi’s
golden rule approach, one can write the following general
expression:

 å åp
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where the summation runs over all possible electron–hole
subband pairs (n = electrons, ¢n = hole). Note that simulta-
neous conservation of total energy and transverse momentum
(since direct BTBT is an elastic process) results in a single
tunneling energy ET for each pair of subbands (see figure 3).
The joint density of states (JDOS) for the case of tunneling
between two 2D carrier gases is given by
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Here m is defined as = +( )m m m m m2 e h e h and we see
how ET is determined by energy and parallel momentum
conservation.

There are two main approaches to calculate the interband
coupling coefficient a¢ ¢M n

n
, in the presence of quantization.

One is based on Bardeen’s transfer Hamiltonian approach
[31], where the matrix element for BTBT between two 2D
carrier gases can be evaluated as [32]:

 d y x q=a a¢ ¢

G
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, 15n
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k k n n,
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where GEG is the energy gap at the Γ point, d ¢^ ^k k, is the
Kronecker symbol, yn and xa¢ ¢n, are the envelope wave-
functions for the two different carrier gases and the product
y xa¢ ¢∣ ∣n n, is somewhat arbitrarily taken at the point where it is
maximum. An important difference compared to the bulk case
is the inclusion of the term q( )C0 , where the angle θ repre-
sents the direction of the hole state. In [32], for example, the
angle θ is estimated as

q =
+^ ( )E

E E
cos , 16

z

z
2 h

h h

where Eh
z and ^Eh are effective kinetic energies along the

quantization and transverse directions, respectively. Expres-
sions for q( )C0 have been given in [33, 34]. This term needs
to be introduced in the presence of quantization since it
accounts for the dependence of the coupling element on the
direction of the electric field. In fact, yn and xa¢ ¢n, are the
envelope wave-functions, whereas the coupling between the
electron and hole states is ruled by the underlying Bloch
functions. Due to the symmetry properties of the atomic-like
orbital functions, this dependence on the angle θ does not
appear in the bulk case since for each envelope function we
perform an average over all directions of the underlying
Bloch functions. In the 2D gas, instead, the average takes
place only over the plane normal to quantization, which
introduces a dependence on θ.

A second approach to evaluate a¢ ¢M n
n

, in equation (13) is
similar to the perturbation method employed by Kane, where
the presence of the electric field couples states in the con-
duction and valence band. This methodology has been pre-
sented in [35], and then recently employed to 2D–2D
tunneling in [36]. The matrix element is given by:

*
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where F(z) is the electric field, that is allowed to vary only
along the quantization direction z.

Figure 4 compares the currents of a Ge quantum-well
diode as obtained with either equation (17) or equation (15)
for the interband coupling. Results are similar, however
equation (17) can be extended quite easily to describe phy-
sical systems where the electric field is non-uniform in more
than one dimension (i.e. planar TFETs [36]), or quantization
is present in more than one dimension (i.e. nanowire TFETs
[37]). Reference [37] proposes a model for direct tunneling in
bulk, 2D and 1D carrier gasses. It also presents a derivation of
the non-local model for direct BTBT in bulk structures similar
to our derivation in section 2.1.

An important point to note for tunneling in quantized
gases is the large asymmetry between the effective masses of

Figure 3. Sketch of BTBT between two quantized carriers gases. The
conservation of both the total energy and the carrier momentum
perpendicular to the tunneling direction determines the tunneling
energy  = + = -aG ^ ¢ ¢ ^( ) ( )E E k m E k m2 2n nT

2 2
e

2 2
h .
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the real and the imaginary dispersion for quantized holes.
While quantization typically favors heavy hole (HH) sub-
bands to contribute to the current, the calculation of the
imaginary energy dispersion in the gap shows that the
effective mass for the imaginary band is actually much closer
to the light hole (LH) mass in the bulk crystal [38]. This
implies that the interband tunneling matrix element in the
presence of quantization is close to the one in the corresp-
onding bulk material even if LHs do not come into play [39].

Band structure effects, such as the anti-crossing descri-
bed above and the influence of quantization on the energy
dispersion in the gap, are naturally accounted for in the ·k p
approach. We will discuss the simulation approach based on
the NEGF with a ·k p Hamiltonian in section 2.5. It is however
worth mentioning that the ·k p can be employed also in non-
self-consistent quantum models. A relevant example is given
in [40, 41], where the ·k p method and the corresponding
envelope wave-functions have been used with a quantum-
transmitting-boundary formalism to study the transmission
probability in hetero-junction III–V TFETs. The methodology
in [40, 41] can be labeled as non-self-consistent because the
potential profile is taken from TCAD simulations and then the
BTBT current is calculated, but the possible influence on the
potential profile of the charge produced by BTBT is not
accounted for.

As an example of results that can be obtained with the
models described in this section, we show in figure 5 the I–V
characteristic of an EHBTFET with In0.53Ga0.47As channel. In
the EHBTFET we have two independent gates that create an
electron and a hole inversion layer at the top and bottom of a
thin film semiconductor [28], so that BTBT occurs between
such two inversion layers. We assume that the potential
profile is essentially uniform along the channel direction x, so
that we can develop our calculations in a single vertical slice
along z. The simulation methodology employed for the results
in figure 5 starts by solving Schrödinger equation for
electrons and holes for closed boundary conditions self-
consistently with the Poisson equation. When computing the
charge, electrons and holes are assumed to be at equilibrium

with respectively the drain and source contacts: the hole
Fermi-level EFp is set by the source contact, while electron
Fermi-level EFn is set by the drain contact and is equal to

-E eVFp DS. The BTBT current is then computed as a post-
processing using equations (13), (17), where the hole envel-
ope functions are modified to account for the anti-crossing
between LH and HH bands described above. The bottom of
figure 5 shows the subband energy versus gate bias. We see
that the current bumps in the top graph correspond to specific
subband alignments which occur when the gate voltage

Figure 4. Comparison between the current in a Ge quantum-well diode (sketched in the left) as obtained with the equation (17) (Schenk
model) or with equation (15) (Bigelow model).

Figure 5. Drain current (top) and subband energies (bottom) versus
the n-gate voltage for an In0.53Ga0.47As EHBTFET with equivalent
oxide thickness of 1 nm and channel thickness of 10 nm. The p-gate
voltage is set to −1 V and VDS is 0.25 V. In the bottom plot, the
energy reference is the hole Fermi level EFp that is set by the source
contact. The electron Fermi level is set by the drain voltage and it
is = -E eVFn DS.
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increases and moves the electron subbands to lower energy;
the hole subbands are also slightly affected by the gate
voltage due to coupling between the top and the back inter-
face. In particular, we observe a first bump in the current
when e1 (lowest electron subband) crosses the hh1 (highest
HH subband). The second bump takes place when e2 aligns
with hh1. On the other hand, the alignments between e1 and
hh2 and between e1 and lh1 do not produce any current bump
because they occur at energy values outside the window
between EFn and EFp, so that the term -[ ]f fc v is practi-
cally null.

2.3. Non-self-consistent quantum models for phonon-
assisted BTBT

Phonon-assisted tunneling occurs in indirect gap semi-
conductors whose CB minima do not lie at the Γ point: Si
and Ge are prominent examples. Keldysh first proposed an
expression describing the phonon-assisted BTBT by making
use of perturbation theory [42]. Later on, one of the first
non-local BTBT models was proposed by Tanaka for pho-
non-assisted and direct tunneling [24]. In this model, the
interband coupling due to electron–phonon interaction in
the deformable ion model is used for interband coupling
elements of the Wannier formula. The wavefunctions are
obtained patching the plane wave solutions (in classically
allowed regions) with the exponentially decaying compo-
nents (in classically forbidden regions) by using the WKB
approximation. Compared to the case of direct tunneling, in
PAT the energy dispersion in the gap can be obtained from
the imaginary branch of the energy relation of the two
individual bands, i.e. the phonon connects two branches that
can be unequivocally identified as belonging to the con-
duction or to the valence band.

A recent model that is applicable to non-uniform poten-
tial profiles and to a carrier gas with different dimensionality
has been proposed by Vandenberghe et al [43]. The approach
makes use of the diagonal elements of the spectral functions
that, for a 2D gas described by the parabolic effective mass
approximation (EMA), can be written as

*
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where z is the quantization direction and the structure is
uniform along x and y directions, Q( )E is the step function
(corresponding to a step-like 2D DOS), ag , amxy, are
respectively the valley degeneracy and transverse effective
mass for the subband α. Since wave-functions ψ can be
assumed to be independent of k̂ , the spectral functions
essentially reduce to summations over the 2D DOS functions
of the different subbands weighted by the probability dis-
tribution of carriers.

The total phonon-assisted tunneling current is evaluated
by first calculating the energy dependent transmission prob-
ability:
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where Dph and Eph are the deformation potential and the
energy of the phonon, respectively, and ρ is the mass density
of the material. The phonon-assisted BTBT current is finally
calculated as the summation of phonon emission and
absorbtion terms:
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where fc and fv are the occupation functions of the conduction
and valence bands, respectively, and ( )n EB ph is the Bose–Ein-
stein distribution for the phonons. For device structures such as
EHBTFETs, fc and fv can be taken as Fermi–Dirac functions
with respectively electron and hole Fermi levels (whose differ-
ence is set to eVDS), which is the assumption used also to obtain
the results of figure 5 discussed at the end of section 2.2.

In [43] it is shown that, if the modeling framework
described above is applied to the bulk crystal (using the
corresponding spectral functions) and for a uniform electric
field, then one obtains the same expression for the tunneling
generation rate as in [42]. For a non uniform field, instead, it
can be shown that, by introducing suitabe approximations for
the envelope wave-functions, the formalism in equation (20)
provides an expression for non-local tunneling in bulk sys-
tems similar to the dynamic-path, non-local-phonon-assisted
model used in TCAD [25], and similar also to the model
derived in [24].

2.4. Models for BTBT in commercial TCAD

Models for BTBT are present in many commercial TCAD
tools. Besides the local models based on the expressions in
[13, 42] (usually reformulated to assure a zero tunneling
generation rate at equilibrium [14]), commercial TCAD tools
have also recently implemented non-local models similar to
equation (11) for direct tunneling and phonon-assisted tun-
neling [25], based on the approach developed in [24].

As discussed in section 2.1, these models have been
derived for bulk structures, where the carriers are not con-
fined. The effect of carrier quantization is manifold. First of
all it increases the effective energy gap and changes the
density of states (DOS) according to the dimensionality of
the carrier gas. In addition, quantization changes the dis-
persion relationship inside the gap. Many efforts are being
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devoted at present to account for these effects in TCAD
models.

As for the increase of the effective energy gap, in [44] the
energy profile of the CB close to the channel/dielectric
interface is modified to mimic the presence of the electron
subband splitting. More precisely the part of the profile ( )E zC

that is lower than the lowest electron subband Ee0 is set to
=( )E z EC e0. As an alternative approach, an effective gap

obtained from the solution of the 1D Schrödinger equations
for electrons and holes has been also used in [45, 46].

A similar methodology has been used in semi-classical
Monte Carlo simulations [30] that implements non-local
models for direct and phonon assisted BTBT as in [25]. First
the 1D Schrödinger equation for electrons and holes is solved
in each slice along the channel, then the conduction (EC) and
valence (EV) band profiles are modified so as to suppress EC

values below the energy of the lowest electron subband Ee0

and the EV values above the highest hole subband Eh0. The
non-local model with the effective gap correction was found
to match quite well the full-quantum non-self-consistent
model described in section 2.3 [43]. More recently, the
authors of [47] proposed a methodology based on the rejec-
tion of those tunneling paths that involve states in the CB
below Ee0 or states in the valence band above Ev0. Thanks to
the use of physical models interfaces, PMI, [25], this
approach can be plugged directly in the TCAD, with no need
for an external solver of the Schrödinger equation.

The effect of quantization on the energy dispersion inside
the gap of III–V materials has been also analyzed using the

·k p method [29]. A simple approach to modify the para-
meters of Kane’s formula has been proposed, that requires
only the knowledge of the effective gap (distance between Ee0

and Eh0), because the effective mass mr has an almost linear
dependence on the effective gap. As a result the prefactor in
Kane’s formula scales as -( )E Ee0 h0

2, whereas the expo-
nential term remains unchanged. The expression of the pre-
factor is further modified based on the dimensionality of the
carrier gases [29]. Similar expressions for low dimensionality
gases have been reported also in [30].

The non-local models implemented in TCAD tools
require the identification of a suitable tunneling path, defined
as the line in real space over which performing, for example,
the integral of equation (11) for the case of direct tunneling.
In fact, when deriving equation (11) we asssumed a purely 1D
electric field profile, but in a realistic device simulation the
electric field may follow quite complex patterns, so that the
integration direction must be carefully defined and selected.
The effect of different choices for the tunneling path has been
analyzed in [26], going from simple horizontal paths to a
more complicated dynamic path [25], where different direc-
tions of the path are identified in the different points of the
discretization mesh based on the gradient of the valence band
energy. This algorithm leads to more precise estimates of the
BTBT current in complex device architectures, but has the
disadvantage of not being available in AC simulations [25].
Another algorithm making use of Newton’s law in the for-
bidden gap to estimate the tunneling path has been proposed

in [48], essentially similar to the Monte-Carlo procedure
in [27].

Overall, the models implemented in commercial TCADs
allow for an investigation of the design space for TFETs with
a numerical efficiency that is not attainable with full-quantum
tools (not even with the non-self-consistent models described
in the previous section). With TCAD tools it is thus possible
to analyze devices with a relatively large size, as most of the
actual TFETs fabricated so far. Furthermore, models for trap-
assisted-tunneling (TAT) are also available [25]. TAT has a
strong effect on the subthreshold characteristic of many fab-
ricated TFETs. Non-local models have been employed to
analyze the subthreshold behavior of fabricated silicon
[44, 49], as well as III–V TFETs [50, 51].

In some circumstances, however, the numerical effi-
ciency of the TCAD tools comes at the cost of a limited
accuracy and predictive capability. In fact, an inherently
quantum effect is approximated by point-like generation of
electrons and holes and the generation rate comes from
approximated WKB integrals. Besides the approximations in
the modeling of BTBT, the transport in TCAD tools is often
described by using a drift-diffusion approach, whose results
in terms of internal physical quantities are questionable in
nanoscale transistors. For example, in nanoscale MOSFETs
described with drift-diffusion, the carriers essentially move at
the saturation velocity, whereas quasi-ballistic transport is
expected to take place in nanoscale TFETs. Transport of the
generated carriers affect the electrostatic of the device, that
may influence the electric field in the BTBT region and thus
the overall tunneling generation rate. In [26] a non-local
BTBT model, similar to the models available in commercial
TCAD simulators, has been implemented in a Monte-Carlo
simulator. Comparison between different self-consistent
schemes allowed authors to analyze the impact on the tran-
sistor electrostatics and current of the transport of generated
carriers. In silicon TFETs this effect was found to be very
limited, due to the low BTBT rates and low concentrations of
generated carriers. However, in III–V hetero-junction TFETs
where the BTBT rate is much higher (see section 4) this may
not remain valid.

As a final remark, we notice that the equations for non-
local BTBT (such as equation (11)) apply to the transitions
from one specific branch of the valence band to one minimum
of the CB. Consequently, in principle one should evaluate the
BTBT rates considering all the possible combinations of
valence and CBs, and each pair of bands should have specific
values of the tunneling parameters entering the BTBT rate
equations. We will return to this point in section 3, where we
will analyze BTBT in strained silicon TFETs.

2.5. NEGF quantum models based on k ⋅ p or tight-binding
(TB) Hamiltonians

The NEGF formalism is considered in many aspects the most
general and rigorous method to simulate quantum transport in
electronic devices and it is thus particularly suited to study
TFETs. The NEGF method solves the Schrödinger equation
with open boundary conditions, that is electron transport
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through a quantum system connected to external electronic
reservoirs and it can also consider the impact of different
sources of scattering. Several reviews and textbooks describe
the details of the theory [52–54], hence here we will only
recall basic equations and discuss their use in the simulation
of TFETs.

2.5.1. Coherent transport regime. When dealing with
quantum transport problems, the most natural choice is to
express the Green’s functions in the real-space representation
[55]. In particular, either by using a local atomic basis (as in
tight-biding method) [56–59], or by discretizing with finite
difference (or other discretization methods) an EMA or a ·k p
Hamiltonian [60–62], all operators take the form of matrices,
and the retarded Green’s function matrix G is obtained by
solving the problem

- - S - S =( ) ( )EI H G I, 21S D

where I is the identity matrix, H is the Hamiltonian matrix
describing the device and S S,S D are the so-called retarded
self-energy matrices accounting for the injection/absorption
of carriers from external leads, as illustrated in figure 6. The
determination of the self-energies requires the knowledge of
the Hamiltonian terms describing the coupling between the
device and the contacts (or leads), as well as the Green’s
function of the leads themselves, which are described as semi-
infinite periodic systems. The Green’s function of the leads
can be numerically evaluated with various approaches [63],
among which we would like to mention the recursive
Sancho–Rubio [64], and the eigenvalue method [65, 66].
From the knowledge of the Green’s function and the contact
self-energies, macroscopic quantities like DOS, carrier
concentration and source-to-drain current IDS can be readily
evaluated. In the absence of inelastic interactions, the current
is expressed by means of the Landauer–Büttiker formula
[67, 68]

 òp
= -( )[ ( ) ( )] ( )I

e
E T E f E f Ed , 22DS S D

where fS,D is the Fermi–Dirac function at source (S) and drain
(D) and the transmission probability T(E) is evaluated from

the retarded Green’s function as

= G G( ) [ ( ) ( ) ( ) ( )] ( )†T E E G E E G ETr , 23S D

where [ ]Tr is the trace operation, and G =S,D

S - S[ ]†i S,D S,D is the broadening function of the source and
drain leads.

Equations (22) and (23) assume a coherent propagation
of the electron wave function inside the device, hence they do
not describe the phase-breaking interaction with phonons, that
may be particularly important for indirect bandgap semi-
conductors or for PAT processes mediated by defects or
interface states. Such a coherent quantum transport formalism
has been used for instance to simulate the electric
performance of carbon nanotube (CNT) [69, 70], graphene
based TFETs [71] and InAs nanowire TFETs [57, 62].
Moreover, this approach can account for some sources of
elastic scattering, such as surface roughness [72, 73], because
these interactions do not break quantum-phase coherence and
their effect can be included in the real-space electrostatic
potential. We notice, however, that, in case a variability
analysis is performed, this approach requires the generation of
several different samples in order to accumulate a significant
device statistics.

2.5.2. Possible forms for the matrix H. The form of the
Hamiltonian matrix in equation (21) depends on how many
spatial dimensions are actually included in the calculations (i.e.
1D, 2D or 3D simulations), and on the model employed to
describe the electronic bandstructure. For example, in the
simplest case of the EMA, the finite-difference discretization of
the continuous operator gives rise to a tridiagonal matrix for a
1D system, a penta-diagonal matrix for a 2D system and epta-
diagonal matrix for a 3D system, with a matrix rank equal to the
number N of the nodes in the real-space mesh. It is very
important to note that for 2D and 3D systems the full
Hamiltonian can be written as a tri-diagonal block matrix with
rank N Nx s, where Nx is the number of cross-sections in the
transport direction x and Ns is the number of real-space
discretization points in each device cross-section, that is Ns = Ny

or =N N Ns y z respectively for a 2D or a 3D device, as it is
sketched in figure 6. Indeed, the tri-diagonal block structure of
the Hamiltonian matrix allows us to calculate some blocks of the
Green’s function with the recursive algorithms to be mentioned
in section 2.5.3. Simplified bandstructures based on the EMA for
the conduction and the valence band, then linked by a
phenomenological coupling term, have been used to simulate
within the NEGF framework TFETs based on CNT [70],
graphene [74] and 2D monolayer materials [75]. When dealing
with Hamiltonians based on the ·k p approximation, which
naturally account for a realistic energy dispersion in the energy
gap, the real-space Hamiltonian matrix can be obtained by
following the standard quantum mechanics prescription for the
wave-vector  - ( )k i r and then discretizing the operator
using, for instance, the finite-difference method. It turns out that
a 3D device described with an Nb-band ·k p results in an
Hamiltonian matrix which also has a tri-diagonal block structure,
with sub-matrices having rank of N N Nb y z. A tri-diagonal block

Figure 6. Schematic of the real-space representation of an electron
device assumed for an NEGF based simulation approach, where the
x-axis indicates the transport direction and the device cross-section is
in the y–z plane. A possible discretization scheme is illustrated
according on an uniform mesh with ´N Nx y nodes. The effect of the
two semi-infinite leads on the device operation is described by
means of the self-energies SS and SD. Phonon scattering in the
device region is instead described by the self-energy SPH.
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structure can be identified also in the H matrix corresponding to
atomistic Hamiltonians based on the semi-empirical TB
approach. In this case the rank of each sub-matrix is

=N N Ns a o, where Na is the number of atoms in a cross-
section normal to the transport direction and No is the number of
electronic orbitals used in the TB formulation.

2.5.3. Reduction of the computational burden. As previously
mentioned, in both ·k p and TB models, the size of the
matrices in equation (21) can rapidly increase with the lateral
size of the system, thus making computationally prohibitive
the determination of G via a direct inversion of the matrix

- - S - S[ ]EI H S D . Fortunately, only a few elements of G
are needed to obtain relevant physical quantities such as
charge and current, so that it is possible to exploit recursive
algorithms based on the Dyson equation to compute only
specific elements of G [52], typically the main diagonal and
the first sub-diagonal elements, which permits a dramatic
reduction of the computational burden [52, 76]. These
methods are called recursive Green’s function algorithms
and they have been widely and systematically used to
simulate TFETs [60, 77].

A further reduction of the computational burden can be
achieved by adopting the so-called coupled mode-space
(CMS) representation, which consists in transforming the
real-space Hamiltonian into a new basis composed of
transverse modes defined at different positions along the
transport direction. Such a basis is theoretically equivalent to
the real-space basis, but has the advantage to give accurate,
approximate results with a reduced set of basis functions
chosen according to the energy range relevant for the problem
at study. Therefore the CMS approach can be very convenient
when dealing with TFETs, which exploit the energy-filtering
mechanism and have a current spectrum peaked in a fairly
narrow energy window. The CMS approach has been used to
simulate TFETs based on CNT [56], InAs nanowire [60, 61],
GaSb/InAs hetero-junction [78] and van der Waals hetero-
junction TFETs [75].

2.5.4. Alternative approaches for coherent transport. When
the analysis is restricted to coherent transport, alternative
methods to the NEGF exist and can be computationally
advantageous. An important approach consists in solving the
Schrödinger equation with open boundary conditions
according to the quantum transmitting boundary (QTB)
method [79]. In the QTB method the wave function in the
leads is expressed as a linear combination of propagating and
evanescent modes, whose complex coefficients are related to
transmission and reflection amplitudes. The coefficients of
such a linear combination have to be determined by imposing
continuity conditions for the wave-function and its flux at the
interface between the device and the leads. With such a
procedure it is possible to specify the incoming and outgoing
flux of carriers from the leads and solve the Schrödinger
equation only in the device region. The method is equivalent
to the scattering matrix method to compute transmission and
reflection coefficients and, in the absence of inelastic

scattering, to the Green’s function method [80]. Several
examples of TFET simulation studies have been reported in
the literature that use the QTB approach, and for different
formulations of the Hamiltonian [81–83].

2.6. General considerations about phonon scattering in the
NEGF formalism

The advantage of the NEGF method with respect to the QTB
method is primarily in the possibility to include the effect of
inelastic scattering mechanisms, such as the electron–phonon
interaction [84]. This is obtained by introducing the concept
of lesser(greater)-than Green’s functions < >( )G , which are
associated to the electron(hole) statistics, whereas the retarded
Green’s fucntion G provides the information about the
available electronic states and the carrier dynamics [54]. More
precisely, in the steady-state regime the main diagonal of the
lesser-than GF matrix (that is the <( )G r r,i i in a real-space
representation), is used to compute the electron concentration

( )n ri , the main diagonal of the greater-than GF matrix,
>( )G r r,i i , gives the hole concentration ( )p ri and the main

diagonal of the retarded GF matrix, ( )G r r,i i , is linked to the
local density of states (LDOS) r ( )ri .

The lesser(greater)-than self-energy describing the pho-
non scattering is evaluated as S =< > < > < >( ) ( ) ( )D GPH [84],
where < >( )D is the phonon lesser(greater)-than Green’s
function. The problem is here most often simplified by
assuming that the phonon bath is at equilibrium, so that < >( )D
can be written in terms of the Bose–Einstein distribution
function w w= - -( ) [ ( ) ]n k Texp 1B B

1 , where w is the
phonon energy. In this case the lesser-than and the greater-
than self-energies for the jth phonon branch read [84]




w w

w w

S = -

+ + +

< <

<

( ) ∣ ∣ { ( ) ( )
( )[ ( ) ]} ( )

E M G E n

G E n a1 , 24
j j j j

j j

PH,
2

B

B




w w

w w

S = +

+ - +

> >

>

( ) ∣ ∣ { ( ) ( )
( )[ ( ) ]} ( )

E M G E n

G E n b1 , 24
j j j j

j j

PH,
2

B

B

where Mj is the matrix element expressing the microscopic
details of the electron–phonon interaction [85]. Equation (24)
describe a dissipative phenomenon and in fact the self-energy
at energy E depends on the Green’s function at a different
energy wE j, where the first term in equations (24)
represents a phonon-absorption and the second term a pho-
non-emission process. A very similar formalism can be used
also to consider approximately elastic phonons, such as
intra-valley acoustic phonons in the long-wavelength
approximation.

2.6.1. Self-consistent Born approximation. Since the retarded
phonon self-energy SPH has to be expressed in terms of the
greater-than and lesser-than self-energies according to the
relation S - S = S - S> <†

PH PH PH PH, the retarded and the
lesser-than Green’s function are non-linearly coupled and
have to be calculated self-consistently. This is obtained by
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solving self-consistently the kinetic equations

- - S - S - S =[ ] ( )EI H G I, 25S D PH

- - S - S - S = S + S + S< < < <[ ] [ ]
( )

†EI H G G
26

S D PH S D PH

until convergence is reached. This method to include phonon
scattering within the NEGF formalism is called self-consistent
Born approximation, and it has the remarkable merit that it
guarantees current conservation along the device also in the
presence of dissipative phenomena [54]. In case of dissipative
transport the current can no longer be expressed in terms of
the retarded Green’s function alone, and the lesser-than
function is also necessary [84]. For example, the steady-state
current at the lead =L S, D may be written as

 òp
= S - + G< <[ ( ) ] ( )†I

e
E G G Gd Tr i , 27L L L

where the broadening function is given by G =L S - S[ ( ) ]†i L L .

The impact of phonon scattering on the transfer
characteristics of TFETs within the NEGF formalism has
been discussed with more details in [58, 86, 87].

2.6.2. Main difficulties and approximations. In principle the
self-consistent Born approximation gives an excellent
description of the electron–phonon interaction, as stated by
the Migdal theorem [88], but in practice further
simplifications are very often necessary to perform the
calculations. The main difficulty in the iterative solution of
equations (25) and (26) is the computational burden, because
S S S< >, ,PH PH PH are dense matrices, so that all the entries of

< >G G G, , are necessary in the calculations. This makes it
practically impossible to resort to recursive schemes to
calculate only specific elements of the Green’s functions,
which has a dramatic impact on the memory and CPU time
requirements [76]. Because of this computational problem
only the diagonal elements of the self-energies in
equations (24) are most often retained in practical
calculations. This implies that simulations usually account
only for local interactions, but neglect all spatial coherence
terms of the electron–phonon interaction. The simplified,
local formulation of the phonon self-energies is an acceptable
approximation when dealing with acoustic phonons since
their self-energy can be considered as independent of the
phonon wave-vector, but it becomes more delicate and
questionable for optical phonons. The local approximation is
not fully justified, in particular, when dealing with polar
optical phonons, which are a dominant phonon scattering
mode in III–V compounds. In fact polar optical phonon
scattering is described by a squared matrix element ∣ ( )∣M q
proportional to -∣ ∣q 2, where q is the phonon wave-vector [85],
hence it is an inherently non-local physical mechanism.

Indeed, the description of the electron phonon interaction
beyond the local approximation is arguably one of the most
challenging problems for the dissipative quantum transport
simulations of TFETs based on the NEGF formalism.

3. Silicon and group IV semiconductor tunnel FETs

In this section we report selected modeling results for Si and
Ge TFETs, providing also some considerations about the use
of strained silicon. Specific results for group IV alloys such as
SiGe and GeSn, are not covered by this review paper. Results
for these alloys using TCAD-like models can be found for
example in [89, 90], while a full-quantum model has been
used in [91], neglecting phonon-assisted tunneling because
GeSn becomes direct bandgap for suitable Sn concentrations
and strain conditions [92].

Si and Ge are indirect gap semiconductors, so that
modeling of phonon-assisted BTBT is needed which, as seen
in section 2.6, is very computationally demanding in full-
quantum simulations [58]. For this reason, the vast majority
of modeling results, in particular for Si, have been obtained
with TCAD models or with non-self-consistent quantum
models, as those described in section 2.3. It is worth noting
that in Si nanowires with a small cross-section the direct
tunneling dominates over phonon-assisted tunneling [58].

3.1. Silicon TFETs

Due to the maturity of the silicon CMOS technology, at first
the implementation of TFETs in Si has been investigated as a
quite natural option. In fact most of the fabrication steps are
shared with the ones used for conventional CMOS transistors
and this allows for MOSFET-TFET co-integration [93].

A good electrostatic control is mandatory in order to
enhance the electric field at the source-channel junction,
increase the BTBT rate and obtain steep sub-threshold IDS
versus VGS characteristic. For this reason TCAD simulations
have investigated TFETs with thin SOI films and a double-
gate biasing, as well as GAA NWs TFETs [94]. The use of
thin silicon films on one side improves the electrostatic con-
trol (resulting in a shorter tunneling path), but on the other
hand increases the effective gap (see section 2.4). To discuss
this trade-off, we plot in figure 7 the trans-characteristic of
double-gate Si TFETs as obtained with the multi-subband

Figure 7. Simulated drain current versus gate voltage characteristics
for double gate silicon TFETs with different film thickness. The
equivalent oxide thickness is 0.7, 0.9 and 1.1 nm for the silicon film
thickness TSi = 3, 5 and 10 nm, respectively. More details about this
simulation study may be found in [30].
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Monte Carlo described in [30]. The simulator implements a
non-local model for BTBT similar to the one in TCAD [25],
but with a quantum-corrected tunneling path (QCTP) where
the effective gap is modified in each point of the real space
according to the solution of the 1D Schrödinger equation (see
discussion in section 2.4).

We see in figure 7 that the effect of the QCTP is
stronger at low VGS and for thin films. However, the
improved electrostatic control obtained with thin films is not
offset by the increase of the effective gap, so that for
TSi = 3 nm we observe the best SS and on-current: the
minimum point SS is around 20 mV/dec, however the
on-current is only a few nA μm−1. The low on-current of
Si-TFETs found in simulations is consistent with available
experimental data [9, 12, 93, 95]. In fact some experiments
have reported currents approaching the μA μm−1, but
for very high biases. If extrapolated to supply voltages
around 0.5 V, the experimental on-current is still in the
fewnA μm−1 range.

It must be noted that device structures as the ones ana-
lyzed in figure 7 (and in several experimental studies [93, 95])
are dominated by point-tunneling, that is not very efficient
since the tunneling direction is normal to the vertical electric
field induced and modulated by the gate. Many structures
based instead on line-tunneling have been proposed recently
[49, 96, 97], where the tunneling direction is aligned with the
electric field induced by the gate. One example is the
EHBTFET that we have discussed in section 2.2, while a
second example is the core–shell nanowire proposed in [98].
However, also these architectures are expected to result in
poor on-current if implemented in silicon. For the Si
EHBTFET this has been shown both by experiments [99] and
by simulations [100]. The simulations for the core–shell
nanowire indicate an on-current of about 30 nA μm−1 if one
sets Ioff to 1 pA μm−1 in figure 2 of [98], and then projects the
on-current to a supply voltage below 0.5 V. Also the exper-
imental data for line tunneling in [49] results in an on-current
of a few tens nA μm−1 if it is projected to a 0.5 V power
supply. Core–shell TFETs using III–V materials, instead,
look promising and relatively large on currents have been
experimentally reported [101].

3.2. BTBT in strained silicon

Strain modifies the band structure and suitable strain config-
urations may enhance the BTBT rate. Indeed, experimental
data for strained Si and SiGe nanowires have shown pro-
mising on-currents [102–105]. The effect of strain on the
current of TFETs has been analyzed experimentally in [106],
while TCAD simulations of Si TFETs with non-uniform
strain profiles have been reported in [107].

In this section we illustrate a worked out example of how
to use a commercial TCAD environment [25] to investigate
possible strain induced BTBT enhancements in silicon
TFETs. The BTBT rate for phonon assisted transitions is

given by [25]:
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where 0 and l are the coordinate of the beginning and the end
of the tunneling path, while lc is the point where k k=c v.
The terms kv,max and kc,max have the same meaning as the
term km in equation (11) and Cpath contains the phonon
parameters (see discussion below). The reduced mass is

= +( )m m m m m2r c v c v . We see that the modeling ingre-
dients for the BTBT rate are the effective masses for the
valence and CBs, the energy gap and the phonon energy and
deformation potential.

Strain changes both the energy gap, inducing splitting
between the different valleys of the conduction and valence
bands, and modifies the effective masses. With the tool sband
included in [25] we computed the effective masses inside the
band (real branch) and in the gap (imaginary branch). A good
correspondence is found between (real) mass values in lit-
erature and sband for both unstrained and strained silicon. For
the CB, the masses extracted from the imaginary branches of
the energy relation in the gap are almost the same as the
masses corresponding to the real energy branch. For the
valence band, instead, the masses extracted in the energy gap
are remarkably different compared to the values corresp-
onding to real energy branches. More precisely, figure 8
shows that the effective mass of the imaginary branch
corresponding to the HH valley has a small mass, similar to
the one of the real branch of the LH valley, whereas the
imaginary branch of the LH valley has a mass similar to the
real branch of the HH valley. These imaginary valence bands
can still be reproduced, in first approximation and for small
energies, with a parabolic expression, as can be seen in
figure 8. The effect of biaxial strain on the valence band
parameters is shown in figure 9.

Equation (28) refers to a single type of tunneling trans-
ition, for example between LH or HH and one of the minima
of the CB. To simulate more realistically the BTBT process in
silicon, we used six different tunneling paths, from HH and
LH to the three Δ valleys of the CB. All these paths produce
different contributions to the generation rate, particularly
when strain breaks the symmetry between the CB valleys. For
each valley combination we used masses and energy gaps
resulting from the sband analysis. In particular, for each path
we used the effective masses (mc and mv) obtained from
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sband along the corresponding tunneling direction and
corresponding to the imaginary energy relation in the gap.
The phonon energy is assumed to be the same as in unstrained
Si. The problem with equation (28) is that it does not take into
account the fact that the CB minima are anisotropic. In fact,
the parameter mc in equation (28) is used to compute the
transmission probability (and in this respect it should be the
effective mass inside the gap), but also as a prefactor that
accounts for the DOS involved in tunneling. To solve this
issue, we set as mc and mv the masses inside the energy gap
(that is for imaginary branches of the energy relation) from
sband, and modified the Cpath parameters by the ratio between

the DOS masses and the imaginary masses:

=
⎛
⎝⎜

⎞
⎠⎟ ( )C C

m m

m m
. 29c v

c v
path path0

dos, dos,
3 2

Equation (29) implicitly assumes that the phonon deformation
potential does not change with strain. The power of 3/2 stems
from the fact that, under constant lateral electric field,
equation (28) reduces to Keldysh formula with prefactor
proportional to -( )m m mc v r

3 2 5 4. While the -mr
5 4 is related

to the dispersion relationship in the gap, the term ( )m mc v
3 2

instead results from the DOS. The correction in equation (29)
is thus exact under uniform lateral field and approximated in
general cases. The value of Cpath0 has been calibrated to
reproduce the experimental Si diodes in [9, 108], once the
effective masses have been extrated from sband calculations.

To assess the impact of strain on BTBT, we have con-
sidered uniform structures with constant lateral electric field
and different doping levels. Results are reported in figure 10,
where we see that, after proper calibration of the Cpath0, the
approach consisting of six tunneling paths reproduces the
experimental data with better accuracy compared to the
default SDevice calibration. Biaxial strain of 2% is shown to
enhance the BTBT rate by more than an order of magnitude.

The contributions of the different tunneling paths are
reported in table 1 for one particular value of FMAX. For
unstrained silicon the tunneling is dominated by the transi-
tions from HH (low tunneling mass) to Dy and Dz (low
tunneling mass along the electric field direction x). In the
presence of biaxial tensile stress, the energy of the Dz valley
is reduced, and transitions between HH and Dz are sig-
nificantly enhanced. The change in the gap and effective
masses also enhances the LH to Dz transitions.

Figure 8. Real and imaginary energy dispersion for the Δ minimum of the conduction band along [100] (left) and for the valence band along
[110](right) of unstrained silicon. A fitting with a parabolic energy relation is also shown (red circles).

Figure 9. Hole effective masses and energy difference between the
lowest CB and the LH and HH valleys in biaxially strained silicon in
the (100) plane.
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3.3. Ge-based TFETs

Germanium has been deeply investigated as channel material
for TFETs due to the lower band-gap and smaller effective
masses compared to Si. In Ge the direct gap is only 0.14 eV
larger than the indirect gap between the top of the valence
band and the CB minimum at the L point. For this reason
direct and phonon-assisted BTBT may both contribute to the
overall tunneling current. In this respect, figure 11 shows that
the experimental data for the tunneling currents in the Ge
diodes collected in [109] can be reproduced quite well by the
model for direct BTBT, whereas the contribution of phonon-
assisted transitions is one order of magnitude lower.

The default calibration in TCAD tools is quite empirical
and assumes that phonon-assisted tunneling is dominant in Ge
[25]. This point is thoroughly discussed in [110], which
proposes a more realistic calibration where Ge is instead
dominated by direct tunneling. It can be verified that in uni-
form structures, the direct BTBT rate provided by the model
in [110] is very close to the phonon-assisted BTBT rate
obtained with the default calibration in TCAD, whereas the
phonon assisted model from [110] provides a much lower
BTBT rate.

To assess the effect of different calibrations on realistic
devices, we simulated with TCAD the planar device with Ge
source and Si channel fabricated in [111]. In figure 12 the
experimental results of [111] are reported by black solid line
and look promising, with an ION close to 1 μA μm−1 and a
minimum SS significantly below 60 mV/dec at low bias.
Simulations using the default SDevice calibration (dashed
lines) slightly underestimate the current but are, somewhat
surprisingly, in quite good agreement with the experiments.
The dotted curves with symbols in figure 12 have been
obtained with the calibration proposed in [110]: as can be
seen they are significantly lower than the experiments and
predict a poor device performance. In particular, as discussed
above, the calibration in [110] considers a much smaller
phonon assisted BTBT (circles) than the one assumed as
default in TCAD. Direct BTBT (triangles) is high, but its

onset is at large gate voltage due to the Ge–Si hetero-junction
that essentially inhibits direct tunneling from the Ge valence
band to the Γ point in the CB of Si. In fact, direct BTBT
becomes significant only when the gate voltage is large
enough to allow for an essentially vertical tunneling within
the Ge source. On the other hand, phonon assisted BTBT
takes place between the Ge source and the Si channel.

The default calibration in SDevice and the calibration in
[110] for BTBT in Ge result in orders of magnitude difference
in on-current and also large differences in SS. Notice that the
phonon model in [110] has been recently revised in [112].
The new set of parameters (that we used in figure 11) features
a significantly higher phonon deformation potential
( ´ -7.8 10 eV cm8 1 instead of ´ -0.8 10 eV cm8 1 in [110])
and slightly different phonon energy (6 meV versus 8.6 meV).
It is easy to show that these modifications result in a BTBT
rate 200 times higher than using the set proposed in [110]. If
we multiply the dotted curve with symbol in figure 12
(obtained with the set in [110]) by a factor of 200, the
simulations approach the experiments (not shown), but are
still more than one decade below them.

From the analysis above, we can conclude that there are
still open issues in the calibration of TCAD BTBT models for
Ge TFETs. In fact, the uniform structures used for model
calibration are dominated by direct BTBT, whereas in rea-
listic devices phonon-assisted tunneling dominates, and dif-
ferent sets of parameters have thus been proposed in the
literature. As a further example of interplay between direct
and phonon-assisted BTBT, we consider in figure 13 a Ge
EHBTFET. We have employed the non self-consistent
quantum model for direct and phonon-assisted BTBT
described in sections 2.2 and 2.3 respectively. Due to quan-
tization, the offset between the direct and the indirect gap
becomes larger than in bulk Ge. In particular, we can see that
the first bump in the current takes place when subband e1,
originating from the L-valleys, gets aligned with the heavy-
hole subband hh1. A second bump is due to alignment
between e1 and hh2. We see direct tunneling only at much
higher gate voltages, such that subband G1 aligns with hh1,
but in the same gate voltage range we also have another bump
due to phonon-assisted transitions between e2 and hh1.

The effect of strain in Ge TFETs has been analyzed in
[113] by using quantum-corrected TCAD simulations to
estimate the current and ·k p calculations for the band
parameters. It was found that tensile strain significantly
enhances the BTBT rate, similarly to the results for strained Si
discussed in section 3.2.

4. Tunnel FETs employing III–V semiconductors

III–V compounds, in particular arsenides and antimonides,
have bandstructure properties that make them particularly
suited to be employed in TFETs. They have direct band gap
centered around the Γ point of the Brillouin zone with small
band-gap energies and electron effective masses smaller than
Si and Ge [114]. This means that BTBT in III–V semi-
conductors does not need to be phonon assisted and can

Figure 10. Generation rate versus electric field in uniform slabs of
biaxially strained silicon. The figure also shows the calibration of the
model for unstrained silicon against the experiments in [9, 108].
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follow a direct path from valence to CB. Moreover, thanks to
the small effective mass, the electron wave function experi-
ences a deeper penetration in the channel and gives rise to a
larger tunneling probability.

The main disadvantage of these materials compared to Si
or SiGe is that the technology is not as mature as it is for
group IV semiconductors and, for instance, contact resis-
tances and interface defects at the semiconductor-oxide
interface are typically worse in III–V based FETs compared to
their Si or SiGe counterpart. Several experimental works
reported good on-state currents related to the high BTBT
[115–118], but also SS higher than the thermionic limit of
60mV/dec [12], which has been attributed to both inefficient
electrostatic control and to the high density of defects
[119, 120]. It is a recent and welcome news the report of a
vertical InAs/GaAsSb/GaSb TFETs with a subthreshold
swing below 60mV/dec and very competitive on current at a
VDS of 0.3 V [121].

As a matter of fact many of the III-V TFETs reported in
experiments are relatively large devices and it is difficult to
describe them by using full quantum modeling, so that a semi-
classical modeling approach has been often used as, for
example, the multi-subband Monte Carlo simulations with
quantum corrected tunneling path illustrated in figure 14.
Likewise, an analysis based on a commercial TCAD has been
recently used to interpret the electrical characteristics of large
diameter, InAs nanowire TFETs [51].

4.1. Simulation studies based on NEGF simulations

Due to their small energy gap and electron effective mass,
InAs based TFETs have been extensively simulated with the
NEGF approach by using either an atomistic, TB Hamiltonian
or a ·k p approach.

The TB method was used in [57] to analyze InAs p–i–n
single-gate, dual-gate, ultrathin-body and gate-all-around
nanowire (GAA NW) devices with a gate length of 20nm,
showing that a reduced subthreshold swing can only be
achieved if the electrostatic potential is efficiently controlled

Table 1. Contribution of different tunneling paths to the currents in figure 10.

J Vunstr ( )J Vtens,1% 001

Paths = -F@ 1.45 MV cmMAX
1 = -F@ 1.29 MV cmMAX

1

m - -[ ]mA m V2 1 m - -[ ]mA m V2 1

LH  Dx ´ -5.5 10 13 ´ -5.4 10 11

HH  Dx ´ -5.9 10 10 ´ -5.4 10 11

LH  Dy ´ -9.3 10 9 ´ -9.0 10 10

HH  Dy ´ -4.5 10 7 ´ -3.9 10 9

LH  Dz ´ -9.3 10 9 ´ -1.1 10 6

HH  Dz ´ -4.5 10 7 ´ -2.9 10 6

Figure 11. BTBT current in Ge diodes. The experimental data in
[109] are compared with results of direct and phonon-assisted BTBT
simulations. The model parameters for the direct BTBT model are
the direct gap (0.8 eV) and the effective masses for electron and
holes ( =m m0.043e 0, =m m0.33hh 0, =m m0.043lh 0), whereas
the phonon parameters for phonon-assisted BTBT are taken from
[112]. Simulations account for non parabolicity of the Γ conduction
band (with a = -0.85 eV 1) as well as for the anti-crossing of the LH
and HH valleys, namely the LH mass is used in the gap for the HH
valleys (see the discussion concerning strained silicon in
section 3.2).
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Figure 12. Comparison between TCAD simulations using different
calibration strategies, that is either the default calibration of [25] or
the calibration proposed in [110], and the experimental data for a
TFET with germanium source reported in [111].
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by the gate. Similarly, in [58] it is shown that in direct-gap
semiconductors, such as InAs, the BTBT is often dominated
by a single branch of the energy relation in the gap, and
therefore a fairly good estimate of the tunneling rate can be
obtained with the WKB approximation.

In order to reduce the computational effort and simulate
larger structures within the NEGF method, the ·k p
approximation has been successfully employed to simulate
transport at the Γ point in homojunction InAs TFETs
[40, 60, 61, 122, 123], as well as in hetero-junction TFETs

such as GaSb/InAs based transistors [124]. In [124] it was
shown that ideal InAs NW TFETs with gate length of 17nm
require a lateral width of 7nm or less to achieve a SS smaller
than 60mV/dec due to the loss of electrostatic integrity at
small gate lengths. In such narrow FETs the energy dispersion
is strongly altered by quantum confinement compared to the
energy dispersion in the corresponding bulk materials. An
example is shown in figure 15 reporting the highest valence
subband and the lowest conduction subband profiles along the
channel, as well as the current spectra for a p–i–n hetero-
junction nanowire FET having GaSb in the source and InAs
in the channel and drain regions. As can be seen, for a lateral
diameter of =D 7W nm or smaller this material system is no
longer broken-gap.

4.2. Strain modeling and engineering

The requirement for narrow multi-gate transistors necessary
to preserve a strong control of the gate terminal on the
channel region results in a significant carrier confinement that
in turn degrades the on current delivered by TFETs. Conse-
quently, several material and device design options have been
investigated to improve the on current and preserve a steep
subthreshold swing.

As a prominent example mechanical strain has been
proposed, in analogy to its use as mobility booster in MOS-
FETs, as an efficient way to improve the on current of InAs
TFETs [77]. In [61], the impact of different strain conditions
on the bandstructure and IDS versus VGS characteristics of an
InAs nanowire TFET was investigated by using NEGF
simulations based on an 8-band ·k p Hamiltonian [125], and
with a strain interaction matrix whose deformation potentials
were taken from [114]. It was shown that both compressive
uniaxial and tensile biaxial stress can be used to modify the
imaginary branch of the InAs nanowire and reduce the
effective gap between the highest valence and the lowest
conduction subband. The tensile biaxial strain in the device
cross-section was found to be particularly effective in order
to reduce the energy gap and enhance BTBT. The introduc-
tion of strain, however, implies also a deterioration of the SS
due to the change of the valence subband profile in the source
region [124], so that specific design options at the source
region may be needed to preserve a steep subthreshold
characteristic in the presence of strain [126]. The impact of
strain on the bandstructure and the turn-on characteristics
of III–V based TFETs is still under investigation at the time of
writing [127–129].

4.3. Hetero-junction modeling and engineering

III–V compounds have also the remarkable merit to form
hetero-junctions with interesting properties. In particular, the
GaSb/InAs hetero-junction is approximately lattice matched
and forms a broken bandgap material system, that is a system
where the valence band edge of GaSb is higher than the CB
edge of InAs [130]. Such a material system has attracted a lot
of interest in the quest for large on currents in tunnel FETs
[62, 131].

Figure 13. Top: simulated drain current versus gate voltage
characteristic for a Ge EHBTFET. Bottom: electron and hole
subbands versus gate voltage. The overlap and underlap regions are
all 50 nm long. The equivalent oxide thickness is 0.53 nm (i.e. 3 nm
of HfO2) and the Ge film thickness is 10 nm.

Figure 14. Comparison between MSMC simulations with quantum-
corrected-tunneling-path discussed in section 2.4 [30], and the
experimental data for III–V TFETs in [115]. HMJ stands for homo-
junction TFET; HTJ stands for hetero-junction TFET.
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Heterojunction TFETs have been simulated by using the
NEGF approach with both a TB [83, 115, 132, 133], and a

·k p Hamiltonian [62, 124, 126, 131, 134]. The use of the
GaSb/InAs hetero-junction usually provides a larger ION

compared to InAs homojunction TFETs, but such a potential
improvement is partly frustrated by quantum confinement
effects that tend to turn the supposedly broken-bandgap
GaSb/InAs hetero-junction into an actually staggered band
alignment system, as illustrated in figure 15. These effects
reduce the advantages of the GaSb/InAs hetero-junction
compared to an InAs homo-junction TFET, and also com-
pared to the ideal broken-bandgap, 1D system considered in
[135]. According to our results, the GaSb/InAs hetero-junc-
tion TFET is still unable to reach the very demanding ITRS
specifications for low power applications, which prescribe an
ION/IOFF ratio larger than 107 and =I 10OFF pA μm−1.
Therefore several additional design options have been pro-
posed to increase the on current, including the grading of
the Al molar fraction in an AlGaSb source [131], or the
insertion and engineering of quantum wells in the source
region [78].

Recently an alterative device design based on the concept
of polarization-engineered tunnel diodes has been proposed
[136], which exploits III-nitrides hetero-junctions [82]. By
means of TB NEGF simulations it was shown that interband
tunneling can be significantly large in GaN/InN/GaN hetero-
junctions, leading to an on current close to 100μA μm−1 and
to a very competitive subthreshold swing.

4.4. Effects of non-ideal interfaces, defects and traps

Non-ideal properties of interfaces are considered the most
relevant problem affecting the off-state behavior of TFETs
and impeding the experimental realization of devices with a
subthreshold swing well below 60 mV/dec. The impact of
traps has been first included in NEGF simulations with a
phenomenological description in [137], where interface traps
were modeled as 0D electrically active states modifying
simultaneously the electron transport and the device electro-
statics. This was obtained by superimposing cubic potential
wells to the CB with different volume size and potential
height in order to tune the energy trap levels [138]. It was
found that only a few traps can significantly deteriorate the SS
of narrow InAs NW FETs with a 5×5 nm2 cross-section,
because traps can act as stepping stones for BTBT and thus
enhance the corresponding current, with a tunneling mech-
anism that can be phonon assisted and thus inelastic. The
phonon assisted tunneling also brings along a sensitivity to
the temperature of the otherwise temperature independent IDS

versus VGS characteristics [138].
Several papers using a semi-classical approach to describe

trap assisted tunneling by using a modified Shockley–Read–Hall
formula found that traps can produce a sizable degradation of the
SS, and investigated the minimum trap densities necessary for a
steep slope behavior [51, 120, 139–141]. In very recent refer-
ences, for instance, it has been argued that the trap density
should be decreased by 100 times with respect to the state of the
art values in order to obtain IIIV TFETs with an SS below

Figure 15. Subband profile along the device length (left), and current spectrum as a function of energy (right) for a GaSb–InAs hetero-junction
TFET with a squared cross-section with a side DW=5, 7 and 10nm; the source Fermi level E SF, is taken as zero. VGS = +[ ]V VGS,off DD and
VDS = 0.3V, where VGS,off is the gate voltage corresponding to IOFF m= -5 nA m 1. The gate length is LG = 17nm.
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60mV/dec at room temperature [142]. The key role played by
traps and defects for the interpretation of the experimental IV
characteristics of InAs nanowire TFETs has been clearly
underlined in [51]. Analitycal formulas using a detailed balance
analysis have been also used to include the effects of traps in the
simulation of GaSb/InAs TFETs [143].

Interface traps can be also an important source of device
variability in TFETs [144, 145], together with surface
roughness [72, 73], dopant fluctuations in the source
[146, 147] and work-function variation associated to the
granularity of the metal gate [141, 148]. Traps typically
influence the variability of IOFF and subthreshold swing much
more than the ION variability [144], because in the on state the
direct tunneling is dominant with respect to trap-assisted
tunneling.

5. Tunnel FETs based on 2D crystals and van der
Waals hetero-structures

As already mentioned in sections 3 and 4, the design of
TFETs is very demanding in terms of electrostatic integrity
and requires very small semiconductor film thicknesses (for
planar MOSFETs) or small effective diameters (for FinFETs
or nanowire MOSFETs) [141, 149], which in turn result in
significant bandgap widening effects and consequent degra-
dation of the on current [124]. The subthreshold region is
furthermore vulnerable to the effects of interface defects, that
are among the most serious hurdles to achieve small sub-VT

swings [138, 144]. In this respect, monolayers of graphene or
transition-metal dichalcogenides are very attractive because
they have a sub-nanometer thickness and are in principle free
of dangling bonds at the surface, in virtue of their native 2D
nature. Several arrangements for BTBT transistors based on
2D crystals have been proposed [150], ranging from the
lateral transistor sketched in figure 16(a) and having an
architecture similar to conventional TFETs based on 3D
semiconductors [151–153], to several possible embodiments
based on vertical van der Waals hetero-structures between 2D
crystals or between 3D and 2D crystals [154, 155], an
example of which is shown in figure 16(b). The weak bonding
in the out-of-plane direction is expected to ease the fabrication
of vertical hetero-structures with limited strain even in pre-
sence of a significant lattice mismatch [150].

In the family of vdW-TFETs one can further distinguish
resonant tunneling transistors aiming at a gate controlled
negative differential resistance element for tera-hertz appli-
cations [156–158], from density of states switches that,
similar in concept to the EHBTFET discussed in section 2.3,
target instead a very abrupt turn-on characteristic [154, 159].

5.1. Physical mechanisms and modeling methodologies for
van der Waals TFETs

From a modeling perspective it is interesting to notice that
both resonant tunneling FETs and DOS switches based on
van der Waals hetero-structures have been originally con-
ceived and described using the Bardeen’s transfer

Hamiltonian approach [31, 160, 161]. Based on such form-
alism, the current per unit area can be written as [154]:

 åp
d= - -∣ ( )∣ ( ( ) ( ))( )
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where gv is the valley degeneracy, kB, kT are the wave-vectors
respectively in the bottom (source) and top (drain) 2D mat-
erial, ( )E kB B and ( )E kT T denote the corresponding energies,
while fB and fT are the Fermi occupation functions in the
bottom and top layer that depend on the respective Fermi
levels EFB and EFT. This expression for the current density
assumes that the majority carriers of the two 2D materials are
at thermodynamic equilibrium with their Fermi levels, where
the difference between the Fermi levels, - =E EFB FT eVDS,
is simply set by the drain to source voltage VDS.

The reader may notice the similarity between
equations (30) and (13) introduced for 2D to 2D tunneling
(e.g. EHBTFETs). However in equation (30) the wave-vec-
tors kB, kT belong to two different materials and, furthermore,
the equation does not enforce the conservation of the in plane
wave-vector (as discussed in more details below), whereas the
JDOS in equation (13) entails the conservation of both energy
and in plane wave-vector in the BTBT process.

The matrix element ( )M k k,T B expresses the coupling
between the two layers and entirely governs the current, but
the Dirac function d -( ( ) ( ))E Ek kB B T T is also of utmost
importance in equation (30), because it enforces energy
conservation by prescribing that the sum over kB, kT in
equation (30) be restricted to the states of the two layers that
have the same energy. This implies that the current vanishes if
the top of the valence band in the bottom layer is lower than

Figure 16. Sketch of possible architectures for tunnel FETs based on
2D materials. (a) Homojunction, lateral TFET where the current flux
occurs in the plane of the 2D crystal; (b) van der Waals hetero-
junction transistor (vdW-TFETs) where the bottom and top 2D layer
act respectively as the source and the drain of the device. In the
overlap area between the 2D layers a BTBT current flows in the
direction normal to the plane of the 2D layers. Lov and Lext indicate
respectively the length of the overlap region between the 2D
materials and the extension of the gate electrode beyond the overlap
region.
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the bottom of the CB in the top layer. Under these circum-
stances, in fact, no valence band electrons exist in the bottom
layer that can transfer to the CB of the top layer via an elastic
tunneling process.

As can be seen the current expression in the Bardeen’s
transfer Hamiltonian approach describes quite effectively the
nature of DOS switch of a vdW-TFET. In fact, by modulating
the band edge alignment in the top and bottom layer by means
of an external gate bias, one can open or close the tunneling
window and thus drive the device respectively in the on- or in
the off-state.

It is usually assumed that in actual van der Waals hetero-
structures several physical mechanisms can occur in the
interlayer region that relax the conservation of the in plane
wave-vector k in the tunneling process [157]. This implies
that in equation (30) we have significant contributions to
the current also for different kB and kT values, unlike in the
physical picture described in section 2.2 and formally
expressed by equation (13). Physical mechanisms that can
assist the tunneling and relax momentum conservation may be
charged impurities [162], short-range disorder [163], or Moiré
patterns that have been observed at the graphene-hBN inter-
face [164, 165]. When the tunneling is assisted by a pertur-
bation potential ( )U r z,sc in the interlayer region, the matrix
element in equation (30) can be expressed as [154]:

ò ò y y=( ) ( ) ( ) ( )

( )

†M r z r z U r z r zk k, d d , , , ,

31
A

k kT B T, sc B,T B

where r and z are the in plane and vertical spatial coordinates,
while y kB, B

and y kT, T
are the electron wave-function respec-

tively in the bottom and top 2D layers.
The wave-functions y ( )r z,kT, and y ( )r z,kB, in

equation (31) are the Bloch functions of the two 2D layers
and they entail a decay in the out of plane direction that has
not been made explicit in the expression of the matrix ele-
ment. The calculation of such a decay is the most important
and arguably most difficult problem in the application of
Bardeen’s transfer Hamiltonian approach to vdW-TFETs, and
it is a necessary step if one wants to use equations (30), (31)
as a quantitative and predictive model, as opposed to a
conceptual tool for an insightful but essentially qualitative
analysis. As a matter of fact, however, the decay of the wave-
function in the interlayer or in the van der Waals gap has been
frequently taken as an adjustable parameter to reproduce
experimental data [156, 157].

The problem of the coupling between the wave-functions
in the bottom and top layer remains a central and somewhat
thorny problem even in different transport formalisms, such as
the NEGF modeling based on the empirical TB method. In fact
the parameters of a TB Hamiltonian are typically calibrated to
reproduce the electronic band-structure, as determined via
ab initio density functional theory (DFT) calculations or
inferred from experiments. Such a calibration is effective for
the in-plane coupling energies of a given 2D crystal, whereas it
is far more difficult to determine the vertical coupling between
the atomic sites of different materials stacked to form a van der

Waals hetero-structure. An interesting alternative to the
empirical TB approach is to transform the wave-functions
obtained by DFT calculations, that are typically obtained using
a plane-wave expansion [166], into maximally localized
Wannier functions centered on the ions, which can be
accomplished by using the wannier90 package [167]. This
effectively produces a TB Hamiltonian matrix with no need of
an empirical calibration of the parameters [168]. Such a
methodology is becoming quite popular, and it is particularly
effective for 2D crystals and vdW-TFETs[169, 170].

Also ab initio calculations for van der Waals hetero-
structures, however, encounter some conceptual and practical
difficulties, starting right from the possible lattice mismatch of
the 2D crystals and the resulting problem in the definition of
the super-cell to be used for the analysis of the physical
system. As an example, if we consider a van der Waals het-
ero-structure consisting of WTe2 and MoS2 monolayers, then
the lattice parameter for the two unstrained crystals is about
3.55Å and 3.19Å, respectively, so that the super-cell
necessary to include an integer number of unstrained unit
cells of the individual materials is very large. It is thus a
common practice to assume a strain in the two layers so that a
matching of the lattice parameters can be obtained. For the
case of WTe2 and MoS2 monolayers, so as to conclude the
example, authors have introduced a compressive strain on
WTe2 and tensile strain on MoS2 layer to obtain a com-
mensurate lattice parameter of 3.411Å in the two materials
[171–173]. As can be seen for the MoS2 this implies a strain
larger than 6%, which alters significantly the bandstructure of
an isolated MoS2 monolayer compared to the unstrained case.
Thus, quite paradoxically, although it has been claimed that
the weak van der Waals bonding in the vertical direction may
ease the fabrication of high quality hetero-structures even in
the presence of a significant lattice mismatch, in most DFT
studies of van der Waals hetero-structures a significant strain
has been introduced in order to achieve a lattice matching
condition.

A cutting-edge methodology in the modeling of van der
Waals hetero-structures and vdW-TFETs is the employment
of ab initio methods to calculate directly the transmission
across the physical structures [174], which is a capability that
has become available even in some popular, open-source
programs such as Quantum Espresso and Siesta [166, 175].

As of today, some aspects remain very hard to be adequately
described in the numerical simulation of van der Waals hetero-
structures and vdW-TFETs. As an example, it should be recalled
that in most fabrication techniques it is very challenging to obtain
an accurate rotational alignment of the two 2D materials. The
rotational alignment of the two 2D crystals is crucial for the
working principle of resonant tunneling vdW-TFETs [156, 157],
whereas it is expected to be less critical for DOS switches tar-
geting a small SS [154]. In any case it is difficult to account for
rotational misalignment in transport simulations and even in
bandstructure calculations, in fact such a misalignment poses new
difficulties in the definition of the super-cell of the physical
system, besides the already mentioned problems due to a possible
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lattice mismatch. Furthermore, similarly to the case of TFETs
consisting of conventional 3D semiconductors, even for vdW-
TFETs it is difficult to include in a self-consistent transport and
device simulation the tails of the DOS in the energy gap, whose
effect on the minimum SS of vdW-TFETs can be important.

5.2. A few operation and design considerations for van der
Waals TFETs

While the original concept of a van der Waals TFET has been
conceived as a device where the current should be fairly
constant across the overlap area between the two 2D layers,
numerical simulations have shown that the current injection
from the bottom to the top layer can be strongly non uniform
in the overlap area [170, 172, 173], and very sensitive to the
length Lext of the extension between the gate and the top 2D
layer (see figure 16(b)). In this latter regard, figure 17 reports
the IDS versus top gate voltage, VTG, characteristic for a van
der Waals TFET consisting of a WTe2 bottom layer (being the
source region), and an MoS2 top layer (being the drain); the
simulation approach has been described in [172, 173]. As can
be seen the sub-threshold region is strongly influenced by Lext

and, in particular, for Lext=20nm the device can attain a
subthreshold swing as low as 11mV/dec (average value for
IDS between 10 pA μm−1 and 1μA μm−1), whereas for
smaller Lext the swing tends to degrade. This behavior has
been explained by a close analysis of the LDOS in the off-
state of the device. In particular, it was found that electrons
in the valence band of WTe2 have energy values that, in the
overlap region, correspond to states deep in the energy band
gap of the MoS2 top layer. Consequently, the most favorable
tunneling path from the bottom to the top layer was found to
be at the right edge of the bottom layer and the tunneling
distance increases by enlarging Lext [172, 173]. As a result,
the current in the off-state is exponentially suppressed by
increasing Lext, which explains the large sensitivity of IDS to
Lext in figure 17, and the degradation of SS for small Lext

values.

The edge transport discussed above is an undesired effect
in van der Waals TFETs, and it can lead to an IDS that does
not scale with the length of the overlap region [172, 173].
While a number of design aspects have been recently ana-
lyzed by means of numerical simulations, experiments for van
der Waals TFETs are still at a quite embryonal stage. How-
ever new experimental data for Esaki diodes or transistors
consisting of hetero-structure van der Waals systems is
appearing with a steady pace [176–178], and a transistor
based of an MoS2–Ge hetero-structure has recently shown
sub-60 mV/dec subthreshold swing over several orders of
magnitude of IDS variation [155].

6. Concluding remarks

This paper has reviewed several aspects related to physics
based modeling in TFETs, whose description requires
remarkable innovations compared to conventional MOSFETs
and, moreover, poses challenges that are at the cutting-edge of
our present ability to develop quantitative and predictive
models for nanoscale transistors.

The BTBT itself is of course a genuinely quantum
mechanical effect governed by the imaginary energy disper-
sion, namely the branches of the energy dispersion corresp-
onding to imaginary components of the electron wave-vector
and connecting the valence to the CB. This is a distinct fea-
ture compared to most transistors (e.g. MOSFETs and bipolar
junction transistors), where transport essentially occurs inside
the conduction and valence bands, so that semi-classical
transport models are often still adequate. Not only in TFETs
the imaginary energy relation plays a central role, but in the
working principle of these DOS switches the subthreshold
swing may be ultimately limited by how steeply the DOS
decays in the energy gap, so that the tails of the bands become
an important physical ingredient that should be accounted for
in numerical models.

In indirect bandgap semiconductors BTBT can be
dominated by a phonon-assisted mechanism, which makes it
particularly challenging the use of full quantum transport
approaches, such as NEGF, because they must include dis-
sipative phenomena rather than being restricted to coherent
transport. Furthermore, many of the proposed TFET archi-
tectures make use of hetero-junctions: III–V semiconductor
systems with broken-bandgap alignment, for example, are
very promising for the enhancement of the tunneling current.
At the same time, the requirement of a strong gate control and
good electrostatic integrity is driving towards and aggressive
geometrical scaling with narrow (or thin) device cross-
sections. This technological trend implies a growing influence
of quantum confinement effects, that alter significantly the
energy dispersion in nanoscale FETs compared to the
corresponding bulk materials, and affect also the band-
alignments of hetero-junctions. A sound modeling of hetero-
junctions and quantum confining effects is very challenging
and critically important. Strain engineering has also been
explored for TFETs, which adds one more variable (and one
more challenge) to the description of the band-structure, in

Figure 17. IDS per unit device width versus top gate voltage at
VDS=0.3V for different lengths Lext of the top gate extension
indicated in figure 16(b).
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addition to quantum confinement and hetero-junctions. The
role of hetero-junctions is even more crucial in TFETs based
on 2D semiconductors, such as van der Waals hetero-struc-
ture TFETs.

Moreover, despite all efforts to enhance and engineer
BTBT in TFETs by using optimal material and device sys-
tems, the IDS in TFETs is frequently dominated by tunneling
mechanisms assisted by defects and interface states, in part-
icular at small current levels where the off-current should be
suppressed to the very low values prescribed by the ITRS
roadmap for low power applications, namely to a few tens of
pA μm−1. Inclusion of trap-assisted tunneling and generation-
recombination mechanisms has been proved to be very
important in order to reproduce experimental results with
physics based simulations and, at the same time, these phy-
sical mechanisms are a serious hindrance to the imple-
mentation of TFETs with a subthreshold swing smaller than
60 mV/dec in a fairly large range of drain current.

It should be also noticed, moreover, that suppressing the
off-current of a real world transistor down to a few tens
ofpA μm−1 demands a tight control and effective suppres-
sion of all leakage current mechanisms, which may pose a
lower limit to the minimum current that can be attained in
practice. While gate leakage, as well as defects assisted
generation-recombination mechanisms are at work even in
conventional CMOS transistors, and consequently they are
frequently neglected in the analysis of TFETs based on the
optimistic assumption that a carefully optimized CMOS
technology can deal with these issues, the inclusion of all
leakage mechanisms becomes crucial in the comparison
between simulations and experimental data.

Because of the complexity of the physical mechanisms at
work in an actual TFET, a hierarchy of models has been
developed with a quite wide range of accuracy and predictive
capabilities, different computational burden and, conse-
quently, different geometrical dimensions of the transistors
that can be practically analyzed and simulated with such
models.

This paper has reviewed the seminal contributions on
direct and indirect BTBT modeling in semiconductors, from
which most of the models implemented in TCAD simulators
have been actually derived; then we reviewed the main fea-
tures and limitations of the TCAD models themselves. We
have introduced and analyzed what we defined non-self-
consistent quantum models, that is models that calculate
BTBT rates using quite sophisticated formulations, but as a
post-processing of the band-structure and electrostatic
potential profile obtained by using either TCAD tools or in-
house developed Schrödinger–Poisson solvers that do not
include BTBT. The influence of the carriers generated by
BTBT and of their transport towards the electrodes is not
accounted for in these models. This feature differentiates such
models from full quantum models, based on NEGF or on the
quantum-transmitting-boundary formalism, that instead solve
the open-boundary Schrödinger equation problem, with an
accuracy and a computational burden that vary in a wide
range depending on the Hamiltonian employed in the simu-
lations. A specific section has been also devoted to tunnel

FETs based on 2D crystals and van der Waals hetero-
structures, because they are very timely and innovative device
structures, which also pose some specific challenges from a
modeling and simulation perspective.

Our review on TFETs modeling and simulations does not
have an ambition of completeness and in the introduction we
already mentioned that, for instance, we have addressed nei-
ther compact models for TFETs nor the methodologies
employed for a circuit level evaluation of TFETs. The
research field on tunnel FETs has been expanding and evol-
ving quite hectically in the last ten years, so that the main goal
of this paper is to provide the reader with an introductory
description of the most important physics based models for
TFETs, as well as a possible guidance in the already wide and
moreover rapidly enlarging literature. It is easy to foresee that
in the near future new developments and substantial progress
will be reported for TFETs modeling because this is, at the
time of writing, a very vital research field in the electron
device and applied materials worldwide arena.
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