
22/12/2024 02:08

Multistep attack detection and alert correlation in intrusion detection systems / Manganiello, Fabio;
Marchetti, Mirco; Colajanni, Michele. - STAMPA. - 200:(2011), pp. 101-110. (Intervento presentato al
convegno 2011 International Conference on Information Security and Assurance, ISA 2011 tenutosi a
Brno, cze nel 2011-August) [10.1007/978-3-642-23141-4_10].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer

This is the peer reviewd version of the followng article:



Multistep Attack Detection and Alert
Correlation in Intrusion Detection Systems

Fabio Manganiello, Mirco Marchetti, and Michele Colajanni
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Abstract. A growing trend in the cybersecurity landscape is repre-
sented by multistep attacks that involve multiple correlated intrusion
activities to reach the intended target. The duty of reconstructing com-
plete attack scenarios is left to system administrators because current
Network Intrusion Detection Systems (NIDS) are still oriented to gener-
ate alerts related to single attacks, with no or minimal correlation.
We propose a novel approach for the automatic analysis of multiple se-
curity alerts generated by state-of-the-art signature-based NIDS. Our
proposal is able to group security alerts that are likely to belong to the
same attack scenario, and to identify correlations and causal relation-
ships among them. This goal is achieved by combining alert classification
through Self Organizing Maps and unsupervised clustering algorithms.
The efficacy of the proposal is demonstrated through a prototype tested
against network traffic traces containing multistep attacks.
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1 Introduction

The presence of a Network Intrusion Detection System (NIDS ) is a cornerstone
in any modern security architecture. A typical NIDS analyzes network traffic
and generates security alerts as soon as a malicious network packet is detected.
Alert analysis is then performed manually by security experts that parse the
NIDS logs to identify relevant alerts and possible causal relationships among
them. While log analysis can be aided by NIDS management interfaces, it is
still a manual, time consuming and error prone process, especially because we
are experiencing a growing number of multistep attacks that involve multiple
intrusion activities.
This paper proposes a novel alert correlation and clustering approach that helps

security analysts in identifying multistep attacks by clustering similar alerts
produced by a signature-based NIDS (such as Snort [10]), and by highlighting
strong correlations and causal relationships among different clusters. This goal
is achieved through multiple steps: alerts are preprocessed by a hierarchical
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clustering scheme; then, they are processed using a Self-Organizing Map [5];
the alerts that likely belong to the same attack scenarios are clustered by using
the k-means algorithm over the SOM output layer; finally, a correlation index
is computed among the alert clusters to identify causal relationships that are
typical of multistep attacks. The final output of our framework for multistep
attack detection is a set of oriented graphs. Each graph describes an attack
scenario in which the vertices represent alert clusters belonging to the same
attack scenario, and the directed links denote alert clusters that are tied by
causal relationships. In such a way, a security administrator can immediately
identify correlated alerts by looking at the graphs, avoiding to waste time on
checking false positives and irrelevant alerts.
This paper presents several contributions with respect to the state of the art.

The application of the k-means clustering algorithm to the output layer of a
SOM allows us to perform robust and unsupervised clustering of correlated NIDS
alerts. To the best of our knowledge, this solution has never been proposed in
network security. Moreover, several original (for the security literature) heuristics
for the initialization of the SOM and for the definition of the number of clusters
produced by the k-means algorithm reduce the number of configuration parame-
ters and allow our solution to autonomously adapt to different workloads. This is
an important result, because security alerts are heterogeneous and present high
variability. We demonstrate the feasibility and efficacy of the proposed solution
through a prototype that was extensively tested using the most recent datasets
released after the 2010 Capture the Flag competition [3].

2 Related work

The application of machine learning techniques, such as neural networks and
clustering algorithms, for intrusion detection has been widely explored in the
security literature. Several papers propose clustering algorithms, support vector
machines [6] and neural networks as the main detection engine for the implemen-
tation of anomaly-based network intrusion detection systems. In particular, the
use of Self-Organizing Maps (SOM) for the implementation of an anomaly-based
IDS was proposed in [13], [8] and [1]. Unlike previous literature mainly oriented
to anomaly detection, in this paper we propose SOM and clustering algorithms
for the postprocessing of security alerts generated by a signature-based NIDS.
Hence, our proposal relates to other papers focusing on techniques for NIDS
alert correlation [2]. According to the comprehensive framework for NIDS alert
correlation proposed in [12], the solution proposed in this paper can be classified
as a multistep correlation component. In this context, two related papers are [7]
and [4].
Our work differentiates from [7] because our evaluation is not limited to the

computation of alert similarity. Indeed, mapping security alerts on the output
layer of the SOM is only one intermediate steps of our framework, that uses
the SOM output as the input of the alert clustering algorithms. Moreover, with
respect to [7] we propose an innovative initialization algorithm for the SOM and
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an adaptive training strategy that makes the SOM more robust with respect to
perturbations in the training data (see Section 4 for details on the design and
implementation of the SOM). Finally, instead of relying just on a commutative
correlation index based on the distance between two alerts, our correlation index
depends also on the type of alerts and on their detection time (see Section 6).
The resulting correlation index expresses the causality relationships among alerts
much better than the previous one.
In [4] security alerts generated by a NIDS are grouped through a hierarchical

clustering algorithm. The classification hierarchy, that is defined by the user,
aggregates alerts of the same type targeting one host or a set of hosts connected
to the same subnet. We use a similar hierarchical clustering scheme as a pre-
processing step. We then use the alert clusters generated by this hierarchical
clustering algorithm as an input for the SOM. Hence, we take advantage of the
ability of the algorithm presented in [4] to reduce the number of alerts to process,
and to group a high number of false positives. All the subsequent processing steps
are novel.

3 Software architecture

The architecture of the framework proposed in this paper consists of a prepro-
cessing phase and of three main processing steps.
The preprocessing phase, called hierarchical clustering in Figure 1, takes as its

input the intrusion alerts generated by a signature-based NIDS. In our reference
implementation, we refer to the well known Snort. Alerts are grouped according
to a clustering hierarchy in a way similar to [4]. This preprocessing phase has
two positive effects. It reduces the number of elements that have to be processed
by the subsequent steps, with an important reduction of the computational cost
of the three processing phases. Moreover, it groups many false positives in the
same cluster, thus simplifying human inspection of the security alerts. Clustered
alerts are then processed by the SOM, that is able to reduce the dimensionality
of the input dataset by mapping each multidimensional tuple to one output
neuron. Each output neuron is identified by its coordinates on the output layer
of the SOM, hence clustered alerts are mapped to two-dimensional coordinate
sets on the output layer. Moreover, a SOM has the ability to map similar tuples
to neurons that are close in the output layer. In particular, the distance between
two output neurons on the output layer of the SOM is inversely proportional to
the similarity of the related inputs.
The output of the SOM is then analyzed by the second processing step, that

is a k-means clustering algorithm. The basic idea is that similar alert clusters
are mapped on close neurons of the SOM, hence it is possible to group simi-
lar alert clusters by executing a k-means clustering on the output layer of the
SOM.The choice of the parameter k is critical. Our proposal includes a heuristic
that computes the best k on the basis of the data analyzed so far, as illustrated in
Section 5. This approach allows our clustering algorithm to automatically adapt
its parameters without setting a static value for k that risks to be unsuitable in
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Fig. 1. Main functional steps of the software architecture

most instances. The output of the proposed k-means clustering algorithm, de-
scribed in Section 5, is a set of clusters each representing a likely attack scenario.
The third (and last) processing step takes as its input the output layer of the

SOM and the results of the k-means, and then computes a correlation index
between alert clusters that have been grouped within the same cluster by the
k-means. The correlation index is based on the distance between the neurons
on the output layer of the SOM, on the timing relationships between alerts and
on their type. This algorithm can identify causal relationships between alerts by
determining which of the two alerts occurred first, and whether historical data
show that alerts of the same type usually occur one after another.
The final output of the proposed algorithm for multistep alert correlation is

represented by a set of directed graphs. Each graph represents a different at-
tack scenario, whose vertices are clusters of similar alerts. The directed edges
represent relationships between different alert clusters that belong to the same
scenario.

4 Self-Organizing Map

A Self-Organizing Map is an auto-associative neural network [5], that is com-
monly used to produce a low-dimensional (typically two-dimensional) represen-
tation of input vectors that belong to a high-dimensional input space, since input
vectors are mapped to coordinates in the output layer by a neighborhood func-
tion that preserves the topological properties of the input space. Hence, input
vectors that are close in the input space are mapped to near positions in the
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output layer of the SOM. Given a SOM having K neurons in the input layer,
and M × N on the output layer, the SOM is a completely connected network
having K ·M ·N links, so that each input neuron is connected to each neuron of
the output layer. Each link from the input to the output layer has a weight that
expresses the strength of that link. In the described implementation, each alert
is modelled as a numerical normalized tuple provided to the input layer. As an
example, the i− th alert xi is modelled as
xi = (alertTypei, srcIPi, dstIPi, srcPorti, dstPorti, timestampi)
where alertTypei is the alert type as identified by Snort, srcIPi and dstIPi are
its source and destination IP addresses, srcPorti and dstPorti are the source
and destination port numbers, and timestampi is the time at which the alert
has been issued.
The first step initializes the weights of the links between the input and the out-

put layer. Since the training algorithm is unsupervised, it is important to have
an optimal weight initialization instead of a random initialization. The weight
initialization algorithm used in this model is similar to that proposed in [11]. It
involves a heuristics that aims to map on near points the items which are dimen-
sionally or logically close, and on distant points the items which are dimension-
ally or logically distant. Let us consider the training space X = {x1, ...,xh} for
our network. We pick up the two vectors xa,xb ∈ X, with xa = {xa1, ..., xaK}
and xb = {xb1, ..., xbK} having the maximum K-dimensional Euclidean distance.
The values of xa and xb are used for initializing the vectors of weights on the
lower left, wM1 = xa, and the upper right corner, w1N = xb . The idea is to map
the most distant items on the opposite corners of the output layer. The values
of the upper left corner weights vector w11 are then initialized by picking up the
vector xc ∈ X−{xa,xb} having the maximum distance from xa and xb. Finally,
the vector xd ∈ X − {xa,xb,xc} having the maximum distance from xa,xb,xc

initializes the values of the bottom right corner wMN . The weights of the re-
maining neurons on the four edges are initialized through linear interpolations.
This heuristic-based initialization strategy for the SOM reduces the number of
steps to reach a good precision, and improves the accuracy of the network with
respect to a random initialization scheme [11].
After the initialization of the weights, the network undergoes unsupervised and

competitive training by using the same training set X = {x1, ...,xh} used for
the initialization. For each training vector xi ∈ X, ∀i = 1, ..., h, the algorithm
finds the neuron that most likely “represents” it, that is, the neuron having the
weights vector w̄ with the minimum distance from xi. At the t-th learning step,
the map weights are updated according to the following relation:

wjk(t) = wjk(t− 1) + δ(w̄,wjk)α(t) (xi −wjk(t− 1)) (1)

for j = 1, ...,M, k = 1, ..., N . The value of the function δ is inversely propor-
tional to the distance between the two neuron weights taken as their arguments.
Considering two neurons with coordinates (x, y) and (i, j), for the purposes of
this paper we use the following δ function:

δ(wxy,wjk) =
1

(|x− j|+ |y − k|)4 + 1
(2)
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The following step consists in the definition of a learning rate for the network
expressed in function of the learning step t. In many SOM applications, this value
is high at the beginning of the learning phase, when the network is still more
prone to errors, and it decreases monotonically as the learning phase continues.
However, as discussed in [14], this approach makes the learning process too
much dependent on the first learning vectors, and not suited to the high variable
context of NIDS alert analysis.

To mitigate this issue, in this paper we use a learning rate function α(t) close
to that proposed in [14]:

α(t) =
t

T
exp

(
1− t

T

)
(3)

T is a parameter that expresses how fast the learning rate should tend to 0. A
low value of T implies a faster learning process on a smaller training set, while a
high value implies a slower process on a larger training set. The parameter T is
computed as a function of two user-defined parameters: C and tc. C represents
the value under which the learning phase feedback becomes negligible (cutoff
threshold). tc is computed by solving the equation α(tc) = C. It represents the
number of learning steps before the cutoff threshold is reached, i.e. the number
of steps after which the SOM network becomes nearly insensitive to further
learning feedbacks. The parameter T in α(t) representation given tc, is computed
by solving α(tc) = C. The SOM is re-trained at regular intervals. The training
phase, that is computationally expensive, is executed in a separate thread, as
discussed in Section 7.

5 Clustering algorithm

The next step is to apply a k-means clustering algorithm on the SOM output
layer to extract possible information over distinct attack scenarios. Hence, we
need to initialize k centers, for a fixed value of k. As the first two centers we
choose the two points in the data set having the maximum euclidean distance.
The third center is chosen as the point having the maximum distance from these
two centers, the fourth center as the point having the maximum distance from
the three centers chosen so far, and so on. After the initialization step, each
element in the data set D chooses the centers closest to it as the identifier of
its cluster. A well known drawback of the k-means algorithm consists in the
necessity to fix the value of k before clustering. To limit this risk, we use the
Schwarz criterion [9] as our heuristics for computing the best k. In particular,
for 1 ≤ k ≤ |D|, we compute several heuristic indexes that express, for that
value of k, how large is the distortion value for that k, computed as the average
distance between each point and its associated center. The best value of k, k∗, is
the one having the minimum distortion. This approach is able to autonomously
adapt to the heterogeneity of the data set at the price of a higher computational
cost.
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6 Correlation index

In the last processing step we compute correlations among alert clusters belong-
ing to the same scenario. The correlation index between two alert clusters Ai

and Aj , whose output neurons have coordinates (x[Ai], y[Ai]) and (x[Aj ], y[Aj ])
is computed as a function of the Euclidean distance between these two neurons.
The correlation value between two alerts is always normalized in [0, 1].
This definition of correlation is commutative, and it does not express any causal-

ity correlation. As we want to express the direction of the causality between two
alerts, a of type A and b of type B with a relatively high correlation coefficient,
we pursue the following approach. If t[b] > t[a], i.e. the alert b was raised after
the alert a, and we have no historical information over time relations between
alerts of type A and alerts of type B, then a −→ b, that is the alert a was likely
to generate the alert b in a specific attack scenario. If we have logged information
over alerts of both types A and B, and the number of times that an alert of type
B occurred after an alert of type A (in a specified time window) is greater than
the number of times when the opposite event occurred, then a −→ b.
The weight of this correlation value (denoting its accuracy), is computed as a

function of the number of alerts in the alert log L used to train the SOM. In
particular, we want to keep a relatively low weight (close to 0) when the size
of the alert log used for training the network is small, and to increase it when
the system acquires new alerts. Given an alert log of size x = |L|, we compute
the weight w(x) of the SOM-based index through a monotonically increasing
function in [0, 1]. In particular, we will use the hyperbolic tangent tanh as the
weight function:

w(x) = tanh
( x
K

)
=
e

x
K − e− x

K

e
x
K + e−

x
K

(4)

The parameter K determines how fast we want the algorithm to tend to 1. It
is set as a function of the parameter xM denoting the size of the alert log L in
order to have w(xM ) = M . In this paper we use M = 0.95.
After having computed the correlation coefficients for each pair of alerts, we

consider two alerts Ai, Aj actually correlated only if Corr(Ai, Aj) ≥ µcorr +
λσcorr where µcorr is the average correlation value and σcorr is its standard
deviation. λ ∈ R denotes how far from the average we want to shift in order
to consider two alerts as correlated. Feasible values of λ for our purposes are
in the interval λ ∈ [0, 2]. For λ ' 0 we consider as correlated all the pairs
of alerts having a correlation value higher than the average one. This usually
implies a relatively large correlation graph. A value of λ ' 2 brings to a smaller
correlation graph, that only contains the most strongly correlated pairs of alerts.
Higher values for λ could result in empty or poorly populated correlation graphs,
since the correlation constraint could be too strict.

7 Experimental results

We carried out several experiments using a prototype implementation of the
proposed multistep alert correlation architecture. The software has been mainly
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developed in C, as a module for Intrusion Detection System software Snort. A
preliminary set of experiments, aiming to verify all the funcionalities of our soft-
ware, were conducted using small-scale traffic traces, including attack scenarios
performed within controlled network environment. Extensive experimental evalu-
ations have then been carried out against the Capture the Flag 2010 dataset, that
includes 40 GB of network traffic in PCAP format and is publicly available [3].
Our goals are to demonstrate that the computational cost of the proposed so-
lution is compatible with live traffic analysis and to verify the capability of the
system to recongize and correlate alerts belonging to the same attack scenario.
To achieve high performance, several different processing steps have been im-

plemented as concurrent threads, that run in parallel with traffic analysis. In
particular, alert clustering, training of the SOM and the periodic evaluation of
the best value of k of the k-means algorithm, are performed in the background.
As soon as the new weight of the SOM or the new best value of k are computed,
they are substituted to the previous values. This design choice allows us to lever-
age multi-core CPUs to perform these expensive operations with no impacts on
the performance of Snort. The two lines in Figure 2 show the memory usage

Fig. 2. Memory usage of Snort with and without multistep attack detection

of Snort while analyzing a 200MB traffic trace with and without or multistep
alert correlation module. When our module is active, the memory usage of Snort
is slightly higher. However, in both the cases the analysis of the traffic dump
requires about 42 seconds, hence or module has no noticeable impact on the
time required to analyze the traffic trace. Thanks to the self-adaptive choices of
the parameters, our framework can easily adapt to heterogeneous traffic traces
without the need for user-defined static configurations. The first alert clustering
phase [4] is performed using the average heterogeneity of the alerts as grouping
measure. The SOM distances depend on the size of the SOM network itself, but
a greater size means a higher average distance, that anyway does not impact
on the relative normalized distance values. The k-means clustering uses Schwarz
criterion as heuristic for computing the best number of data clusters.
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Fig. 3. Example of a correlation sub-graph

The correlation index among clustered alerts, is sensitive to the choice of the
parameter λ. Feasible values are in the interval λ ∈ [0, 2]. A value of λ close to
zero produces a graph that contains many alert correlations (all the ones having
a correlation value greater than the average one). This is useful when the user
wants to know all the likely correlations. A value closer to 2 highlights the few
“strongest” correlations, having high correlation values. For example, by setting
λ = 1.7, we obtain 4 different scenarios. Due to space limitation, only one of them
is shown in Figure 3. It contains a likely shellcode execution (the grouping of
several similar alerts inside of the same graph node is performed through Julisch
method described in [4]) linked to an HTTP LONG HEADER alert and to a
NON-RFC DEFINED CHAR alert raised by the http inspect module towards
the same host and port in the same time window.

On the other hand, by setting λ = 1.2 we obtain a larger number of likely
scenarios, that can also be connected among them. The XML file1 containing the
37 alert clusters that represent different attack scenarios and the corresponding
correlation graphs 2 cannot be included in this paper for space limitations and
are available online.

8 Conclusion

This paper presents a novel multistep alert correlation algorithm that is able
to group security alerts belonging to the same attack scenario and to identify
correlations and casual relationships among intrusion activities. The input of the
proposed algorithm is represented by security alerts generated by a signature-
based NIDS, such as Snort. Viability and efficacy of the proposed multistep alert
correlation algorithm is demonstrated through a prototype, tested against recent
and publicly available traffic traces. Experimental results show that the proposed
multistep correlation algorithm is able to isolate and correlate intrusion activities
belonging to the same attack scenario, thus helping security administrator in the

1 Available online at http://cris.unimore.it/files/attack_scenarios.xml
2 Available online at http://cris.unimore.it/files/correlation_graph.png
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analysis of alerts produced by a NIDS. Moreover, by leveraging modern multi-
core architectures to perform training in parallel and non-blocking threads, the
computational cost of our prototype is compatible with live traffic analysis.
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