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Abstract

We present GW calculations of molecules, ordered and disordered solids and in-

terfaces, which employ an efficient contour deformation technique for frequency inte-

gration, and do not require the explicit evaluation of virtual electronic states, nor the

inversion of dielectric matrices. We also present a parallel implementation of the algo-

rithm which takes advantage of separable expressions of both the single particle Green’s

function and the screened Coulomb interaction. The method can be used starting from

density functional theory calculations performed with semi-local or hybrid functionals.

We applied the newly developed technique to GW calculations of systems of unprece-

dented size, including water/semiconductor interfaces with thousands of electrons.

1 Introduction

The accurate description of the excited state properties of electrons plays an important role

in many fields of chemistry, physics, and materials science.1 For example, the interpretation

and prediction of photoemission and opto-electronic spectra of molecules and solids rely on

∗To whom correspondence should be addressed
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the ability to compute transitions between occupied and virtual electronic states from first

principles, as well as their lifetimes.2

In particular, in the growing field of materials for energy conversion processes – including

solar energy conversion by the photovoltaic effect and solar to fuel generation by water pho-

tocatalysis – it has become key to develop predictive tools to investigate the excited state

properties of nanostructures and nanocomposites and of complex interfaces.3–5 The latter

include solid/solid and solid/liquid interfaces, e.g. between a semiconductor or insulator and

water or an electrolyte.6–10

In the last three decades, Density Functional Theory (DFT) has been widely used to com-

pute structural and electronic properties of solids and molecules.11–15 Although successful

in describing ground state and thermodynamic properties, and in many ab initio molecu-

lar dynamics studies,16,17 DFT with both semi-local and hybrid functionals has failed to

accurately describe excited state properties of several materials.18 However, hybrid func-

tionals have brought great improvement for properties computed with semi-local ones, e.g.

for defects in semiconductor and oxides.19–22 In particular hybrid functionals with admixing

parameters computed self-consistently have shown good performance in reproducing exper-

imental band gaps and dielectric constants of broad classes of systems.23 In the case of the

electronic properties of surfaces, interfaces (and hence nanostructures), the use of hybrid

functionals has in many instances not been satisfactory. Indeed calculations with hybrid

functionals yield results for electronic levels that often depend on the mixing parameter

chosen for the Hartree-Fock exchange; such parameter is system dependent and there is

no known functional yielding satisfactory results for the electronic properties of interfaces

composed of materials with substantially different dielectric properties, as different as those

of, e.g. water (ǫ∞ = 1.78)24 and Si (ǫ∞ = 11.9)25 or water and transition metal oxides of

interest for photoelectrodes (ǫ∞ = 5-7).26

The use of many body perturbation (MBPT) starting from DFT single particle states has

proven accurate for several classes of systems27–36 and it appears to be a promising framework

2
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to describe complex nanocomposites and heterogeneous interfaces. MBPT for the calcula-

tions of photoemission spectra in the GW approximation,37 and of optical spectra by solving

approximate forms of the Bethe Salpeter Equation (BSE)38 is in principle of general appli-

cability; however its use has been greatly limited by computational difficulties in solving the

Dyson’s equation and the BSE for realistic systems.

Recently we proposed a method to compute quasi particle energies within the G0W0 approx-

imation (i.e. the non-selfconsistent GW approximation) that does not require the explicit

calculation of virtual electronic states, nor the inversion of large dielectric matrices.39,40 In

addition the method does not use plasmon pole models but instead frequency integrations

are explicitly performed and there is one single parameter that controls the accuracy of the

computed energies, i.e. the number of eigenvectors and eigenvalues used in the spectral de-

composition of the dielectric matrix at zero frequency. The method was successfully used to

compute the electronic properties of water41 and aqueous solutions42 and of heterogeneous

solids,5 including crystalline and amorphous samples.40

However the original method contained some numerical approximations in the calculations of

the head and wings of the polarizability matrix; most importantly the correlation self-energy

was computed on the imaginary axis and obtained in real space by analytic continuation.

Finally, although exhibiting excellent scalability, the method was not yet applied to systems

with thousands of electrons, e.g. to realistic interfaces, due to the lack of parallelization in

its original implementation.

In this paper we solved all of the problems listed above, by (i) eliminating numerical ap-

proximations in the calculation of the polarizability; (ii) avoiding the use of an analytic

continuation and using efficient contour deformation techniques; (iii) providing a parallel

implementation of the algorithm based on separable forms of both the single particle Green

function and the screened Coulomb interaction. The method presented here can be used

starting from DFT orbitals and energies obtained both with semi-local and hybrid function-

als. We applied our technique to the calculation of the electronic properties of systems of

3
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unprecedented size, including water/semiconductor interfaces with more than one thousand

electrons. These calculations allow one to accurately study states at heterogeneous interfaces

and to define an electronic thickness of solid/liquid interfaces using MBPT.

The rest of the paper is organized as follows. Sec. 2 describes the G0W0 methodology

that we implemented in a computational package called West. Sec. 3 presents results for

the ionization potentials of closed and open shell molecules and for the electronic struc-

ture of crystalline, amorphous and liquid systems, aimed at verifying and validating the

algorithm and code West against previous calculations and measurements. Sec. 4 presents

the study of the electronic properties of finite and extended large systems, i.e. nanocrys-

tals and solid/liquid interfaces, of interest to photovoltaic and photocatalysis applications,

respectively. Our conclusions are reported in Sec. 5.

4
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2 Method

Within DFT, the n-th single particle state ψnkσ and energy εnkσ of a system of interacting

electrons is obtained by solving the Kohn-Sham (KS) equation:11–15

Ĥσ
KS |ψnkσ〉 = εnkσ |ψnkσ〉 (1)

where Ĥσ
KS = T̂ + V̂ion + V̂H + V̂ σ

xc is the KS Hamiltonian, T̂ is the kinetic energy operator,

and V̂ion, V̂H and V̂ σ
xc are the ionic, Hartree, and exchange-correlation potential operators,

respectively. The indexes k and σ label a wavevector within the first Brillouin zone (BZ)

and spin polarization, respectively. Here we consider collinear spin, i.e. decoupled up and

down spins.

In a fashion similar to Eq. (1) one may obtain quasiparticle (QP) states ψQP
nkσ and QP energies

EQP
nkσ by solving the equation:

Ĥσ
QP

∣

∣

∣ψ
QP
nkσ

〉

= EQP
nkσ

∣

∣

∣ψ
QP
nkσ

〉

(2)

where the QP Hamiltonian Ĥσ
QP is formally obtained by replacing, in Eq. (1), the exchange-

correlation potential operator with the electron self-energy operator Σσ = iGσWΓ; Gσ is

the interacting one-particle Green’s function, W is the screened Coulomb interaction and

Γ is the vertex operator.28,43 All quantities entering the definition of the self-energy are

interdependent and can be obtained self-consistently adopting the scheme suggested by L.

Hedin.44–46 In theGW approximation, Γ is set equal to the identity, which yields the following

expression for the electron self-energy:47

Σσ(r, r′;ω) = i

+∞
∫

−∞

dω′

2π
Gσ(r, r′;ω + ω′)WRPA(r; r

′;ω′) , (3)

5
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where WRPA is the screened Coulomb interaction obtained in the random phase approxima-

tion (RPA). Due to the non-locality and the frequency dependence of the electron self-energy,

a self-consistent solution of Eq. (2) is computationally very demanding also for relatively

small systems, containing tens of electrons, and usually one evaluates QP energies EQP
nkσ

perturbatively:

EQP
nkσ = ǫnkσ + 〈ψnkσ|

(

Ĥσ
QP − Ĥσ

KS

)

|ψnkσ〉 (4)

= ǫnkσ + 〈ψnkσ| Σ̂σ(EQP
nkσ) |ψnkσ〉 − 〈ψnkσ| V̂ σ

xc |ψnkσ〉 . (5)

We note that EQP
nkσ enters both the left and right hand side of Eq. (5), whose solution is

usually obtained recursively, e.g. with root-finding algorithms such as the secant method.

The use of Eq. (5) to evaluate QP energies from KS states and of the corresponding KS

wavefunctions is known as the G0W0 approximation.

Within G0W0, using the Lehmann’s representation, the Green’s function is:

Gσ
KS(r, r

′;ω) = −
∑

n

∫

BZ

dk

(2π)3
ψnkσ(r)ψ

∗
nkσ(r

′)

ǫnkσ − ω − iηsign(εnkσ − εF )
(6)

where η is a small positive quantity and εF is the Fermi energy. In Eq. (6) we used the

subscript KS to indicate that the Green’s function is evaluated using the KS orbitals obtained

by solving Eq. (1).

In Ref. [39,40] an algorithm was introduced to compute the self-energy matrix elements of

Eq. (5) without the need to evaluate explicitly empty (virtual) electronic states, by using a

technique called projective eigendecomposition of the dielectric screening (PDEP). A diagram

of the method is reported in Fig. 1. After KS single particle orbitals and energies are obtained

using semilocal or hybrid functionals, the screened Coulomb interaction is computed using

a basis set built from the eigenpotentials of the static dielectric matrix at zero frequency.

In this way WRPA entering Eq. (3) is expressed in a separable form, similar to that of

6
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Lehmann’s representation, Eq. (6). However WRPA is not trivially separable; it is given as

the sum of two terms:

WRPA(r, r
′;ω) = v(r, r′) +Wp(r, r

′;ω) (7)

where v(r, r′) = e2

|r−r′|
is the bare Coulomb interaction48 and Wp is a nonlocal and frequency

dependent function. Using Eq. (7), we write the self-energy as the sum of two contributions

Σσ = Σσ
X + Σσ

C , where only the latter depends on the frequency:

Σσ
X(r, r

′) = i

+∞
∫

−∞

dω′

2π
Gσ

KS(r, r
′;ω + ω′)v(r; r′) (8)

= −
Nσ

occ
∑

n=1

∫

BZ

dk

(2π)3
ψnkσ(r)v(r, r

′)ψ∗
nkσ(r

′) (9)

Nσ
occ is the number of occupied states with spin σ; Σσ

X is usually called exchange self-energy

because it is formally equivalent to the Fock exact exchange operator;49

Σσ
C(r, r

′;ω) = i

+∞
∫

−∞

dω′

2π
Gσ

KS(r, r
′;ω + ω′)Wp(r, r

′;ω′) (10)

Σσ
C is referred to as correlation self-energy. Using Eq.s (8)-(10) the QP Hamiltonian of Eq. (2)

may be expressed as:

ĤQP (ω) = T̂ + V̂ion + V̂ σ
HF + Σ̂σ

C(ω) (11)

where V̂ σ
HF is the Hartree-Fock potential operator. The ionic potential V̂ion is treated within

the pseudopotential approach.50

In this work we express Wp in a separable form by adopting the projective dielectric eigende-

composition (PDEP) technique, proposed in Ref. [51-52], and we use a plane wave basis set

to express the single particle wave functions and charge density, within periodic boundary

conditions:

ψnkσ(r) = eik·runkσ(r) =
∑

G

cnkσ(G)ei(k+G)·r (12)

8
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where G is a reciprocal lattice vector, cnkσ(G) = 1
Ω

∫

Ω
dr unkσ(r)e

−iG·r and Ω is the unit cell

volume. In Eq. (12) all reciprocal lattice vectors such that 1
2
|k+G|2 < Ecutwfc are included

in the summation. Using a plane wave description also for Wp we have

WRPA(r, r
′;ω) =

∫

BZ

dq

(2π)3

∑

GG′

ei(q+G)·r [vGG′ +W p
GG′(q;ω)] e

−i(q+G′)·r′ (13)

where vGG′ = 4πe2

|q+G|2
δGG′ (δ is the Kronecker delta) and

W p
GG′(q;ω) =

χ̄GG′(q;ω)

|q+G||q+G′| . (14)

In Eq. (14) we have introduced the symmetrized reducible polarizability χ̄, related to the

symmetrized inverse dielectric matrix ǭ−1 by the relation:

ǭ−1
GG′(q;ω) = δGG′ + χ̄GG′(q;ω) . (15)

The symmetrized form χ̄ of the polarizability χ is

χ̄GG′ =

√
4πe2

|q+G|χGG′

√
4πe2

|q+G′| . (16)

The reducible polarizability χ is related to the irreducible polarizability χ0 by the Dyson’s

equation, which within the RPA reads:

χGG′ = χ0
GG′ +

∑

G1,G2

χ0
GG1

vG1G2
χG2G′ (17)

or in terms of symmetrized polarizabilites:

χ̄ = (1− χ̄0)−1χ̄0 . (18)

9
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Within a plane wave representation each quantity in Eq. (18) is a matrix of dimension N2
pw,

and in principle χ̄ can be obtained from χ̄0 via simple linear algebra operations. In practice,

the matrices of Eq. (18) may contain millions of rows and columns for realistic systems; for

example for a silicon nanocrystal with 465 atoms, placed in a cubic box of edge 90 bohr,

1.5 million plane waves are needed in the expansion of Eq. (12) with Ecutwfc = 25Ry. It is

thus important to find alternative representations of χ̄ and reduce the number of elements

to compute. One could think of a straightforward spectral decomposition:

χ̄GG′(q;ω) =

Npdep
∑

i=1

φi (q+G;ω)λi (q;ω)φ
∗
j (q+G;ω) (19)

where φi and λi are the eigenvectors and eignvalues of χ̄, respectively. Unfortunately this

strategy is still too demanding from a computational standpoint, as it implies finding eigen-

vectors and eigenvalues at multiple frequencies.

A computationally more tractable representation may be obtained using the spectral decom-

position of χ̄0 at ω = 0. As apparent from Eq. (18), eigenvectors of χ̄ are also eigenvectors

of χ̄0; the latter is easier to iteratively diagonalize than χ̄, and the frequency dependency

may be dealt with iterative techniques, starting from the solution at ω = 0, as discussed

in Sec. 2.4. Therefore we proceed by solving the secular equation for χ̄0 only at ω = 0,

generating what we call the PDEP basis set {|φi〉 : i = 1, Npdep}, which is used throughout

this work to represent the polarizability χ̄:

χ̄GG′(q;ω) =

Npdep
∑

i=1,
j=1

φi (q+G) Λij (q;ω)φ
∗
j (q+G) ; (20)

here Λij (q;ω) is a matrix of dimension N2
pdep. In general Npdep ≪ Npw,51,52 leading to

substantial computational savings.53 The Npdep functions φi may be computed by solving the

Sternheimer equation,54 without explicitly evaluating empty (virtual) electronic states. In

addition, Npdep turns out to be the only parameter that controls the accuracy of the expansion

10
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in Eq. (20). The details of the derivation of the PDEP basis set are given in Sec. 2.3.

We note that alternative basis sets, based on the concepts related to maximally localized

Wannier functions, have been proposed in the literature to reduce the dimensionality of the

polarizability matrices.55

By defining φ̃i (q+G) = φi(q+G)
|q+G|

, we formally obtain the desired separable form for Wp:

Wp(r, r
′;ω) =

∫

BZ

dq

(2π)3

Npdep
∑

i=1,
j=1

φ̃i (q; r) Λij (q;ω) φ̃
∗
j (q; r

′) . (21)

The scaling operation used to define φ̃i is divergent in the long wavelength limit (q → 0)

and for G = 0. However such divergence can be integrated yielding:

Wp(r, r
′;ω) = Ξ(ω) +

1

Ω

Npdep
∑

i=1,
j=1

φ̃i (r) Λij(ω)φ̃
∗
j (r

′) , (22)

where

Ξ(ω) = 4πe2
∫

Rq=0

dq

(2π)3
χ̄00(q;ω)

q2
. (23)

In Eq. (23) the integration is evaluated on the region Rq=0 of the BZ enclosing the Γ-point

(i.e. q = 0).56

In the q → 0 limit, we can now write the matrix elements of ΣC using: i) the separable

form of Wp of Eq. (22) and ii) the expression of GKS, given in Eq. (6), in terms of projector

operators:

Ĝσ
KS(ω) =

∫

BZ

dk

(2π)3
P̂ kσ
v Ôσ

KS (ω − iη) P̂ kσ
v +

∫

BZ

dk

(2π)3
P̂ kσ
c Ôσ

KS (ω + iη) P̂ kσ
c (24)

where

Ôσ
KS (ω) = −

(

Ĥσ
KS − ω

)−1

, (25)

11
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P̂ kσ
v =

∑Nσ
occ

n=1 |ψnkσ〉 〈ψnkσ| and P̂ kσ
c =

∑+∞
n=Nσ

occ+1 |ψnkσ〉 〈ψnkσ| are the projector operator

over the occupied and unoccupied manyfold of states belonging to k-point k and spin σ,

respectively.57 Hence we have:

〈ψnkσ|Σσ
C(ω) |ψnkσ〉 = Ankσ(ω) + Bnkσ(ω) + Cnkσ(ω) +Dnkσ(ω) , (26)

where Ankσ and Cnkσ (Bnkσ and Dnkσ) are contributions to the correlation self-energy orig-

inating from occupied (empty) states:

Ankσ(ω) = i

+∞
∫

−∞

dω′

2π
Ξ(ω′) 〈ψnkσ| P̂ kσ

v Ôσ
KS (ω + ω′ − iη) P̂ kσ

v |ψnkσ〉 (27)

Bnkσ(ω) = i

+∞
∫

−∞

dω′

2π
Ξ(ω′) 〈ψnkσ| P̂ kσ

c Ôσ
KS (ω + ω′ + iη) P̂ kσ

c |ψnkσ〉 (28)

Cnkσ(ω) =
i

Ω

+∞
∫

−∞

dω′

2π

Npdep
∑

i=1,
j=1

Λij(ω
′)
〈

φi
nkσ

∣

∣ P̂ kσ
v Ôσ

KS (ω + ω′ − iη) P̂ kσ
v

∣

∣φj
nkσ

〉

(29)

Dnkσ(ω) =
i

Ω

+∞
∫

−∞

dω′

2π

Npdep
∑

i=1,
j=1

Λij(ω
′)
〈

φi
nkσ

∣

∣ P̂ kσ
c Ôσ

KS (ω + ω′ + iη) P̂ kσ
c

∣

∣φj
nkσ

〉

(30)

We have defined φj
nkσ(r) = ψnkσ (r) φ̃

∗
j (r). The quantities Ankσ, Bnkσ, Cnkσ and Dnkσ en-

tering Eq. (26) are now in a form where iterative techniques (see Sec. 2.4) can be applied to

obtain the matrix elements of the correlation self-energy. Moreover, because of the complete-

ness of energy eigenstates (P̂ kσ
c = 1− P̂ kσ

v ), we may compute all quantities in Eq.s (27)-(30)

considering only occupied states. The integration over the frequency domain will be discussed

in Sec. (2.5).
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2.2 Polarizability within the random phase approximation

Here we discuss how to compute the polarizability χ̄ from χ̄0 within the RPA, in the long

wavelength limit (q → 0), without explicitly evaluating electronic empty states. The Fourier

components of the symmetrized irreducible polarizability χ̄0 are given by the Adler-Wiser

expression,58,59 which contains an explicit summation over unoccupied states:

χ̄0
GG′ (q;ω) = −4πe2

∑

σ

Nσ
occ

∑

n=1

+∞
∑

m=Nσ
occ+1

∫

BZ

dk

(2π)3
ρ∗mnkσ(q,G)ρmnkσ(q,G

′)

|q+G||q+G′| ×

×
[

1

ǫmkσ − ǫnk−qσ + ω − iη
+

1

ǫmkσ − ǫnk−qσ − ω − iη

]

(31)

where the matrix element

ρmnkσ(q,G) = 〈ψmkσ| ei(q+G)·r |ψnk−qσ〉 (32)

is often referred to as oscillator strength; it has the following properties:

ρmnkσ(q,G = 0)|q→0 = δnm (33)

∇qρmnkσ(q,G = 0)|
q→0

= i 〈ψmkσ| r |ψnkσ〉 . (34)

Following Ref. [60,61], we partition the polarizability of Eq. (31) into head (G = G′ = 0),

wings (G = 0,G′ 6= 0 or G 6= 0,G′ = 0) and body (G 6= 0 and G′ 6= 0) elements. The

q → 0 limit of the body, which we call BGG′ , is analytic, while the limits of the head and

wings are non-analytic, i.e. they depend on the Cartesian direction along which the limit

is performed. The long wavelength limits of the head, body and wings of the polarizability

matrix are summarized in Table 1. Using the PDEP basis set we obtain:

Uαj(ω) =
∑

G′

UαG′(ω)φ̃j(G
′) (35)
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Table 1: The long wavelength limit (q → 0) of the head, wing and body elements of the polar-
izability χ̄0

GG′(ω) are given in the second and third columns: UGβ(ω) = −i4πe2 ∂
∂qβ
χG0(ω) and

Fαβ(ω) = 4πe2 ∂2

∂qα∂qβ
χ00(ω) are evaluated using Eq. (34) and yield the linear and quadratic

terms in the Taylor expansion of χ0(ω) around q = 0, respectively.

χ̄0
GG′(q → 0;ω) G′ = 0 G′ 6= 0

G = 0
∑

αβ qαFαβ(ω)qβ/q
2 −i∑α qαUαG′(ω)/q

G 6= 0 i
∑

β UGβ(ω)qβ/q BGG′

Bij(ω) =
∑

GG′

φ̃∗
i (G)BGG′(ω)φ̃j(G

′) (36)

We can now express all the quantities in Table 1 without any explicit summation over empty

(virtual) states:

Fαβ(ω) = 4πe2
∑

σ

Nσ
occ

∑

n=1

∫

BZ

dk

(2π)3
〈ξαnkσ| P̂ kσ

c

[

Ôσ
KS (ǫnkσ − ω + iη) + Ôσ

KS (ǫnkσ + ω + iη)
]

P̂ kσ
c

∣

∣

∣
ξβnkσ

〉

(37)

Uαj(ω) = 4πe2
∑

σ

Nσ
occ

∑

n=1

∫

BZ

dk

(2π)3
〈ξαnkσ| P̂ kσ

c

[

Ôσ
KS (ǫnkσ − ω + iη) + Ôσ

KS (ǫnkσ + ω + iη)
]

P̂ kσ
c

∣

∣ξjnkσ
〉

(38)

Uiα(ω) = 4πe2
∑

σ

Nσ
occ

∑

n=1

∫

BZ

dk

(2π)3
〈

ξinkσ
∣

∣ P̂ kσ
c

[

Ôσ
KS (ǫnkσ − ω + iη) + Ôσ

KS (ǫnkσ + ω + iη)
]

P̂ kσ
c

∣

∣

∣
ξβnkσ

〉

(39)

Bij(ω) = 4πe2
∑

σ

Nσ
occ

∑

n=1

∫

BZ

dk

(2π)3
〈

ξinkσ
∣

∣ P̂ kσ
c

[

Ôσ
KS (ǫnkσ − ω + iη) + Ôσ

KS (ǫnkσ + ω + iη)
]

P̂ kσ
c

∣

∣ξjnkσ
〉

(40)

Note that the greek letters α and β identify Cartesian directions, while the roman letters i and

j label the eigevectors of χ̄0 at ω = 0, i.e. the elements of the PDEP basis set. We have also

defined the auxiliary functions ξinkσ(r) = ψnkσ(r)φ̃i(r) and ξαnkσ(r) = P̂ kσ
c rα |ψnkσ〉. Within

periodic boundary conditions the position operator is ill-defined and ξαnkσ(r) is obtained by

solving the linear system

(

Ĥσ
KS − ǫnkσ

)

|ξαnkσ〉 = P̂ kσ
c

[

Ĥσ
KS, rα

]

|ψnkσ〉 (41)
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where the commutator of the KS Hamiltonian with the position operator includes the contri-

bution of the non-local part of the pseudopotential.60,61 Once χ̄0 is obtained, χ̄ is computed

using Eq. (18).

The quantities required to evaluate Eq. (26) are the following:62

Ξ(ω) =
1− k(ω)

k(ω)

∫

Rq=0

dq

(2π)3
4πe2

|q|2 (42)

Λ(ω) = [1−B(ω)]−1B(ω) +
1

k(ω)
[1−B(ω)]−1

µ(ω)[1−B(ω)]−1 (43)

with k(ω) = 1−f(ω)−Tr {µ(ω)[1−B(ω)]−1}; f(ω) = 1
3

∑

α Fαα(ω) and the matrix elements

of µij(ω) =
1
3

∑

α Uiα(ω)Uαj(ω). In Eq. (43) the bold symbols denote matrices of dimension

N2
pdep. In order to compute the matrix elements of the correlation self-energy, Eq. (26), we

need to evaluate Ξ(ω) and Λ(ω), namely the head and body of the χ̄ operator. These are

easily obtained via linear algebra operations from Fαβ(ω), Uαj(ω), Uiα(ω) and Bij(ω).

By replacing explicit summations over unoccupied states with projection operations, Eq.s (37)-

(40) may be evaluated using linear equation solvers and (owing to the completeness of the

energy eigenstates) the calculation of polarizabilities is carried out without the explicit eval-

uation of the virtual states. In a similar fashion one obtains the auxiliary functions ξαnkσ(r)

in Eq. (41) and the PDEP basis set as described in Sec. 2.3. We note that other ap-

proaches were developed in the literature63–66 to improve the efficiency of G0W0 calculations

by avoiding the calculation of virtual states, or by limiting the number of virtual states to be

computed. However such approaches did not make use of the spectral decomposition of the

irreducible polarizability to obtain the reducible polarizability, but instead inverted explicity

large matrices. Specifically in Reining et al.67 the Sternheimer equation was used to ob-

tain the irreducible polarizability without virtual states and then a plasmon pole model was

adopted to compute the dielectric response as a function of frequency. In Giustino et al.68

the Sternheimer equation was used as well to obtain the irreducible polarizability without
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computing virtual states; the polarizability matrix was then inverted numerically and either

a plasmon pole model or a a Padé expansion were used to treat the frequency dependence.

In our approach we avoided large matrix inversion by using the PDEP basis set to express

all polarizability matrices. Finally, we note that an additional advantage of our approach is

that Eq.s (37)-(40) may be computed using a deflated Lanczos algorithm for multiple values

of the frequency, as discussed in Sec. 2.4. A Lanczos algorithm was also used by Soininen et

al.69 to iteratively include local field effects in RPA Hamiltonians and avoid explicit inversion

of large matrices. However the authors of Ref. [69] computed explicitly virtual states.

2.3 Projective dielectric eigenpotential (PDEP) basis set

We now describe in detail how to obtain the PDEP basis set {|φi〉 : i = 1, Npdep} intro-

duced in Eq. (20); each function φi is computed by the iterative diagonalization procedure,

summarized in Fig. 2, the procedure is initiated by building an orthonormal set of Npdep

basis vectors, e.g. with random components. Then Npdep Sternheimer equations are solved

in parallel, where the perturbation is given by the i-th basis set vector φi(r). In particular,

given a perturbation V̂ pert
i , the linear variation |∆ψi

nkσ〉 of the occupied eigenstates of the

unperturbed system |ψnkσ〉 may be evaluated using the Sternheimer equation:54

(

Ĥσ
KS − εnkσ

)

P̂ kσ
c

∣

∣∆ψi
nkσ

〉

= −P̂ kσ
c V̂ pert

i |ψnkσ〉 . (44)

Eq. (44) may be iteratively solved using e.g. preconditioned conjugate-gradient methods.

The linear variation of the density due to the i-th perturbation is obtained within density

functional perturbation theory70,71 (DFPT) as

∆ni(r) =
∑

σ

Nσ
occ

∑

n=1

∫

BZ

dk

(2π)3
[

∆ψi∗
nkσ(r)ψnkσ(r) + c.c.

]

. (45)
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The matrix elements of the irreducible polarizability in the space spanned by φi are given

by:

χ̄0
ij = 4πe2〈φ̃i |∆nj〉 (46)

where |∆nj〉 is computed using Eq.s (44)-(45) and assuming that V pert
i (G) = φ̃i(G). The

matrix χ̄0
ij is then diagonalized to obtain new Npdep basis vectors φi, and the procedure is

iterated using e.g. a Davidson algorithm72 (See Fig 3). We note that at each iteration,

all Sternheimer problems are independent from each other, thus offering the opportunity to

carry out embarrassingly parallel calculations. A description of the parallel operations and

data layout will be given elsewhere.73 As a result, the algorithm shows a good scalability up

to 524288 cores (see Fig. 4).

As an example we show in Fig. 5 the eigenvalues of the χ̄0
ij matrix obtained with the PDEP

algorithm for the water, silane, benzene and sodium chloride molecules, using KS Hamil-

tonians with different exchange-correlation functionals. The choice of the functional only

affects the most screened eigenpotentials, whereas the eigenvalues λi corresponding to the

least screened ones rapidly approach51 zero with a decay similar to that predicted by the

Lindhard model.52 This indicates that the computation of the least screened eigenpotentials

might be avoided and carried out using model functions.

If instead of χ̄0, one wishes to diagonalize χ̄, the potential V̂ scr
i arising from the rearrange-

ments of the charge density in response to the applied perturbation needs to be included in

the definition of the perturbation V̂ pert
i of Eq. (44).61,74,75 In a generalized KS scheme the

V̂ scr
i is given by:

V̂ scr
i |ψnkσ〉 =

[

∆V̂ i
H + (1− α)∆V̂ i

x +∆V̂ i
c + α∆V̂ i

EXX

]

|ψnkσ〉 (47)
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where α is the fraction of exact exchange (EXX) that is admixed to the semilocal exchange

potential. The linear variation of the Hartree potential is

∆V̂ i
H |ψnkσ〉 =

∫

dr′∆ni(r
′)

e2

|r− r′|ψnkσ(r) (48)

and those of the exchange and correlation potentials are given by the functional derivatives:

∆V̂ i
x/c |ψnkσ〉 =

dVx/c
dn

∣

∣

∣

∣

n(r)

∆ni(r)ψnkσ(r) . (49)

The linear variation of the exact exchange potential (EXX) is expressed in terms of variations

of the single particle orbitals

∆V̂ i
EXX |ψnkσ〉 = −

Nσ
occ

∑

m=1

∫

BZ

dk′

(2π)3

∫

dr′
[

∆ψi∗
mk′σ(r

′)ψmk′σ(r) + ψ∗
mk′σ(r

′)∆ψi
mk′σ(r)

] e2

|r− r′|ψnkσ(r
′) .

(50)

We note that calculations including V̂ scr
i require a double self-consistent procedure (see

Fig. 2); hence it is computationally more efficient to iteratively diagonalize χ̄0 first and

then obtain the reducible polarizabilty χ̄ by linear algebra operations.76 We recall that both

χ̄ and χ̄0 are Hermitian operators77 and because of Eq. (18) they have the same eigenvectors.

2.4 The evaluation of G and W without empty electronic states

using a Lanczos algorithm

The calculation of the correlation self-energy, Eq.s (27)-(30), and of the screening, Eq.s (37)-

(40), requires the computation of the matrix elements of Ôσ
KS(ω), defined in Eq. (25), for

multiple values of ω. For each frequency ω, given two generic vectors |L〉 and |R〉, we define

Mkσ
v;LR(ω) = 〈L| P̂ kσ

v Ôσ
KS (ω) P̂

kσ
v |R〉 (51)
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Figure 4: (Color online) Scalability of the PDEP iterative diagonalization (see Fig. 2) of the
static dielectric matrix of the COOH−Si/H2O solid/liquid interface discussed in Sec. 4.2.
The unit cell includes 492 atoms and 1560 valence electrons.
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Figure 5: (Color online) Eigenvalues (λi) of the polarizability of H2O, SiH4, C6H6 and NaCl
molecules, as obtained using the iterative diagonalization described in the left panel of Fig. 2
(see text), and adopting five different exchange-correlation potentials for the KS Hamiltonian
(see Table 2). Nocc is the number of valence bands.52
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and

Mkσ
c;LR(ω) = 〈L| P̂ kσ

c Ôσ
KS (ω) P̂

kσ
c |R〉 . (52)

Eq. (51) can be easily written in terms of the eigenstates ψnkσ and eigenvalues εnkσ of the

KS Hamiltonian:

Mkσ
v;LR(ω) = −

Nσ
occ

∑

i=1

〈L |ψnkσ〉 〈ψnkσ |R〉
εnkσ − ω

(53)

Eq. (52) may be cast as well in terms of the occupied states and energies, by using the

relation P kσ
c = 1− P kσ

v and writing H̃σ
KS = P̂ kσ

c Ĥσ
KSP̂

kσ
c (called deflated Hamiltonian)

Mkσ
c;LR(ω) = −〈L|

(

H̃σ
KS − ω

)−1

|R〉 (54)

The Lanczos alorithm78 is used to obtain a set ofNlanczos orthonormal vectorsQ = {|qi〉 : i = 1, Nlanczos}

that are used to recast the deflated Hamiltonian in Eq. (54) into a tri-diagonal form:

T = Q†H̃σ
KSQ =

























α1 β2

β2 α2 β3

β3
. . . . . .

. . . . . . βn

βn αn

























(55)

where

αn = 〈qn| H̃σ
KS |qn〉 , (56)

βn =‖ (H̃σ
KS − αn) |qn〉 − βn |qn−1〉 ‖ . (57)

The calculation of the sequence of vectors |qn〉, called Lanczos chain, is started by imposing

|q1〉 = |R〉; iterations are performed79 by enforcing orthogonality through the recursive

relation:

|qn+1〉 =
1

βn+1

[

(H̃σ
KS − αn) |qn〉 − βn |qn−1〉

]

. (58)
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The tridiagonal matrix T can be diagonalized using an orthogonal transformation U , so that

D = U tTU . Using dn to indicate the n-th element of the diagonal matrix D, we obtain:

Mkσ
c;LR(ω) = −

Nlancsoz
∑

n1=1,
n2=1,
n3=1

〈L |qn1
〉Un1n2

1

dn2
− ω

Un3n2
〈qn3

|R〉 . (59)

Because of the orthogonality of the elements belonging to a Lanczos chain, we have 〈qn3
|R〉 =

δn31, yielding

Mkσ
c;LR(ω) = −

Nlancsoz
∑

n1=1,
n2=1

〈L |qn1
〉Un1n2

1

dn2
− ω

U1n2
. (60)

Eq. (60) is written in a form similar to Eq. (53), where the coefficients of the expansion

are independent of the value of ω and therefore it is not necessary to recompute them

for multiple frequencies. However, the coefficients of the expansion in Eq. (60) depend by

construction on the vector |R〉 that is used to start the Lanczos chain. Therefore to evaluate

Mkσ
c;LR(ω) one needs to solve as many Lanczos problems as the number of vectors |R〉, while

the eigendecoposition used for Mkσ
v;LR(ω) in Eq. (53) is unique. Because Lanczos chains are

independent of each other, the iterations can be performed in an embarrassingly parallel

fashion, similarly to the procedure discussed in Sec. 2.3 for the computation of the PDEP

basis set.

In our calculations we used Eq. (53), with an explicit summation over occupied eigenstates,

for the evaluation of the terms in Eq. (27) and Eq. (29), whereas we used the Lanczos

expansion of Eq. (60) to evaluate the terms in Eq.s (28), (30), (37)-(40).

2.5 The contour deformation technique

In Eq.s (26)-(30) the frequency integration may be carried out by using complex analysis,

and thus avoiding the integration in the real frequency domain. A closed integration contour

on the complex plane is identified for which Cauchy’s theorem and Jordan’s Lemma apply.80
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This approach is called contour deformation technique29,81 and establishes a formal identity

between the quantities reported in Eq. (26) and an equivalent set of quantities that are

numerically more stable to compute. The poles of the Green’s function Gσ
KS(r, r

′;ω + ω′)

are located at complex frequencies zGnkσ, satisfying the relation

zGnkσ = εnkσ − ω − iηsign(ǫnkσ − ǫF ) (61)

with a numerical residue given by

Res
{

Gσ
KS(r, r

′), zGnkσ
}

= ψnkσ(r)ψ
∗
nkσ(r

′). (62)

The poles of Wp correspond to the plasmon energies of the system: zWp = ±(Ωp − iη). The

matrix elements of the correlation self-energy can be computed by using the integration

contour shown in Fig. 6, yielding:

Σσ
C(r, r

′;ω) = i

+i∞
∫

−i∞

dω′

2π
Gσ

KS(r, r
′;ω + ω′)Wp(r, r

′;ω′) + (63)

−
∑

zG
nkσ

∈Γ+

ψnkσ(r)ψ
∗
nkσ(r

′)Wp(r, r
′; zGnkσ) + (64)

+
∑

zG
nkσ

∈Γ−

ψnkσ(r)ψ
∗
nkσ(r

′)Wp(r, r
′; zGnkσ) . (65)

In view of the chosen contour, as the frequency ω is varied, the poles of Wp never fall

inside the two closed contours Γ+ and Γ−, which therefore may only enclose poles of the

Green’s function. The correlation self-energy is thus obtained as the sum of: i) an integral

along the imaginary axis, where both Gσ
KS and WRPA are smooth functions, and ii) all the

numerical residues arising from Gσ
KS, shifted inside the integration contours, depending on
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εF

Γ+

Γ−

Im {ω′}

Re {ω′}

= zGnkσ

= zWp

Figure 6: (Color online) Contours used in this work (see text). The integration contours Γ+

and Γ− enclose only the poles of the Green’s function zGnkσ (dots) and exclude the poles of
the screened Coulomb interaction zWp (crosses).

the value of ω. The matrix element of the correlation self-energy becomes:

〈ψnkσ|Σσ
C(E

QP
nkσ) |ψnkσ〉 = −

+∞
∫

−∞

dω′

2π
〈ψnkσ|Gσ

KS(r, r
′;EQP

nkσ + iω′)Wp(r, r
′; iω′) |ψnkσ〉+(66)

+
∑

m

fnkσ
mkσ 〈ψnkσ|ψmkσ(r)Wp(r, r

′; εmkσ − EQP
nkσ)ψ

∗
mkσ(r

′) |ψnkσ〉

where the function fnkσ
mkσ is

fnkσ
mkσ =































+1 if εF < εmkσ < EQP
nkσ

−1 if EQP
nkσ < εmkσ < εF

0 otherwise

(67)

Eq. (67) shows that only a finite number of residues needs to be computed.82 Inserting

Eq. (22) for Wp into Eq. (67), Eq.s (26)-(30) are solved. The integration over the immaginary
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axis is performed numerically by considering a non-uniform grid, finer for small frequencies.

With the introduction of the contour deformation technique we avoid the use of plasmon

pole models28,47,83–86 to describe the frequency dependence of the screening and we overcome

the limitations of the analytic continuation87,88 reported in Ref. [39,40].

3 Verification and validation of results

In this section we present several results obtained with the G0W0 method presented in

Sec. 2. In particular we computed the vertical ionization potential (VIP) of closed and open-

shell molecules and the electronic structure of several crystalline, amorphous and liquid

systems. All results were obtained by computing KS eigenvalues and eigenvectors with the

QuantumEspresso package89 and the G0W0 quasiparticle energies with the West code,

which features a parallel implementation of the method of Sec. 2.

3.1 Vertical ionization potentials of molecules

We considered a subset of the G2/97 test set90 composed of 36 closed shell molecules, listed

in Table 3. Subsets of the G2/97 set were recently used to benchmark G0W0 calculations

with both localized91–95 and plane wave40,96 basis sets. Molecular geometries were taken from

the NIST computational chemistry database,97 and no additional structural relaxations were

performed. In our calculations, each molecule was placed in a periodically repeated cell of

edge 30 bohr; the interaction between ionic cores and valence electrons was described by a

PBE norm conserving pseudopotential; we used a plane wave basis set with a kinetic en-

ergy cutoff of 85Ry (chosen so as to be appropriate for the hardest pseudopotential, i.e.

those of oxygen and fluorine). At the DFT-KS level of theory we approximated the VIP

by the absolute value of the highest occupied KS eigenvalue (HOMO)98 and we considered

five different exchange and correlation functionals: PBE, PBE0, EXXc, B3LYP and HSE,

whose expressions are summarized in Table 2. The computed DFT-KS VIP are reported in
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Table 3 within parentheses and in Fig. 8 as crosses. As expected, hybrid functionals yielded

a better agreement with experiments than PBE: the mean absolute relative errors (MARE)

are 13.00%, 24.70%, 25.51% and 29.22% for EXXc, B3LYP, PBE0 and HSE respectively,

whereas the MARE of PBE is substantially higher, 37.98%.

Corrections to the DFT eigenvalues were computed within the G0W0 approximation using

the 5 different starting points obtained with the various functionals. The PDEP basis set of

each system was generated including a number of eigenpotentials Npdep proportional to the

number of valence electrons, for instance Npdep = 1050 for the largest molecule considered

here, i.e. C6H6. The G0W0 corrected VIPs are reported in Table 3 and in Fig. 8 as dots; we

obtained values in much better agreement with experiments, with MARE of 1.78%, 1.96%,

2.03%, 3.96% and 4.49% for PBE0, B3LYP, HSE, PBE and EXXc starting points, respec-

tively. We note that the QP corrections to HOMO DFT eigenvalues have different signs,

depending on the starting point: the corrections lead to a decrease of the VIPs obtained

with EXXc but to an increase of those computed with the other functionals. In Fig. 7 we

analyzed separately the matrix elements of Vxc, ΣX and ΣC (see Eq. (5)); the latter is the

most affected by the choice of the exchange correlation functional at the DFT level. The

matrix elements of ΣX (panel a) are instead weakly affected by the choice of the starting

point.

In many papers appeared in the literature,93,95 Eq. (5) is solved using a linear approxima-

tion:47

EQP
nkσ ≈ ǫnkσ + Znkσ

[

〈ψnkσ| Σ̂σ(εnkσ) |ψnkσ〉 − 〈ψnkσ| V̂ σ
xc |ψnkσ〉

]

(68)

where Z−1
nkσ = 1− ∂

∂ω
〈ψnkσ| Σ̂σ(ω) |ψnkσ〉

∣

∣

∣

ω=εnkσ

. Here we employed instead a secant method

to find the roots of Eq. (5), where Eq. (68) was used to determine the starting point of

the iterative procedure. The difference between VIPs obtained with Eq. (68) and using the

secant method varies within 0− 0.5 eV, see Fig. 9.

We also considered five open shell molecules, including the O2 molecule in its triplet ground

state. The VIPs computed at the DFT level using LDA or the PBE exchange-correlation
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functional,99 and by computing the QP corrections with G0W0 are summarized in Table 4.

The G0W0 results are in satisfactory agreement with the experimental data97 and, for the

systems considered here, LDA seems to provide a better starting point for G0W0 than PBE.

We conclude this section dedicated to the validation of the West code for molecular

systems by showing that G0W0 corrections may also improve higher order VIPs, i.e. verti-

cal ionization energies obtained by removing electrons from single particle states deeper in

energy than the HOMO. As an example we chose the thiophene (C4H4S) molecule whose

spectral function A(ω) =
∣

∣

1
π
Tr {ImG0(ω)}

∣

∣ was computed within G0W0, starting from DFT

energies obtained using the PBE0 functional (see Fig. 10). We found that G0W0 gives a

much improved description of higher order VIPs with respect to KS-DFT. While for the

experimental and the PBE0 spectral functions we used an artificial smearing parameter of

η = 0.01 eV to simulate finite lifetimes, in the case of the G0W0 spectral function the elec-

tronic lifetimes were computed from first principles, as the imaginary part of the electron

self-energy. Our results are in good agreement with those reported by F. Caruso et al.100

using localized basis sets.

Table 2: Exchange and correlation potentials used in this work (see text). For HSE, the
screening parameter µ = 0.106 bohr−1 divides the exchange (x) contributions into short
range (SR) and long range (LR).101

functional semilocal exchange nonlocal exchange correlation

PBEa V PBE
x (r) - V PBE

c (r)

PBE0b 0.75V PBE
x (r) 0.25V EXX

x (r, r′) V PBE
c (r)

EXXcc - V EXX
x (r, r′) V PBE

c (r)

B3LYPd 0.08V LDA
x (r) + 0.72V PBE

x (r) 0.2V EXX
x (r, r′) 0.19V LDA

c (r) + 0.81V PBE
c (r)

HSEe 0.75V PBE,SR
x (r;µ) + V PBE,LR

x (r;µ) 0.25V EXX,SR
x (r, r′;µ) V PBE

c (r)

a Ref. [102], b Ref. [103], c Ref. [104], d Ref. [105], e Ref. [101]
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Table 3: Vertical ionization potential (VIP, eV) of closed shell molecules. Experimental values
are taken from the NIST computational chemistry database.97 Each column reports the VIP
obtained with the West code by performing G0W0 calculations starting from the solutions of
the Kohn-Sham equations with the exchange and correlation potential (see Tab. 2), specified
within parentheses on the first row. In parentheses we report the absolute value of the
HOMO energy prior to the application of G0W0 corrections. ME, MAE, MRE and MARE
stand for mean, mean absolute, mean relative and mean relative absolute error as compared
to the experiment, respectively.

Molecule G0W0(PBE) G0W0(PBE0) G0W0(EXXc) G0W0(B3LYP) G0W0(HSE) Exp.
C

2
H

2
11.10 (7.20) 11.38 (8.43) 11.66 (12.19) 11.37 (8.45) 11.30 (8.03) 11.49

C
2
H

4
10.35 (6.74) 10.56 (7.86) 10.74 (11.26) 10.58 (7.88) 10.50 (7.46) 10.68

C
4
H

4
S 8.90 (5.98) 9.15 (7.01) 9.44 (10.12) 9.16 (7.05) 9.08 (6.62) 8.86

C
6
H

6
9.10 (6.33) 9.32 (7.30) 9.54 (10.21) 9.34 (7.33) 9.25 (6.91) 9.25

CH
3
Cl 11.27 (7.10) 11.57 (8.50) 11.89 (12.81) 11.56 (8.57) 11.49 (8.11) 11.29

CH
3
OH 10.47 (6.24) 10.93 (7.91) 11.52 (13.05) 10.86 (8.01) 10.82 (7.51) 10.96

CH
3
SH 9.31 (5.55) 9.57 (6.78) 9.83 (10.58) 9.59 (6.87) 9.49 (6.39) 9.44

CH
4

13.99 (9.46) 14.34 (10.99) 14.78 (15.71) 14.34 (11.08) 14.26 (10.60) 14.40
Cl

2
11.48 (7.28) 11.78 (8.69) 12.14 (13.02) 11.77 (8.77) 11.70 (8.29) 11.49

ClF 12.47 (7.83) 12.84 (9.44) 13.35 (14.33) 12.83 (9.53) 12.76 (8.04) 12.77
CO 13.45 (9.06) 14.01 (10.74) 14.88 (15.91) 13.99 (10.88) 13.91 (10.34) 14.01
CO

2
13.31 (9.08) 13.73 (10.69) 14.34 (15.77) 13.65 (10.76) 13.64 (10.29) 13.78

CS 10.92 (7.38) 11.53 (8.89) 12.51 (13.55) 11.49 (9.02) 11.40 (8.49) 11.33a

F
2

14.90 (9.42) 15.51 (11.73) 16.34 (18.87) 15.42 (11.82) 15.40 (11.33) 15.70
H

2
CO 10.38 (6.25) 10.85 (7.84) 11.43 (12.82) 10.78 (7.97) 10.74 (7.44) 10.89

H
2
O 11.81 (7.23) 12.37 (9.04) 12.91 (14.67) 12.31 (9.12) 12.24 (8.63) 12.62a

H
2
O

2
10.96 (6.43) 11.47 (8.29) 12.13 (14.06) 11.40 (8.40) 11.36 (7.88) 11.70

HCl 12.54 (8.03) 12.84 (9.48) 13.12 (13.93) 12.85 (9.54) 12.76 (9.08) 12.74a

HCN 13.30 (9.02) 13.63 (10.39) 13.96 (14.54) 13.60 (10.40) 13.55 (9.99) 13.71
HF 15.14 (9.64) 15.72 (11.80) 16.28 (18.52) 15.65 (11.86) 15.60 (11.39) 16.12
HOCl 10.93 (6.61) 11.32 (8.18) 11.84 (12.97) 11.28 (8.29) 11.23 (7.79) 11.12a

Li
2

5.03 (3.23) 5.29 (3.80) 5.39 (5.55) 5.29 (3.87) 5.14 (3.43) 5.11a

LiF 9.97 (6.07) 10.85 (7.88) 11.45 (13.74) 10.79 (7.95) 10.66 (7.47) 11.30a

LiH 6.58 (4.35) 7.57 (5.42) 8.29 (8.86) 7.51 (5.53) 7.26 (5.02) 7.90a

N
2

14.95 (10.29) 15.54 (12.20) 17.23 (17.80) 15.48 (12.34) 15.43 (11.80) 15.58
N

2
H

4
9.28 (5.28) 9.72 (6.80) 10.24 (11.55) 9.68 (6.92) 9.62 (6.40) 8.98

Na
2

4.73 (3.13) 4.86 (3.60) 4.88 (5.04) 4.89 (3.72) 4.78 (3.24) 4.89a

NaCl 8.30 (5.23) 9.12 (6.48) 9.49 (10.47) 9.09 (6.53) 8.93 (6.08) 9.80
NH

3
10.20 (6.16) 10.72 (7.71) 11.26 (12.55) 10.68 (7.80) 10.59 (7.31) 10.82

P
2

10.44 (7.11) 10.62 (8.09) 10.76 (11.06) 10.63 (8.12) 10.56 (7.70) 10.62
PH

3
10.46 (6.73) 10.70 (7.88) 10.94 (11.45) 10.73 (7.99) 10.63 (7.49) 10.59

SH
2

10.26 (6.29) 10.53 (7.55) 10.76 (11.40) 10.55 (7.62) 10.45 (7.15) 10.50
Si

2
H

6
10.45 (7.18) 10.71 (8.28) 11.06 (11.75) 10.78 (8.40) 10.64 (7.90) 10.53

SiH
4

12.44 (8.52) 12.82 (9.86) 13.32 (14.03) 12.83 (9.97) 12.72 (9.46) 12.30
SiO 11.09 (7.49) 11.51 (8.84) 12.10 (12.75) 11.47 (8.94) 11.41 (8.44) 11.49
SO

2
11.96 (8.08) 12.44 (9.61) 13.15 (14.39) 12.39 (9.75) 12.34 (9.22) 12.50

ME (eV) -0.42 (-4.29) 0.00 (-2.87) 0.49 (1.50) -0.02 (-2.78) -0.10 (-3.27) –
MAE (eV) 0.44 (4.29) 0.19 (2.87) 0.51 (1.50) 0.21 (2.78) 0.22 (3.27) –
MRE(%) -3.68 (-37.98) 0.15 (-25.51) 4.31 (13.00) -0.02 (-24.70) -0.86 (-29.22) –
MARE(%) 3.96 (37.98) 1.78 (25.51) 4.49 (13.00) 1.96 (24.70) 2.03 (29.22) –
a The NIST computational chemistry database97 does not report the VIP but the ionization potential.
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Figure 7: (Color online) The matrix elements of Vxc, Σx and Σc(E
QP
nkσ) evaluated on the

HOMO eigenstate, for different choices of the exchange and correlation potential (see Tab. 2).
The bottom panel reports the QP correction, i.e. the difference EQP

nkσ−εnkσ (see Eq.s (5), (9)-
(10)).

Table 4: Vertical ionization potential (VIP, eV) of open shell molecules. Experimental values
are taken from the NIST computational chemistry database.97 Each column reports the VIP
obtained with the West code by performing G0W0 calculations starting from the solutions
of the Kohn-Sham equations with the exchange and correlation potential (LDA or PBE),
specified within parentheses on the first row. In parentheses we report the absolute value of
the HOMO energy prior to the application of G0W0 corrections.

Molecule spin G0W0(LDA) G0W0(PBE) Exp.
CF 0.5 8.92 (4.68) 8.69 (4.72) 9.55
NF 1.0 12.18 (7.14) 11.81 (7.05) 12.63
NO

2
0.5 10.82 (6.63) 10.46 (6.55) 11.23

O
2

1.0 12.11 (6.92) 11.67 (6.87) 12.33
S

2
1.0 9.53 (5.86) 9.34 (5.82) 9.55
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Figure 8: (Color online) Comparison between calculated and experimental vertical ionization
potential (VIP) for the set of 36 closed-shell molecules listed in Tab. 3. Dots (crosses) refer
to VIPs obtained at the G0W0 (DFT) level of theory.
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Figure 9: (Color online) Difference between the solution of Eq. (5) using a secant algorithm
and employing the first order Taylor expansion of Eq. (68).
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Figure 10: (Color online) The spectral function A(ω) (see text) for the thiophene molecule
(C4H4S). The peaks reported in the middle panel are located at the measured ionization
potentials.106 The top (bottom) panel shows the spectral functions obtained at the G0W0

(DFT) level of theory, using the PBE0 exchange and correlation potential. The width of the
peaks is set equal to 0.01 eV, except for the top panel where electronic lifetimes are computed
as imaginary part of the self-energies.
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3.2 Electronic structure of crystalline, amorphous and aqueous sys-

tems

We considered three crystalline systems Si, SiC and AlAs, one amorphous Si3N4, and one

liquid water snapshot. The KS electronic structure was computed using super cells and the

Γ point: 64 atoms and 256 valence electrons for Si, SiC and AlAs, with cell edges of 20.53,

16.48 and 21.34 bohr, respectively; the amorphous Si3N4 sample consisted of 56 atoms and

256 electrons. For Si, SiC, AlAs and amorphous Si3N4 we used a kinetic energy cutoff of

60Ry. The snapshot of 64 water molecules is taken from a 20 ps trajectory of a Born-

Oppenheimer ab initio molecular dynamics simulation of liquid water (see Ref. [41]); and it

was described with a cutoff of 85Ry. In our G0W0 calculations for condensed systems we

used Npdep = 1024.

The QP energies of the crystalline solids at high symmetry k-points are reported in Table 5, 6

and 7, where KS energies are given within brackets. The results obtained with West compare

well with those of other plane wave pseudopotential calculations and with experiments.

The QP corrections of amorphous Si3N4 and liquid water are reported in Fig. 11, where

again we found that the West results compare well with those of existing calculations41,107

and experiments.108

Table 5: Quasiparticle (QP) energies of Si at high symmetry points, compared with previous
calculations and experiment.

k-point G0W0(LDA) G0W0(PBE) Theo. Exp.
L1c 2.26 (1.47) 2.29 (1.59) 2.21a , 2.14c , 2.18d , 2.13e , 2.19f , 2.05g 2.1j , 2.4±0.1k

L′
3v -1.25 (-1.20) -1.21 (-1.20) -1.23a , -1.17c , -1.20d , -1.25e , -1.25f , -1.16g -1.2±0.2h

Γ15c 3.35 (2.54) 3.32 (2.55) 3.25a , 3.24b , 3.24c , 3.23d , 3.25e , 3.36f , 3.09g 3.40h , 3.05i

Γ′
25v 0.0 (0.0) 0.0 (0.0) 0.0 0.0

X1c 1.44 (0.63) 1.37 (0.72) 1.36a , 1.41b , 1.34c , 1.35d , 1.31e , 1.43f , 1.01g 1.3h , 1.25i

X4v -2.92 (-2.87) -2.96 (-2.85) -2.88a , -2.80b , -2.80c , -2.83d , -2.96e , -2.93f , -2.90g -2.90l , -3.3±0.2m

a Ref. [40], b Ref. [55], c Ref. [87], d Ref. [109], e Ref. [104], f Ref. [110], g Ref. [111],
h Ref. [112], i Ref. [113], j Ref. [114], k Ref. [115], l Ref. [116], m Ref. [117]
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Table 6: Quasiparticle (QP) energies of SiC at high symmetry points, compared with previous
calculations and experiment.

k-point G0W0(LDA) G0W0(PBE) Theo. Exp.
L1c 6.46 (5.15) 6.37 (5.19) 6.43a , 6.30b , 6.45c 6.35d

L3v -1.18 (-1.09) -1.16 (-1.06) -1.10a , -1.21b -1.15d

Γ1c 7.42 (6.29) 7.52 (6.29) 7.26a , 7.19b , 7.23c 7.4e

Γ′
15v 0.0 (0.0) 0.0 (0.0) 0.0 0.0

X1c 2.45 (1.29) 2.28 (1.35) 2.31a , 2.19b , 1.80c 2.39d , 2.42d

X5v -3.46 (-3.25) -3.46 (-3.19) -3.47a , -3.53b -3.6d

a Ref. [40], b Ref. [109], c Ref. [111], d Ref. [112], e Ref. [118]

Table 7: Quasiparticle (QP) energies of AlAs at high symmetry points, compared with
previous calculations and experiment.

k-point G0W0(LDA) G0W0(PBE) Theo. Exp.
L1c 3.08 (2.15) 2.94 (2.15) 3.02a , 2.84b , 2.99c 2.36e

L3v -0.86 (-0.80) -0.90 (-0.84) -0.9a , -0.87b -

Γ1c 3.15 (2.20) 2.99 (2.23) 2.96a , 2.74b , 2.72c 3.13d

Γ′
15v 0.0 (0.0) 0.0 (0.0) 0.0 0.0

X1c 2.20 (1.35) 2.01 (1.37) 2.13a , 2.16b , 1.57c 2.23d

X5v -2.25 (-2.15) -2.35 (-2.21) -2.20a , -2.27b -2.41d

b Ref. [40], b Ref. [109], b Ref. [111], b Ref. [112], a Ref. [119]
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Figure 11: (Color online) Quasiparticle (QP) corrections for a configuration of amorphous
Si3N4 (left panel) and liquid water at ambient conditions (right panel).
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4 Large scale calculations

The method discussed in Sec. 2, implemented in the West code and validated in Sec. 3 may

be used to perform highly parallel G0W0 calculations and tackle large systems, with > 1000

of valence electrons in the unit cell. We discuss the performance of the method for both

finite and periodic systems, in particular for Si nanocrystals and interfaces of functionalized

Si surfaces and water, with up to 1344 and 1560 valence electrons in the unit cell, respectively.

4.1 Silicon nanocrystals

We considered four Si-NCs: Si35H36 (1.3 nm), Si87H76 (1.6 nm), Si147H100 (1.9 nm), and

Si293H172 (2.4 nm).120 The structure of each NCs was obtained by carving out of bulk Si

a sphere of Si atoms of given radius, by terminating all dangling bonds with H atoms and by

relaxing the NC structure within DFT-PBE. A kinetic energy cutoff of 25Ry, PBE norm-

conserving pseudopotentials and a cubic cell of edge 90 bohr were used. The computed

HOMO and LUMO energies and the energy gap (Egap) are reported in Table 8. The HOMO

and LUMO energies referred to vacuum were obtained using the Makov-Payne121 method.

For each Si-NCs we considered Npdep = 2048. PDEP eigenvalues are reported in Fig. 12 and

they clearly show that the only difference between Si-NCs of different size appears for the

most screened eigenpotentials. As discussed in Sec. 2.3, the PDEP eigenvalues of the least

screened eigenpotentials are weakly affected by the microscopic structure of the system and

may likely be predicted by model screening functions. The computed G0W0 energy gaps for

Si35H36, Si87H76, Si147H100 and Si293H172 are 6.29, 4.77, 4.20 and 3.46 eV, respectively. These

results are in good agreement with those of other recent calculations using MBPT or ∆SCF

method.,122 although our computed HOMO and LUMO energies differ slightly from those

reported in Ref. [122].
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4.2 Solid/liquid interfaces

We now turn to discuss QP energies of extended, large systems. We considered two solid/liquid

interfaces: H−Si/H2O and COOH−Si/H2O, that were recently studied by T.A. Pham et

al.123 to align band edges of functionalized Si(111) surfaces with water reduction and oxida-

tion potentials. The orthorombic unit cell (Lx × Ly × Lz) of each system was obtained by

interfacing 108 water molecules with 72 Si atoms and by terminating the solid surface exposed

to water with 24 H atoms or 24 COOH groups, resulting in a (21.97× 25.37× 63.19) bohr3

supercell with 1176 valence electrons and a (21.97× 25.37× 67.53) bohr3 supercell with 1560

valence electrons for H−Si/H2O and for COOH−Si/H2O, respectively. Both interface ge-

ometries were extracted from a ∼ 30 ps trajectory of a Car-Parrinello molecular dynamics

simulation of the interface where all water molecules and atoms of the semiconductor surfaces

were allowed to move (see Ref. [123]).124 Side views of the unit cells are shown in Fig. 13,

top panels. The KS electronic structure of both systems was obtained at the PBE level of

theory using 85Ry for the kinetic energy cutoff. The local density of states (LDOS) was

obtained from the wavefunctions ψn and energy levels εn as

LDOS(z, E) =
∑

n

∫

dx

Lx

∫

dy

Ly

|ψn(x, y, z)|2 δ(E − εn) (69)

where z is the axis perpendicular to the interface and δ is the Dirac delta function. The

LDOS of both systems, obtained at the PBE level of theory, is reported in Fig. 13, middle

panels. Those at G0W0 level, obtained by replacing the KS energies with QP energies in

Eq. (69), are shown in Fig. 13, bottom panels. The figures show that the method developed in

Sec. 2 can be successfully used to compute the positions of the valence and conduction band

edges of a realistic interface and hence to define an electronic thickness of the interface, by

analyzing how the bulk eigenvalues are modified in proximity of the interface. The method

can of course be used for systems with impurity levels and to investigate semiconductor

surfaces interfaced with aqueous solutions containing ions and to study the influence of ions
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5 Conclusions

We presented a formulation of the GW method for large scale calculations carried out with

the plane-wave pseudopotential method. The evaluation of polarizabilities and electronic

self-energies does not require the explicit computation of virtual states. Polarizabilities and

dielectric matrices were represented with a basis set composed of the eigenstates of the di-

electric matrix at zero frequency, obtained using iterative procedures. In the calculation

of the correlation self-energy we avoided the use of the analytic continuation and carried

out the frequency integration by means of a contour deformation technique. In addition

we presented a parallel implementation of the method that allowed us to compute the elec-

tronic properties of large nanostructures and of solid/liquid interfaces. The method is not

restricted to DFT inputs obtained with semi-local functionals but can be used in conjunction

with DFT calculations with hybrid functionals.

We presented a validation of the method for molecules (open and closed shell) and solids

(both crystalline and amorphous) and found good agreement with data previously appeared

in the literature for converged calculations. We then applied our technique to silicon nanopar-

ticles (up to a diameter of 2.4 nm) and solid/liquid interfaces (with up to 1560 valence

electrons in the unit cell). We showed that it is now possible to carry out many body per-

turbation theory calculation of realistic slabs representing a semiconductor/water interface

and to study in detail the modification of the bulk states at the interfaces and hence define

an electronic thickness of the interface. Work is in progress to couple our GW calculations

with ab initio molecular dynamics simulations of realistic materials, and to include finite

temperature and statistical effects in our MBPT calculations.
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