
08/05/2024 08:55

Spot the Difference: A Novel Task for Embodied Agents in Changing Environments / Landi, Federico;
Bigazzi, Roberto; Cornia, Marcella; Cascianelli, Silvia; Baraldi, Lorenzo; Cucchiara, Rita. - 2022-:(2022), pp.
4182-4188. (Intervento presentato al convegno International Conference on Pattern Recognition tenutosi
a Montréal Québec nel August 21-25, 2022) [10.1109/ICPR56361.2022.9956538].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

Spot the Difference: A Novel Task for
Embodied Agents in Changing Environments

Federico Landi, Roberto Bigazzi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, Rita Cucchiara
University of Modena and Reggio Emilia

Email: {name.surname}@unimore.it

Abstract—Embodied AI is a recent research area that aims
at creating intelligent agents that can move and operate inside
an environment. Existing approaches in this field demand the
agents to act in completely new and unexplored scenes. However,
this setting is far from realistic use cases that instead require
executing multiple tasks in the same environment. Even if the
environment changes over time, the agent could still count on
its global knowledge about the scene while trying to adapt its
internal representation to the current state of the environment. To
make a step towards this setting, we propose Spot the Difference:
a novel task for Embodied AI where the agent has access to
an outdated map of the environment and needs to recover the
correct layout in a fixed time budget. To this end, we collect a
new dataset of occupancy maps starting from existing datasets
of 3D spaces and generating a number of possible layouts for a
single environment. This dataset can be employed in the popular
Habitat simulator and is fully compliant with existing methods
that employ reconstructed occupancy maps during navigation.
Furthermore, we propose an exploration policy that can take
advantage of previous knowledge of the environment and identify
changes in the scene faster and more effectively than existing
agents. Experimental results show that the proposed architecture
outperforms existing state-of-the-art models for exploration on
this new setting.

I. INTRODUCTION

Imagine you have just bought a personal robot, and you
ask it to bring you a cup of tea. It will start roaming around
the house while looking for the cup. It probably will not come
back until some minutes, as it is new to the environment. After
the robot knows your house, instead, you expect it to perform
navigation tasks much faster, exploiting its previous knowl-
edge of the environment while adapting to possible changes
of objects, people, and furniture positioning. Embodied AI has
recently gained a lot of attention from the research community,
with amazing results in challenging tasks such as visual explo-
ration [1], [2], [3] and navigation [4], [5], [6], [7]. However, in
the current setting, the environment is completely unknown to
the agent as a new episode begins. We believe that this choice
is not supported by real-world experience, where information
about the environment can be stored and reused for future
tasks. As agents are likely to stay in the same place for long
periods, such information may be outdated and inconsistent
with the actual layout of the environment. Therefore, the agent
also needs to discover those differences during navigation. In
this paper, we introduce a new task for Embodied AI, which
we name Spot the Difference. In the proposed setting, the
agent must identify all the differences between an outdated
map of the environment and its current state – a challenge

Original Map Sample Manipulated Maps

Fig. 1. Generation of alternative states of an environment: original and sample
manipulated semantic maps.

that combines visual exploration using monocular images and
embodied navigation with spatial reasoning. To succeed in this
task, the agent needs to develop efficient exploration policies
to focus on likely changed areas while exploiting priors about
objects of the environment. We believe that this task could
be useful to train agents that will need to deal with changing
environments.

Recent work on Embodied AI has tackled the training
of embodied agents capable of navigating and locating ob-
jects [8], [5], [6], [9]. One of the key factors for success in
the field consists in building map representations in which
knowledge about the environment can be stored while the
agent proceeds [10], [4]. However, the dominant training and
evaluation protocol involves an agent initialized from scratch
that sees the environment for the first time [11]. Another line
of work [12], [13], [1], [14], [15], [3], instead, introduces a
mapping phase of the environment to increase the performance
on both exploration and down-stream tasks. Unfortunately, if
the environment changes over time, the agent needs to rebuild
a full representation from scratch and cannot count on an
efficient policy to update its internal representation of the
environment. In this work, we simulate the natural evolution
of an environment and design a specific policy to navigate in

changing environments seamlessly.
Due to the high cost of 3D acquisitions from the real world,

the existing datasets of photorealistic 3D spaces [16], [17]
do not contain different layouts for the same environment.
In this paper, we create a reproducible set-up to generate
alternative layouts for an environment. We semi-automatically
build a dataset of 2D semantics occupancy maps in which
the objects can be removed and rearranged while the area
and the position of architectural elements do not change
(Fig. 1). In the proposed setting, the agent is deployed in an
interactive 3D environment and provided with a map from our
produced dataset, which represents the information retained
while performing tasks in a past state of the environment.

To train agents that can deal with changing environments
efficiently, we develop a novel reward function and an ap-
proach for navigation aiming at finding relevant differences
between the previous layout of the environment and the current
one. Our method is based on the recent Active Neural SLAM
paradigm proposed in [10] and [4]. Differently from previous
proposals, though, it can read and update the given map to
identify relevant differences in the environment in the form
of their projections on the map. Our dataset and architecture
can be employed with the Habitat simulator [18], a popular
research platform for Embodied AI that renders photorealistic
scenes and that enables seamless sim-to-real deployment of
navigation agents [19], [20]. Experimental results show that
our approach performs better than existing state-of-the-art
architectures for exploration in our newly-proposed task. We
also compare with different baselines and evaluate our agent
in terms of percentage of area seen, percentage of discovered
differences, and metric curves at varying exploration time bud-
gets. The new dataset, together with our code and pretrained
models, is available at this link.

II. RELATED WORK

Current research directions on Embodied AI for naviga-
tion agents can be categorized according to the quantity of
knowledge about the environment provided to the agent prior
to performing the task [11]. The first direction focuses on
the scenario in which the agent is deployed in a completely
new environment for which it has no prior knowledge [21],
[10], [14]. Running exploration in parallel with a target-
driven navigation task resulted in an effective approach to
solve the latter (e.g., object-goal navigation [5] and point-
goal navigation [4]). Other directions consider the case in
which the agent can exploit pre-acquired information about
the environment [22], [23] when performing a navigation task.
Such pre-acquired information can be either partial [24], [25],
[26] or complete [12], [8], [1]. A major limitation of such
approaches is that the obtained map representation is assumed
to conform perfectly with the environment where the down-
stream task will be performed.

In this work, we explore a fourth direction, in which the
pre-acquired map provided to the agent is incomplete or
incorrect due to changes occurred in the environment over
time. Common strategies to deal with changing environments

TABLE I
NUMBER OF MANIPULATED MAPS GENERATED PER DATASET SPLIT.

Dataset Split Semantic Classes Scans Generated SOMs Episodes

MP3D Train 42 58 2070 ≈ 4.5M
MP3D Validation 42 9 160 320
MP3D Test 42 14 260 610
Gibson Validation 20 5 130 450

entail disregarding dynamic objects as landmarks when per-
forming SLAM [27], [28] and applying local policies to
avoid them when navigating [29]. An alternative strategy is
learning to predict geometric changes based on experience,
as done in [30], where the environment is represented as a
traversability graph. The main limitation of this strategy is
its computational intractability when considering dense metric
maps of wide areas, as in our case.

III. PROPOSED SETTING

In the first part of this section, we introduce a new task
for embodied agents, named Spot the Difference. We then
describe the newly-proposed dataset that we create to enable
this setting. Finally, we propose an architecture for embodied
agents to tackle the defined task.

A. Spot the Difference: Task Definition

At the beginning of an episode, the agent is spawned in a
3D environment and is given a pre-built occupancy map M ,
representing its spatial knowledge of the environment, i.e. a
previous state of the environment that is now obsolete:

M = (mij) ∈ [0, 1], 0 ≤ i, j < W, (1)

where mij represents the probability of finding an obstacle
at coordinates (i, j). The task entails exploring the current
environment to recognize all the differences with respect to
the state in which M was computed, in the form of free and
occupied space. To accomplish the task, the agent should build
a correct occupancy map of the current environment starting
from M , recognizing and focusing on parts that are likely
to change (e.g., the middle of wide rooms rather than tight
corridors).

For every episode of Spot the Difference, the agent is given a
time budget of T time-steps. At time t = 0, the agent holds the
starting map representation M . At each time-step t, the map
is updated depending on the current observation to obtain Mt.
Whenever the agent discovers a new object or a new portion
of free space, the internal representation of the map changes
accordingly. The goal is to gather as much information as
possible about changes in the environment by the end of the
episode. To measure the agent performance, we compare the
final map MT produced by the agent with the ground-truth
occupancy map M∗. In this sense, the paradigm we adopt is
the one of knowledge reuse starting from partial knowledge.

B. Dataset Creation

Semantic Occupancy Map. Given a 3D environment, we
place the agent in a free navigable location with heading

https://github.com/aimagelab/spot-the-difference

RGB

Depth

Mapper

Pose Estimator

Global Policy

Planner

Local Policy

Exploration
Reward

Difference
Reward

Local
Reward

spotted differences

differences to be found

static

occupied space

Fig. 2. Overview of the proposed approach for navigation in changing environments.

θ = 0° (facing eastward). We assume that the input consists
of a depth image and a semantic image and that the camera
intrinsics K are known. To build the Semantic Occupancy Map
(SOM) of an environment, we project each semantic pixel of
the acquired scene into a 2-dimensional top-down map: given
a pixel with image coordinates (i, j) and depth value di,j , we
first recover its coordinates (x, y, z) with respect to the agent
position. Then, we compute the corresponding (u, v) pixel in
map through an orthographic projection, using the information
about the agent position and heading:xy

z

 = di,jK
−1

ij
1

 , and

u
v
0
1

 = Pv

x
y
z
1

 . (2)

We perform the same operation after rotating the agent by
∆θ = 30° until we perform a span from 0° to 180°. To
cover the whole scene, we repeat this procedure placing
the agent at a distance of 0.5m from the previous capture
point, following the axis directions. The agent elevation is
instead kept fixed. During this step, we average the results of
subsequent observations of overlapping portions of space.

After the acquisition, we obtain a SOM with C channels,
where each pixel corresponds to a 5cm×5cm portion of space
in the 3D environment. For each channel c ∈ {0, ..., C}, the
map values represent the probability that the corresponding
portion of space is occupied by an object of semantic class c.
Multiple Semantic Occupancy Maps for the Same En-
vironment. The SOMs obtained in the previous step can
be seen as one possible layout for the corresponding 3D
environments. In order to create a dataset with different states
(i.e. different layouts) of the same environment, instead of
manipulating the real-world 3D scenes (changing the furniture
position, removing chairs, etc.), we propose to modify the
SOM to create a set of plausible and different layouts for
the environment.

First, we isolate the objects belonging to each semantic
category by using an algorithm for connected component
labeling [31], [32], [33]. Then, we sample a subset of objects
to be deleted from the map and a subset of objects to be
re-positioned in a different free location of the map. During

sampling, we consider categories that have a high probability
of being displaced or removed in the real world and ignore
non-movable semantic categories such as fireplaces, columns,
and stairs. After this step, we obtain a new SOM representing
a possible alternative state for the environment, which could
be very different from the one in which the 3D acquisition
was taken. Sample manipulated maps can be found in Fig. 1.
Dataset Details. To generate alternative SOMs, we start from
the Matterport 3D (MP3D) dataset of spaces [16], which
comprises 90 different building scans, and is enriched with
dense semantic annotations. We consider each floor in the
building and compute the SOM for that floor. For each map,
we create 10 alternative versions of that same environment.
In this step, we discard the floors that have few semantic
objects (e.g., empty rooftops) or that are not fully navigable
by the agent. As a result, we retain 249 floors belonging to 81
different buildings, thus generating a total of 2490 different
semantic occupancy maps for these floors. Finally, we split
the dataset into train, validation, and test subsets.

As an additional test bed, we also build a set of out-of-
domain maps (13 floors from 5 spaces) taken from the Gibson
dataset [17], enriched with semantic annotations from [34],
and manipulated as done for the MP3D dataset. For each SOM,
multiple episodes are generated by selecting different starting
points. More information about our dataset can be found in
Table I and in the supplementary material.

C. Agent Architecture

Our model for embodied navigation in changing environ-
ments comprises three major components: a mapper module,
a pose estimator, and a navigation policy (which, in turn,
consists of a global policy, a planner, and a local policy).
An overview of the proposed architecture is shown in Fig. 2
and described below, while additional details can be found in
the supplementary material. Although the data we provide is
enriched with semantic labels, our agent does not make use of
such information directly. This is in line with current state-of-
the-art architectures for embodied exploration that we choose
as competitors.
Mapper. The mapper module takes as inputs an RGB obser-
vation ort and the corresponding depth image odt , representing

the first-person view of the agent at time-step t, and outputs
the agent-centric occupancy map vt of a V × V region
in front of the camera. Each pixel in vt corresponds to a
25mm×25mm portion of space and consists of two channels
containing the probability of that cell being occupied and
explored, respectively. As a first step, we encode ort using
the first two blocks of ResNet-18 pre-trained on ImageNet,
followed by a three-layer CNN. We project the depth image
odt using the camera intrinsics [12] and obtain a preliminary
map for the visible occupancy. We name the obtained feature
representations ôrt and ôdt , respectively. We then encode the
two feature maps using a U-Net [35]:

fµ(ô
r
t , ô

d
t) = U-Netenc(ô

r
t , ô

d
t , µ), (3)

and decode the 2× V × V matrix of probabilities as:

vt = σ(U-Netdec(fµ(ô
r
t , ô

d
t), ϕ)), (4)

where µ and ϕ represent the learnable parameters in the U-
Net encoder and decoder, respectively, and σ is the sigmoid
activation function. The computed agent-centric occupancy
map vt is then registered in the global occupancy map Mt−1

coming from the previous time-step to obtain Mt. To that
end, we use a geometric transformation to project vt in
the global coordinate system, for which we need a triple
(x, y, θ) corresponding to the agent position and heading in the
environment. This triple is estimated by a specific component
that tracks the agent displacements across the environment, as
discussed in the following paragraph.
Pose Estimator. The agent can move across the environment
using three actions: go forward 0.25m, turn left 10°, turn
right 10°. Since each action may produce a different out-
come because of physical interactions with the environment
(e.g., bumping into a wall) or noise in the actuation system,
the pose estimator is used to estimate the real displacement
made at every time-step. We estimate the agent displacement
(∆xt,∆yt,∆θt) at time-step t by using two consecutive RGB
and depth observations, as well as the agent-centric occupancy
maps (vt−1, vt) computed by the mapper at t− 1 and t. The
actual agent position (xt, yt, θt) is computed iteratively as:

(xt, yt, θt) = (xt−1, yt−1, θt−1) + (∆xt,∆yt,∆θt). (5)

We assume that the agent starting position is the triple
(x0, y0, θ0) = (0, 0, 0).
Global Policy, Planner, and Local Policy. The sampling of
atomic actions for the exploration relies on a three-component
hierarchical policy. The first component is the global policy,
which samples a long-term global goal on the map. The global
policy outputs a probability distribution over discretized loca-
tions of the global map. We sample the global goal from this
distribution and then transform it in (x, y) global coordinates.
The second component is a planner module, which employs
the A* algorithm to decode a local goal on the map. The local
goal is an intermediate point, within 0.25m from the agent,
along the trajectory towards the global goal. The last element
of our navigation module is the local policy, which decodes

the series of atomic actions taking the agent towards the local
goal. In particular, the local policy is an RNN decoding the
atomic action at to execute at every time-step. The reward
rlocalt given to the local policy is proportional to the reduction
in the Euclidean distance d between the agent position and the
current local goal:

rlocalt = dt − dt−1. (6)

Following the hierarchical structure, a global goal is sam-
pled every N time-steps. A new local goal is computed if a new
global goal is sampled, if the previous local goal is reached,
or if the local goal location is known to be not traversable.
Exploiting Past Knowledge for Efficient Navigation. The
global policy is trained using a two-term reward. The first term
encourages exhaustive exploration and is proportional either
to the increase of area-coverage [12] or to the increase of
anticipated map accuracy as in [4]. Intuitively, the agent strives
to maximize the portion of the seen area and thus maximizes
the knowledge gathered during exploration. Moreover, since
we consider a setting where a significant amount of knowledge
is already available to the agent, we add a reward term to
guide the agent towards meaningful points of the map. These
correspond to the coordinates where major changes are likely
to happen.

Given the occupancy map of the agent at time t, Mt, the
true occupancy map for the same environment M∗, and a time
budget of T time-steps for exploration, we aim to minimize
the following, for 0 < t ≤ T :

D =
∑

1[Mt ̸= M∗] (7)

In other words, we want to maximize the number of pixels in
the online reconstructed map Mt that the agent correctly shifts
from free to occupied (and vice-versa) during exploration. This
leads to the reward term for difference discovery:

rdiff =
∑

1[Mt = M∗]−
∑

1[Mt−1 = M∗]. (8)

The proposed reward term is designed to encourage nav-
igation towards areas in the map that are more likely to
contain meaningful differences (e.g., rooms containing more
objects that can be displaced or removed from the scene).
Additionally, an agent trained with this reward will tend to
avoid difficult spots that are likely to produce a mismatch in
terms of the predicted occupancy maps. This is because errors
in the mapping phase would result in a negative reward.

To train our model, we combine a reward promoting explo-
ration and the more specific reward on found differences to
exploit semantic clues in the environment:

rglobalt = β1rexp + β2rdiff (9)

where rexp is the reward term encouraging task-agnostic explo-
ration (such as coverage-based or anticipation-based rewards,
as described in the next section), and β1 and β2 are two
coefficients weighing the importance of the two elements.

TABLE II
EXPERIMENTAL RESULTS ON MP3D TEST SET. THE AGENT INCORPORATING THE PROPOSED REWARD TERM FOR DISCOVERED DIFFERENCES

OUTPERFORMS THE COMPETITORS ON THE MAIN METRICS FOR THE NOVEL SPOT THE DIFFERENCE TASK.

Estimated Localization Oracle Localization

Seen[%] Acc. IoU+ IoU− IoU mAcc. mIoU+ mIoU− mIoU Seen[%] Acc. IoU+ IoU− IoU mAcc. mIoU+ mIoU− mIoU

OccAnt 52.1 26.2 13.4 6.1 11.5 51.1 19.1 8.3 15.8 49.0 35.6 26.5 16.1 24.8 77.8 49.2 23.6 43.2

DR 49.4 29.3 15.3 8.7 13.9 59.7 23.1 11.9 20.2 48.6 37.4 27.2 18.4 26.5 80.1 49.8 27.4 45.8
AR 43.8 30.6 19.7 12.9 18.8 72.5 36.8 18.4 32.7 43.6 32.5 23.2 17.5 23.0 78.7 47.5 26.7 44.5
CR 53.2 33.1 18.1 9.6 16.1 65.2 26.4 12.7 22.6 52.8 39.2 29.6 18.8 28.0 78.5 51.0 26.6 45.7

AR+DR 51.4 34.5 20.9 12.0 19.3 71.5 33.9 16.2 30.0 51.4 37.8 27.3 18.0 26.2 79.3 48.9 25.8 44.4
CR+DR 52.3 37.8 24.2 14.8 22.7 76.2 39.1 19.8 34.8 51.8 40.3 29.2 19.2 28.1 82.1 50.4 26.9 46.2

IV. EXPERIMENTS AND RESULTS

In this section, we detail our experimental setting and
show experimental results for our new proposed task. Further
analysis can be found in the supplementary material.
Evaluation Metrics. To evaluate the performance in Spot the
Difference, we consider three main classes of metrics. First, we
consider the percentage of navigable area in the environment
seen by the agent during the episode (Seen[%]). Then, we
evaluate the percentage of elements that have been correctly
detected as changed in the occupancy map (Acc.) and the
pixel-wise Intersection over Union for the changed occupancy
map elements (IoU). Besides, we evaluate the task as a two-
class problem and compute the IoU score for objects that
were added in place of free space (IoU+) and for objects that
were deleted during the map creation (IoU−). In addition, to
evaluate the performance independently from the exploration
capability, we propose to compute the metrics only on the
portion of space that the agent actually visited (mAcc., mIoU,
mIoU+, and mIoU−)
Implementation Details. We conduct our experiment using
Habitat [18], a popular platform for Embodied AI in photo-
realistic indoor environments [17], [16]. The agent observa-
tions are 128 × 128 RGB-D images from the environment.
The learning algorithm adopted for training is PPO [36]. The
learning rate is 10−3 for the mapper and 2.5 × 10−4 for the
other modules. Every model is trained for ≈ 6.5M frames
using Adam optimizer [37]. A global goal is sampled every
N = 25 time-steps. The local and global policies are updated,
respectively, every N and 20×N time-steps, and the mapper
is updated every 4×N time-steps. The size of the local map
is V = 101, while the global map size is set to W = 2001 for
MP3D and to W = 961 for Gibson. The global policy action
space size G is 240. The reward coefficients {β1, β2} are set
to {1, 10−2} and {1, 10−1} when the exploration reward is
based on coverage and anticipation reward, respectively. The
length of each episode is fixed to T = 1000 time-steps.
Competitors and Baselines. We consider the following com-
petitors and variants of the proposed method on two different
setups: one where the agent position is predicted by the agent
(as in Eq. 5), and one where it has access to oracle coordinates:
Difference Reward (DR): an exploration policy that maximizes
the correctly predicted changes between M and M∗. This
corresponds to setting β1 = 0 and β2 = 1 in Eq. 9.

Cumulative Acc. Cumulative IoU

E
st

im
at

ed
L

oc
al

iz
at

io
n

0 200 400 600 800 1000
Time-steps

0

10

20

30

40

Ac
c.

 [%
]

0 200 400 600 800 1000
Time-steps

0

5

10

15

20

25

30

Io
U

[%
]

O
ra

cl
e

L
oc

al
iz

at
io

n

0 200 400 600 800 1000
Time-steps

0

10

20

30

40

Ac
c.

 [%
]

0 200 400 600 800 1000
Time-steps

0

5

10

15

20

25

30

Io
U

[%
]

Fig. 3. Value of accuracy and IoU for the different models at varying time-
steps on the MP3D test set.

Coverage Reward (CR): an agent that explores the environ-
ment with an exploration policy that maximizes the covered
area and builds the occupancy map as it goes, as in [4].
Anticipation Reward (AR): an agent that explores the environ-
ment with an exploration policy that maximizes the covered
area and the correctly anticipated values in the occupancy map
built as it goes, from [4]. Our proposed approach consists of
an agent trained with the combination of the difference reward
with the coverage reward (CR+DR) or with the anticipation
reward (AR+DR).
Occupancy Anticipation (OccAnt): we also compare with the
agent presented by Ramakrishnan et al. [4] using the available
pre-trained models, referenced to as OccAnt. Note that OccAnt
was trained on the Gibson dataset for the standard exploration
task and without any prior map. Thus, it is not directly
comparable with the other methods considered. We include
it to gain insights into the performance of an off-the-shelf
state-of-the-art agent on our task.
Results on MP3D dataset. As a first testbed, we evaluate the
different agents on the MP3D Spot the Difference test set. We
report the results for this experiment in Table II.

We observe that the agent combining a reward based on
coverage and our reward based on the differences in the

TABLE III
EXPERIMENTAL RESULTS ON GIBSON VALIDATION SET.

Estimated Localization

Seen[%] Acc. IoU+ IoU− IoU mAcc. mIoU+ mIoU− mIoU

OccAnt 86.2 49.8 11.9 7.2 10.4 58.0 12.3 7.5 10.8

DR 86.2 53.2 13.2 8.5 11.7 63.7 13.9 8.8 12.3
AR 75.3 51.5 21.4 16.6 20.4 72.7 25.8 17.3 23.3
CR 85.9 57.6 16.7 11.9 15.4 71.3 18.6 12.3 16.7

AR+DR 83.4 58.7 20.0 14.9 19.0 75.8 23.0 15.6 21.1
CR+DR 82.1 60.1 24.0 19.0 23.1 78.5 27.8 19.9 25.9

environment (CR+DR) performs best on all the pixel-based
metrics and places second in terms of percentage of seen
area. It is worth noting that, even if the results in terms
of the area seen are not as high as the ones obtained by
the CR agent, the addition of our Difference Reward helps
the agent to focus on more relevant parts, and thus, it can
discover more substantial differences. Additionally, predictions
are more accurate and more precise, as indicated by the 4.7%
and 6.6% improvements in terms of Acc. and IoU with respect
to the CR competitor. Instead, a reward based on differences
alone is not sufficient to promote good exploration. In fact,
although the DR agent outperforms the CR and AR agents on
some metrics, our reward alone does not provide as much
improvement as when combined with rewards encouraging
exploration (as for CR+DR and AR+DR).

Even in the oracle localization setup, the CR+DR agent
achieves the best results. Interestingly, the gap with the CR
agent decreases to 1.1% and 0.1% in terms of Acc. and
IoU, respectively. This is because our CR+DR agent learns
to sample trajectories that can be performed more efficiently
and without accumulating a high positioning error. For this
reason, the performance boost given by the oracle localization
is lower. For both setups, our CR+DR agent outperforms the
state-of-the-art OccAnt agent for exploration on all the metrics.

Finally, in Fig. 3, we plot different values of Acc. and IoU
over different time-steps during the episodes. This way, we
can evaluate the whole exploration trend, and not only its final
point. We can observe that the proposed models incorporating
the difference reward outperform the competitors. In particular,
the CR+DR agent scores first by a significant margin. The
performance gap can be noticed even in the first half of the
episode and tends to grow with the number of steps.
Results on Gibson dataset. The environments from the
Gibson dataset [17] are generally smaller than those in MP3D,
and thus, they can be explored more easily and exhaustively.
We report the results for this experiment in Table III. Also in
this experiment, the CR+DR agent performs best on all the
metrics but the percentage of the area seen. Although CR+DR
explores 3.8% of the environment less than the CR agent, it
still overcomes the competitor by 2.5% and 7.7% in terms of
Acc. and IoU. The AR+DR agent is the second-best in terms
of Acc.. The OccAnt agent, instead, is competitive in terms of
area seen but achieves low Acc. and IoU metrics.
Qualitative Results. In Fig. 4, we report some qualitative
results. Starting from the left-most column, we present the

Starting Map CR CR+DR Ground-truth Map

Fig. 4. Qualitative results comparing the performances of the CR and CR+DR
agents for different episodes.

starting map given to the agent as the episode begins, the
results achieved by the CR agent, those of the proposed
CR+DR agent, and the ground-truth map. The differences
that the agents have correctly identified during the episode
are highlighted in red. As it can be seen, the CR+DR agent
can identify more differences than the CR counterpart, even in
small environments (top row). As the size of the environments
grows (bottom row), the performance gap increases and the
CR+DR agent outperforms its competitor.

V. CONCLUSION

In this work, we proposed Spot the Difference: a new task
for navigation agents in changing environments. In this novel
setting, the agent has to find all variations that occurred in the
environment with respect to an outdated occupancy map. Since
current datasets of 3D spaces do not account for such variety,
we collected a new dataset with different layouts for the same
environment. We tested two state-of-the-art exploration agents
on this task and proposed a novel reward term to encourage the
discovery of meaningful information during exploration. The
proposed agent outperforms the competitors and can identify
changes in the environment more efficiently. We believe that
the results presented in this paper motivate further research on
this new proposed setting for Embodied AI.

ACKNOWLEDGMENT

This work has been supported by “Fondazione di Modena”,
by the “European Training Network on PErsonalized Robotics
as SErvice Oriented applications” (PERSEO) MSCA-ITN-
2020 project (G.A. 955778), and by the “Artificial Intelligence
for Cultural Heritage (AI4CH)” project, co-funded by the Ital-
ian Ministry of Foreign Affairs and International Cooperation.

REFERENCES

[1] S. K. Ramakrishnan, D. Jayaraman, and K. Grauman, “An Exploration
of Embodied Visual Exploration,” arXiv preprint arXiv:2001.02192,
2020.

[2] R. Bigazzi, F. Landi, M. Cornia, S. Cascianelli, L. Baraldi, and
R. Cucchiara, “Explore and Explain: Self-supervised Navigation and
Recounting,” in Proceedings of the International Conference on Pattern
Recognition, 2020.

[3] R. Bigazzi, F. Landi, S. Cascianelli, L. Baraldi, M. Cornia, and R. Cuc-
chiara, “Focus on Impact: Indoor Exploration with Intrinsic Motivation,”
IEEE Robotics and Automation Letters, 2022.

[4] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman, “Occupancy Antic-
ipation for Efficient Exploration and Navigation,” in Proceedings of the
European Conference on Computer Vision, 2020.

[5] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov,
“Object Goal Navigation using Goal-Oriented Semantic Exploration,”
in Advances in Neural Information Processing Systems, 2020.

[6] J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee, “Beyond the
nav-graph: Vision-and-language navigation in continuous environments,”
Proceedings of the European Conference on Computer Vision, 2020.

[7] F. Landi, L. Baraldi, M. Cornia, M. Corsini, and R. Cucchiara,
“Multimodal Attention Networks for Low-Level Vision-and-Language
Navigation,” Computer Vision and Image Understanding, vol. 210, p.
103255, 2021.

[8] V. Cartillier, Z. Ren, N. Jain, S. Lee, I. Essa, and D. Batra, “Semantic
MapNet: Building Allocentric Semantic Maps and Representations from
Egocentric Views,” arXiv preprint arXiv:2010.01191, 2020.

[9] S. Wani, S. Patel, U. Jain, A. X. Chang, and M. Savva, “MultiON:
Benchmarking Semantic Map Memory using Multi-Object Navigation,”
in Advances in Neural Information Processing Systems, 2020.

[10] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning To Explore Using Active Neural SLAM,” in Proceedings of
the International Conference on Learning Representations, 2019.

[11] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al., “On evalu-
ation of embodied navigation agents,” arXiv preprint arXiv:1807.06757,
2018.

[12] T. Chen, S. Gupta, and A. Gupta, “Learning Exploration Policies for
Navigation,” in Proceedings of the International Conference on Learning
Representations, 2019.

[13] M. Luperto, M. Antonazzi, F. Amigoni, and N. A. Borghese, “Robot
exploration of indoor environments using incomplete and inaccurate
prior knowledge,” Robotics and Autonomous Systems, vol. 133, p.
103622, 2020.

[14] P. Karkus, S. Cai, and D. Hsu, “Differentiable SLAM-net: Learning
Particle SLAM for Visual Navigation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2021.

[15] B. Mayo, T. Hazan, and A. Tal, “Visual navigation with spatial atten-
tion,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2021.

[16] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3D: Learning from RGB-
D Data in Indoor Environments,” in Proceedings of the International
Conference on 3D Vision, 2017.

[17] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson
Env: Real-world perception for embodied agents,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[18] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik et al., “Habitat: A Platform for
Embodied AI Research,” in Proceedings of the International Conference
on Computer Vision, 2019.

[19] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee,
M. Savva, S. Chernova, and D. Batra, “Sim2Real Predictivity: Does eval-
uation in simulation predict real-world performance?” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6670–6677, 2020.

[20] R. Bigazzi, F. Landi, M. Cornia, S. Cascianelli, L. Baraldi, and R. Cuc-
chiara, “Out of the Box: Embodied Navigation in the Real World,” in
Proceedings of the International Conference on Computer Analysis of
Images and Patterns, 2021.

[21] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cogni-
tive mapping and planning for visual navigation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[22] F. L. Da Silva, M. E. Taylor, and A. H. R. Costa, “Autonomously
Reusing Knowledge in Multiagent Reinforcement Learning.” in Pro-
ceedings of the International Joint Conferences on Artificial Intelligence,
2018.

[23] D. S. Chaplot, L. Lee, R. Salakhutdinov, D. Parikh, and D. Batra,
“Embodied Multimodal Multitask Learning,” Proceedings of the Inter-
national Joint Conferences on Artificial Intelligence, 2019.

[24] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topological
memory for navigation,” in Proceedings of the International Conference
on Learning Representations, 2018.

[25] M. Sridharan and T. Mota, “Commonsense Reasoning to Guide Deep
Learning for Scene Understanding,” in Proceedings of the International
Joint Conferences on Artificial Intelligence, 2020.

[26] Y. Zhang, H. Tan, and M. Bansal, “Diagnosing the Environment Bias
in Vision-and-Language Navigation,” Proceedings of the International
Joint Conferences on Artificial Intelligence, 2020.

[27] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual SLAM and
structure from motion in dynamic environments: A survey,” ACM
Computing Surveys, vol. 51, no. 2, pp. 1–36, 2018.

[28] J. Biswas, “The Quest For” Always-On” Autonomous Mobile Robots.”
in Proceedings of the International Joint Conferences on Artificial
Intelligence, 2019.

[29] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic approaches
in robot path planning: A survey,” Robotics and Autonomous Systems,
vol. 86, pp. 13–28, 2016.

[30] L. Nardi and C. Stachniss, “Long-term robot navigation in indoor envi-
ronments estimating patterns in traversability changes,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
2020.

[31] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized block-based
connected components labeling with decision trees,” IEEE Transactions
on Image Processing, vol. 19, no. 6, pp. 1596–1609, 2010.

[32] F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti labeling:
Directed acyclic graphs for block-based connected components label-
ing,” IEEE Transactions on Image Processing, vol. 29, pp. 1999–2012,
2019.

[33] S. Allegretti, F. Bolelli, and C. Grana, “Optimized block-based algo-
rithms to label connected components on gpus,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 2, pp. 423–438, 2019.

[34] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and
S. Savarese, “3D Scene Graph: A structure for unified semantics, 3D
space, and camera,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[35] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in Proceedings of the
International Conference on Medical Image Computing and Computer
Assisted Intervention, 2015.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[37] D. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in
Proceedings of the International Conference on Learning Representa-
tions, 2015.

	Introduction
	Related Work
	Proposed Setting
	Spot the Difference: Task Definition
	Dataset Creation
	Agent Architecture

	Experiments and Results
	Conclusion
	References

