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Abstract: This paper addresses the design of a CMOS modulator to control two quantum bits. The
proposed architecture offers several advantages that are addressed and discussed in this paper.
The proposed architecture is investigated through both mathematical modeling and Verilog sim-
ulations. Moreover, the circuit was designed using the cryogenic Design Kit of the 130 nm SiGe
BiCMOS technology of the IHP foundry. The observed agreement between the modeling, Verilog,
and transistor-level simulations proves the physical feasibility of the proposed architecture.
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1. Introduction

Quantum computing represents a revolutionary paradigm of computability aimed
at exploiting quantum algorithms, which are based on quantum mechanical phenomena,
such as the superposition of states and entanglement, to solve problems not efficiently
addressable with classical algorithms [1–3]. The most promising problems of practical
interest are mathematically demanding, involve small datasets, and allow for the solving of
quantum algorithms with exponential speed-up [4]. Prime number factorization, which is
efficiently performed by quantum Shor’s algorithm in a polynomial time [5], is a historical
example of such a class of mathematical problems. To preserve their speed-up, quantum
algorithms should run on a quantum microprocessor that essentially is an array of quan-
tum bits, or qubits for short. During the execution of a quantum algorithm, qubits are
entangled and/or manipulated to form quantum gates, which are the elementary bricks of
the quantum processor. Entanglement also allows for the formation of logic qubits, which
are useful for minimizing errors [6].

Any two-state quantum physical system, whether intrinsic, a subset, or engineered,
can encode a qubit [3,6]. Several solid-state technologies are available for implementing a
qubit, with superconducting qubits being the most widely adopted nowadays. The spin and
charge of an electron confined in a Quantum Dot (QD) may also be exploited to manufacture
a solid-state qubit. Historically, the single electron spin was the first contemplated option
for quantum computation [7]. Today, QD-based qubits remain promising candidates by
virtue of their scalability, small footprint, long coherence time, and compatibility with
Complementary Metal-Oxide-Semiconductor (CMOS) microelectronic technology [8–11].

Microwave pulses enable the manipulation of superconducting and electron spin
qubits. The frequency of the microwave pulse should match the resonance frequency fR,i
(i = 1, . . . , N) of the wanted quantum transition corresponding to the quantum gate to
reproduce [12]. A common approach, widely adopted in research laboratories, involves
generating microwave pulses using rack-mount instrumentation operating at room temper-
ature. However, since a qubit must operate at deep-cryogenic temperatures (10 Mk–4 K)
to preserve its quantum peculiarity, these pulses are then transmitted to the qubits via
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microwave cables [13]. Regrettably, the cables are not only bulky, but they also convey
a considerable amount of heat into the cryostat hosting the qubits. Sustaining cryogenic
temperatures under such circumstances may prove challenging. These difficulties and
limitations pose significant hurdles, especially considering that the targeted number of
qubits for the next decade is in the range of 100,000 [14].

Miniaturized microwave sources, tailored as cryogenic integrated circuits, appear
to be very promising for the fabrication of solid-state quantum microprocessors. They
can indeed be placed close to the qubits, thus alleviating, if not entirely avoiding, the
aforementioned issues. The ultimate goal is the integration of the qubits along with the
control and read-out circuitry on the same silicon die. The actual state-of-the-art envisages
a chipset consisting of the quantum chip carrying the qubits and the classical chip carrying
the microwave source. Several options are possible. They can be Josephson junction-based
superconducting circuits [15,16] or cryogenic CMOS Radio Frequency Integrated Circuits
(RFICs) [11,17,18]. The former allow for ultimate performance in terms of dissipated
power but at the expense of a larger footprint, and the latter consumes a smaller silicon
area, but they dissipate more. What makes the CMOS RFICs particularly appealing is
their straightforward compatibility with the CMOS microelectronic technology. Photonics
microwaves may be a further possible approach [19]. This paper reports on a cryogenic
CMOS modulator.

Regardless of the specific way of implementing the microwave sources, the microwave
pulses must be applied for a precise time interval to execute a quantum gate [12], and
they undergo Amplitude Modulation (AM). A straightforward AM modulator generates
a spectrum that exhibits the carrier and the Double Side Band (DSB) of the modulating
envelope. Feasible as a balanced AM modulator [20], a Double-Side Band Suppressed-
Carrier (DSB-SC) modulator suppresses the carrier but not the DSB. This is not acceptable,
because the modulated microwave pulse can address several resonance frequencies simul-
taneously, as depicted in Figure 1. This figure shows that a Lower or Upper Single-Side
Band (LSSB or USSB) modulator, whose fundamental building block diagram is shown in
Figure 2, addresses only one single resonance frequency without interfering with the others.
It is worth noticing that several cryogenic microwave RFICs adopt an SSB modulation
scheme [11,18,21].
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Figure 1. Quantum microprocessor as an array (dotted rectangles) of N resonance frequencies
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Figure 2. Building block diagram of a basic SSB modulator.

The mixer M1 (M2) receives, as inputs, the in-phase (quadrature) Local Oscillator (LO)
carrier xLO,I (xLO,Q) at frequency fLO and the Intermediate Frequency (IF) modulating
signal xIF,I (xIF,Q) at frequency f IF. A quadrature or Hilbert filter generates xIF,Q from xIF,I .
It is worth noting that the filter is physically feasible only with approximation, because its
impulse response is an anti-causal signal [20]. Therefore, the use of the Hilbert filter should
be avoided whenever possible. For this reason, a quadrature oscillator typically generates
the LO carrier. The outputs xMIX,I and xMIX,Q of the two mixers are then algebraically
summed to obtain an SSB modulated signal xSSB.

This paper proposes a modulator, designed around a low-frequency USSB modulator
and a frequency divider, for the control of two qubits. It is worth noting that one-qubit and
two-qubit quantum gates form a universal set for quantum computing, with single-qubit
rotations and two-qubit quantum gates being the most common [22].

This paper is organized as follows. Section 2 details the architecture and the mathemat-
ical analysis of the proposed modulator, along with its advantages. Sections 3–6 address
the schematics and simulations of the circuits forming the proposed modulator. The circuits
were designed using Cadence Virtuoso in the SG13G2 130 nm SiGe BiCMOS technology by
IHP (Innovation for High-Performance Microelectronics) in Frankfurt am Oder, Germany.
In particular, the recently released cryogenic Design Kit was used. In all designed circuits,
the source and body terminals of the transistors are tied together to avoid the body effect.
Apart from the schematics view, this is physically feasible, because the adopted technology
is triple well. Section 7 reports on the simulations of the whole modulator. Finally, Section 8
draws conclusions and proposes future outlooks. All simulations were carried out at 4 K.
No further temperatures were addressed, because the cryostat temperature is expected to
be well controlled.

2. Architecture

Figure 3 depicts the building block diagram of the proposed modulator. It consists of a
low-frequency USSB modulator followed by the higher frequency up-conversion mixer M3.
Two IF sinusoidal tones at frequency f IF1 and f IF2 allow for the control of two qubits. There
are two possible ways to generate the IF signal xIF, both involving amplitude modulation
and the sum of signals. However, they differ in the execution order.
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Figure 3. Building block diagram of the proposed modulator.

In Solution 1, each IF signal is first modulated and then added to the other modulated
signal. Although this solution requires a modulator for each IF signal, it offers the advantage
of allowing for the use of different envelopes for the two IF signals. This may be useful
to minimize, by phase compensation when needed, the AC Stark shift of the resonance
frequency [21].

On the other hand, Solution 2 first adds and then collectively modulates the IF signals.
This solution utilizes only one modulator, but it forces the same envelope for both signals,
reducing flexibility.

For the sake of simplicity, in the following analysis, it is assumed that the modulating
signals are not applied and that all the mixers behave like a Gilbert multiplier [23,24].
It is worth pointing out that the mixer, conceived by Howard E. Jones in 1963 [25], and
the Gilbert cell are different engines [26]. The Gilbert cell generates only second-order
intermodulation products, whereas the mixer also generates intermodulation products
of higher orders. Since the SSB modulator mainly exploits second-order intermodulation
products, a simplified analysis treats a mixer as a multiplier.

Let the two IF signals be AIF1sin(2π f IF1t) and AIF2sin(2π f IF2t). This, therefore, re-
sults in the xIF(t) signal to be as follows:

xIF(t) = AIF[sin(2π f IF1t) + sin(2π f IF2t)] (1)
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The ±π/4 phase shifters yield the two following signals, xIF,I(t) and xIF,Q(t):

xIF,I(t) = AIF

[
sin

(
2π f IF1t − π

4

)
+ sin

(
2π f IF2t − π

4

)]
(2)

xIF,Q(t) = AIF

[
sin

(
2π f IF1t +

π

4

)
+ sin

(
2π f IF2t +

π

4

)]
(3)

Equations (2) and (3) show that xIF,I(t) and xIF,Q(t) are in quadrature, because
they exhibit a relative phase shift of π/2. Unlike the use of a single Hilbert filter on
one branch as in Figure 2, the employment of two π/4 phase shifters makes the architec-
ture more symmetric.

A frequency divider, with a division ratio of N, generates the LO signals xLO,I(t) and
xLO,Q(t) in quadrature [27] from a sinusoidal tone at frequency N fLO. The division ratio N
can be chosen to be equal to 2, 4, or 8 by selecting the output of the appropriate frequency
divider by means of a multiplexer (MUX). Therefore, the LO signals xLO,I(t) and xLO,Q(t)
are as follows:

xLO,I(t) = ALOsin(2π fLOt) (4)

xLO,Q(t) = ALOcos(2π fLOt) (5)

At the RF output ports of the mixers M1 and M2, the signals xMIX,I(t) and xMIX,Q(t)
are consequently the following:

xMIX,I(t) = k ALO AIF
2

{
cos

[
2π( fLO − f IF1)t + π

4
]
− cos

[
2π( fLO + f IF1)t − π

4
]

+cos
[
2π( fLO − f IF2)t + π

4
]
− cos

[
2π( fLO + f IF2)t − π

4
]} (6)

xMIX,Q(t) = k ALO AIF
2

{
−sin

[
2π( fLO − f IF1)t − π

4
]
+ sin

[
2π( fLO + f IF1)t + π

4
]

−sin
[
2π( fLO − f IF2)t − π

4
]
+ sin

[
2π( fLO + f IF2)t + π

4
]}

d
(7)

where the following trigonometric identities are noted: sinαsinβ = [cos(α − β)− cos(α + β)]/2
and sinαcosβ = [sin(α − β) + sin(α + β)]/2. The constant k, of physical dimension [V−1],
causes the amplitude of the signals xMIX,I(t) and xMIX,Q(t) to be measured in Volt and
not in Volt2. In a real circuit, its presence is embedded in the transfer function of a real
multiplier [26].

The signal xSUM(t) at the output of the sum node Σ is, therefore, as follows:

xSUM(t) = xMIX,Q(t)− xMIX,I(t)

=
√

2
2 kALO AIF{sin[2π( fLO + f IF1)t] + cos[2π( fLO + f IF1)t]}

+
√

2
2 kALO AIF{sin[2π( fLO + f IF2)t] + cos[2π( fLO + f IF2)t]},

= kALO AIFcos
[
2π( fLO + f IF1)t − π

4
]
+ kALO AIFcos

[
2π( fLO + f IF2)t − π

4
]

(8)

where the trigonometric identity asinx + bcosx = Acos(x + ϕ), with A =
√

a2 + b2 and
tanϕ = −a/b, is noted. It is worth pointing out that the frequency components of the
two signals xMIX,I(t) and xMIX,Q(t) undergo a destructive or constructive interference,
as a consequence of their algebraic sum. In particular, subtracting the two signals as in
Equation (8) leads to destructive interference for the components at frequencies fLO − f IF1
and fLO − f IF2, and to constructive interference for the components at frequencies fLO + f IF1
and fLO + f IF2. Therefore, the modulator in Figure 3 behaves as a USSB. Vice versa, adding
the signals leads to constructive interference for the components at frequencies fLO − f IF1
and fLO − f IF2, and destructive interference for the components at frequencies fLO + f IF1
and fLO + f IF2.
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Eventually, the mixer M3 up-converts the signal xSUM(t) by means of the LO tone at
frequency N fLO. The resulting RF output signal xRF(t) = xSUM(t) · xLO,N(t) is as follows:

xRF(t) = k AIF A2
LO

2 sin
{

2π[(N − 1) fLO − f IF1]t + π
4
}

+k AIF A2
LO

2 sin
{

2π[(N + 1) fLO + f IF1]t − π
4
}

+k AIF A2
LO

2 sin
{

2π[(N − 1) fLO − f IF2]t + π
4
}

+k AIF A2
LO

2 sin
{

2π[(N + 1) fLO + f IF2]t − π
4
}

,

(9)

where the trigonometric identity sinαcosβ = [sin(α − β) + sin(α + β)]/2 was used once
again. The output spectrum exhibits thus four different frequency components. In
Equation (9), the constant k of physical dimension [V−2] causes the amplitude of the signal
xRF(t) to be measured in Volt and not in Volt3. In a real circuit, its presence is embedded in
the transfer function of a real multiplier [26].

The building block diagram in Figure 3 has been Verilog coded within Cadence
Virtuoso. Figure 4 shows the one-sided spectra of xSUM(t) and xRF(t), simulated for
fLO = 1 GHz, N = 8, f IF1 = 140 MHz, f IF2 = 240 MHz, ALO = 1200 mV, and AIF = 200 mV.
Consistent with Equation (8), the spectrum exhibits two frequency components at the
frequencies 1.140 GHz and 1.240 GHz, each with an amplitude of 240 mV. Similarly,
in accordance with Equation (9), the signal exhibits components at the frequencies of
6.760 GHz, 6.860 GHz, 9.140 GHz, and 9.240 GHz, each with an amplitude of 144 mV. The
Verilog simulations implicitly assumed the constants k to be unitary.
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Table 1 below succinctly summarizes the previous comparison.

Table 1. Amplitudes of the output tones for the modulator in Figure 3.

Frequency [MHz] Calculated [mV]
(from Equation (9))

Calculated [mV]
(from Equation (8)) Simulated [mV]

1140 - 240 240
1240 - 240 240
6760 144 - 144
6860 144 - 144
9140 144 - 144
9240 144 - 144
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The single-step frequency conversion in the SSB modulator depicted in Figure 2 gener-
ates second-order intermodulation products at the frequencies fLO ± f IF. These frequencies
are intended to match a qubit resonance frequency fR,i located close to fLO. Typically, the
frequency fLO is in the order of a few GHz, and f IF ranges from tens to hundreds of MHz.
The narrow frequency separation 2 f IF urges to resort to a bandpass filter of the very high-
quality factor Q. The practical approach involves thus interferometry at RF frequencies, at
which, nevertheless, parasitic capacitances may introduce significant imbalances.

On the other hand, Figure 3 shows that the frequency spacing between the second-
order intermodulation products in the proposed modulator is 2( fLO + fIFi). For fLO = 1 GHz,
this spacing is large enough to accommodate a couple of qubits at the frequencies of the
lower (higher) intermodulation products without taking care of the possible AC Stark
effect, which the intermodulation products at higher (lower) frequencies may induce.
An off-chip bandpass filter may be used to reduce the magnitude of the unused second-
order intermodulation products. Since fLO is much lower than f IFi, the quality factor
Q of the filter can be estimated to be in the order of tens of ( N − 1)/4 for the lower
frequency intermodulation products and of tens of (N + 1)/4 for the higher frequency
intermodulation products. It is worth noticing that the frequency divider keeps the Q
relaxed, because it makes Q dependent on N but independent of fLO. In this way, the
design of the filter is simpler, and it can be used to limit the potential impact of the image
tone to the Spurious Free Dynamic Range (SFDR) in cases where it is desired, in spite of
the fact that the second-order intermodulation products are well frequency spaced.

Moreover, the frequency divider allows for the use of only one Local Oscillator (LO).
In Figure 3, the LO is assumed to be off-chip. The use of one single LO simplifies the
experimental set-up. In cases where the LO is on-chip, it would take the form of a Phase
Locked Loop (PLL), which is a complex circuit. The use of one single LO would save the
silicon area and reduce power dissipation.

The frequency divider offers the further advantage of avoiding the use of a Hilbert
filter or of a quadrature oscillator, because the divide-by-2 frequency dividers generate the
in-phase and quadrature tones necessary for the USSB modulator [27].

In summary, the frequency divider offers several advantages. Firstly, it reduces the
necessity for a bandpass filter, making it less essential. Moreover, should a bandpass filter
be desired, the frequency divider alleviates the constraints on its quality factor. Additionally,
the frequency divider reduces the requirement for frequency synthesis to just a single PLL,
and it eliminates the need for Hilbert filters or quadrature oscillators.

3. Polyphase Filter

The ±π/4 phase shifters in Figure 3 were designed as a Polyphase Filter (PPF), whose
schematic is depicted in Figure 5.

It is the cascade of two double-stage, type II PFFs [28]. By assuming periodic signals,
the first filter produces a π/2 dephased couple of differential signals from the single input
differential signal applied at the input nodes V− and V+. In this way, the four-output
single-ended signals split the full 2π angle into four phases, which is the reason why
the filter is dubbed four-phase. The principle can be extended to a 4n-phase PPF, which
receives n input differential signals and returns 2n output differential signals, which are
4n single-ended signals. Following this, the second filter is an eight-phase PPF, because it
receives two differential signals from the first PPF, and it generates four output differential
signals, splitting the 2π angle into eight phases. Each filter was designed to be two-stage
ones, in order to enlarge the bandwidth [28]. By keeping R1 = R2 = R3 = R4 = R,
the capacitance of the capacitor C1 (C4) was chosen, such that ω1 = 1/R1C1 = 2π fL
(ω4 = 1/R4C4 = 2π fH), with fL ( fH) being the lower (higher) cut-off frequency of the filter.
For minimum phase errors, the capacitance of the capacitor C2 (C3) was chosen, such that
ω2 = 1/R2C2 (ω3 = 1/R3C3) is the geometric mean of ω1 and ω3 (ω2 and ω4) [28], so that

ω2 =
√

ω1
√

ω2ω4, (10)
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ω3 =
√

ω4
√

ω1ω3, (11)

from which the following is derived:

ω2 = 3
√

ω2
1ω4, (12)

ω3 = 3
√

ω1ω2
4. (13)

Since the frequencies of the IF signals are 140 MHz and 240 MHz, the PPF was
designed with fL = 100 MHz and fH = 300 MHz. The obtained capacitances, calculated for
R = 1 kΩ, are C1 = 1.60 pF (ω1 = 625 Mrad/s), C2 = 1.11 pF (ω2 = 900 Mrad/s), C3 = 0.77 pF
(ω3 = 1299 Mrad/s), and C4 = 0.53 pF (ω4 = 1887 Mrad/s).
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Figure 6a shows the simulated phases of the eight single-ended voltage signals Vi
(i = 1. . .8) at the output of the PPF. At fL = 100 MHz, the values match with the desired
phases reported in Figure 5. For higher frequencies, the phases roll off, but what is most
important is that the relative phase is kept constant. Figure 6b plots the ratio between the
amplitude of each output single-ended signal Vi and the amplitude of the differential input
signal of the PPF. This figure shows that the four used Vi signals exhibit the same amplitude
even if not constant over the bandwidth. Some amount of splitting in the curves has to be
expected, because of the approximated physical feasibility of a Hilbert filter. By means of
a phasorial picture, Figure 7 shows that, in accordance with the architecture in Figure 3,
only the even phases were used; in particular, the signals V4 and V8 were used to obtain the
differential signal xIF,I(t) and the signals V6 and V2 to obtain the differential signal xIF,Q(t).
It is worth noting that varactors may make the polyphaser filters tunable to compensate for
some unbalances [29]. Nevertheless, since the used Design Kit is a cryogenic one and the
polyphaser filter operates at low frequencies, the filter was tailored as a fixed RC network.
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Figure 6. Simulated frequency responses of the PPF. Phase (a) and amplitude (b) responses of the
eight signals at the output of the PPF; only the signals highlighted in red were used to obtain the
signals xIF,I(t) and xIF,Q(t).
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Figure 7. Voltage output signals V2, V4, V6, and V8 of the eight-phase PPF used to obtain the signals
xIF,I(t) and xIF,Q(t).

4. Frequency Divider

Figure 8 details the frequency divider in Figure 3. Its main components are three
chains of divide-by-2 frequency dividers and one multiplexer. In addition, inter-stage and
output buffers isolate the dividers from the following stages.
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Figure 8. Frequency divider scheme. All the signals are differential.

4.1. Latches

Figure 9a shows that the divide-by-2 frequency divider is a traditional register obtained
by arranging a couple of latches in a master–slave configuration [30]. It generates both
In-phase (I) and Quadrature (Q) differential signals, because each single-ended output
signal undergoes a phase shift equivalent to the full angle divided by four, i.e., the number
of the output signals [27].
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Figure 9b shows that each latch is formed by a differential pair (MD) and a cross-
coupled pair (ML) of N-Channel MOSFET. These pairs share the same differential resistive
load formed by the resistors RD and the capacitors CD. When the clock CLK is high (low),
the pair MD (ML) form a differential amplifier (Current Mode Logic, or CML, latch), while
the other pair ML (MD) is deactivated.

Therefore, when the clock is high, the differential voltage between the inputs D and D
is amplified by the MD pair, while, when the clock is low, the cross-coupled pair ML latches
the state. The left section of the circuit samples and amplifies the input differential signal,
while the right section of the circuit executes the latching operation, nay it determines
the sign of the sampled differential signal. The amplification, carried out by the MD pair,
aids and thus speeds up the decision process. In the transition from the amplification to
the latch phase, the information is stored on the capacitors at the nodes Q and Q. The
combination of the CML logic positive feedback and the amplification ensures the high
sensitivity and rapid propagation of even small voltage variations throughout the circuit,
facilitating high-speed operations.

When the clock is not applied, only the bias voltage is applied to the gate of the MC
transistors, and the frequency divider works as a CML ring oscillator, with a self-oscillation
frequency fSO. This phenomenon is due to the negative feedback of the master–slave
arrangement. The self-oscillation condition is given by [31]:

gmL

(
1 + j

WD
WL

)
=

1
RD

+ j2π fSOCD (14)

where WD and WL are the channel width of the driving MD and latching ML transistors,
respectively. Equation (14) is equivalent to the two following equations:

gmL =
1

RD
(15)

fSO =
1

2π

WD
WL

1
RDCD

(16)

Equation (15) gives evidence that the ML transistors should generate a small-signal-
equivalent negative resistance which is able to compensate for the losses caused by the
load resistors RD. Equation (16) is the mathematical expression for fSO.
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In the case of n latches, even with n, fSO can also be expressed as follows [32]:

fSO =
1

2π

sin π
n

cos π
n + |ILSO |

|IDSO |

1
RDCD

(17)

where |ILSO| and |IDSO| are the oscillation amplitudes of the currents flowing under the
self-oscillation conditions, through the MD and ML transistors, respectively.

For n = 2, Equation (17) reduces to the following:

fSO =
1

2π

|IDSO|
|ILSO|

1
RDCD

. (18)

A comparison of Equations (16) and (18) shows that |ILSO|/WL = |IDSO|/WD.
On the other hand, when the clock is applied, the frequency divider behaves as an

injection-locked oscillator.
The frequency fSO can be interpreted as the output frequency generated by the divide-

by-2 frequency divider for a clock signal of zero amplitude. For a criterion of continuity
on the clock amplitude, the minimum clock voltage amplitude VCLK,min useful to lock
the circuit occurs, therefore, for fCLK = 2 fSO, with fCLK being the clock frequency. The
amplitude VCLK,min increases by increasing the frequency offset ∆ f = |2 fSO − fCLK|. The
plot of VCLK,min versus fCLK, dubbed the sensitivity curve, thus exhibits a V shape centered
around 2 fSO.

Equation (19) below approximately describes the sensitivity curve [33]:

VCLK,min = Kinj

∣∣∣ fCLK
2 fSO

− 1
∣∣∣√

1 +
(

fCLK
2 fSO

)2
, (19)

where Kinj is a parameter relating the current injected by the clock signal and the DC
current. Equation (19) shows that VCLK,min approaches Kinj when fCLK approaches zero
or infinity.

Figure 10 plots the sensitivity curves of the three divide-by-2 frequency dividers tuned
for fSO which is equal to 4 GHz, 2 GHz, and 1 GHz. Table 2 reports the used sizing of the
transistors, resistors, and capacitors for the three divide-by-2 frequency dividers.
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Table 2. Sizing of the transistor, resistor, and capacitor in the latch.

fSO [GHz] L [nm] WD (µm) WL [µm] WC [µm] RD [kΩ] CD [fF]

4 130 4 4 3 1 17.3
2 130 4 4 3 1 53.5

1 130 4 4 3 1 126

This figure shows that simulation and fitting diverge with an increasing ∆ f and that
this effect is more pronounced for a lower fSO. Equation (19) adequately describes the
sensitivity curves only when the ratio ∆ f

2 fSO
is small, that is for a fCLK that is close to 2 fSO, or

for a fSO that is larger than ∆ f , as in [33] and as in the highest frequency case in Figure 10.

4.2. Multiplexer and Buffers

Figure 11 shows that the cores of the multiplexer are four arrays of three N-channel
pass transistors, two for the in-phase and two for the in-quadrature input differential signal.
Three NOR gates generate, from the off-chip digital signals S0 and S1, the digital signals F0,
F1, and F2, controlling the pass transistors. When S0 = 0 and S1 = 0, only F0 is high, and the
MUX is configured to transmit the differential signals at frequency f IN/2. When S0 = 1 and
S1 = 0, only F1 is high, and the MUX transmits the differential signals at frequency f IN/4.
When S0 = 0 and S1 = 1, only F2 is high, and the MUX transmits the differential signals
at frequency f IN/8. Eventually, when S0 = 1 and S1 = 1, all the signals F0, F1, and F2 are
low, and the MUX is opaque. The NOR gates thus guarantee that two paths can never be
activated simultaneously.
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Figure 11. MUX is constituted of pass transistors that receive a control signal obtained with CMOS
NOR logic gates.

Figure 12 depicts the circuits used for the inter-stage and output buffers in Figure 8.
They isolate the output of the divide-by-2 frequency dividers from the capacitive load due
to the following stages, avoiding, in this way, a frequency shift of the sensitivity curve.
Since the I and Q signals in Figure 8 are differential, each buffer contains four of these
circuits, one for each of the four phases.
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5. Design of the Low-Frequency Mixer

Figure 13 depicts the schematic of the mixers M1 and M2 used for the USSB in Figure 3.
The transistors M1 and M2 form the transconductance stage and operate under small-signal
conditions. They convert the Intermediate Frequency (IF) voltage signals, applied to their
gates, into IF small-signal currents iIF,12 = gmvGS1,2, where gm and vGS1,2 are, respectively,
the transconductance and the small-signal gate–source voltage of the transistors M1 and M2,
with gm1 = gm2 = gm and vGS1 = −vGS2. The transistors M3 − M6 constitute the switching
stage. To this aim, the LO signal must be sufficiently large to make these transistors behave
as switches. In this way, they invert the polarity of the IF currents at the LO frequency rate,
enabling frequency conversion by time variance.
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The switching activity generates small-signal currents with an RF spectrum reach
of intermodulation products at the frequency m fLO ± n f IF, where m and n are integer
numbers, resulting from the two input tones at the frequencies fLO and f IF. They can be
addressed by means of the short-circuit currents iSC(t) at the output nodes RF+ and RF−.
By assuming that the input IF voltage signals on the gates of M1 and M2 are cosinusoidal
tones of the amplitude vIF and the frequency f IF and are in phase opposition, you can write
the following:

iSC(t) = A(t) gmvGS1,2cos(ωIFt), (20)
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where A(t) is a periodic square wave oscillating between −1 and +1 at the frequency ωLO.
It describes the periodic inversion polarity of the current due to the switching activity. The
expansion of A(t) in its Fourier series yields the following:

iSC(t) =
4
π

gmvIF

{
sin(ωLOt) +

+∞

∑
n=1

sin[(2n + 1)ωLOt]
2n + 1

}
cos(ωIFt), (21)

which can be rewritten as follows:

iSC(t) =
2
π

gmvIF

{
sin[(ωLO ± ωIF)t] +

+∞

∑
n=1

sin[[(2n + 1)ωLO ± ωIF]t]
2n + 1

}
, (22)

where Werner’s trigonometric identity sinαcosβ = [sin(α − β) + sin(α + β)]/2 is noted. The
approximation of a mixer with a multiplier, under which only the second-order intermodu-
lation products are of interest (see Section 2), leads to the following simplified mathematical
expression of iSC(t):

iSC(t) ∼=
2
π

gmvIFsin[(ωLO ± ωIF)t]. (23)

By supposing that the transistors M3 − M6 switch ideally, and by neglecting the
capacitive parasitics, the Driving Point Impedance (DPI) technique [34] calculates the RF
small-signal output differential voltage vRF,DIFF(t) = vRF+(t)− vRF−(t) as iSC(t) by the
differential output resistance ROUT,DIFF = 2RL:

vRF,DIFF(t) =
4gmvIFRL

π
sin[(ωLO ± ωIF)t]. (24)

Since the amplitude of the IF input differential voltage signal vIF,DIFF is equal to
2vIF, Equation (24) yields the voltage conversion gain of the mixer equal to 2RLgm/π, in
agreement with [35]. On the other hand, if the transistors M3 − M6 do not switch ideally
and/or capacitive parasitics should be accounted for, it is more efficient to analyze the
circuit in the frequency domain. From Equation (23), the one-sided spectrum ISC(ω) of
isc(t) is as follows:

ISC(ω) =
2
π

gmvIFδ[ω − (ωLO ± ωIF)], (25)

where δ(ω) is the Dirac’s delta function. The spectrum ISC(ω) exhibits, therefore, two lines
of the magnitude 2gmvIF/π. After the DPI technique, the one-sided spectrum VRF,DIFF(ω)
of vRF,DIFF(t) is as follows:

VRF,DIFF(ω) =
2gmvIFZOUT,DIFF(ω)

π
δ[ω − (ωLO ± ωIF)]. (26)

where ZOUT,DIFF(ω) is the differential output impedance.
Figure 3 shows the adopted sizing of the transistors and resistors. The bias DC gate

voltage for M1 and M2 was set to 850 mV. With that sizing, the transistors M1 and M2 are
biased in the saturation region with gm= 7.725 mS.

The mixer was simulated for vIF = 1 mV and f IN = 10 MHz and for an LO square
wave oscillating between 0 and 1.7 V at a frequency of fLO = 1 GHz. For these amplitudes,
the transistors M1 and M2 are in the saturation region all the time, so they operate as class
A transconductors, while the transistors M3 − M6 are in the saturation region under DC
conditions, nay for the mean value of the clock, in the triode region when the clock is
high and in the off state when the clock is low. Figure 14a depicts the obtained one-sided
spectrum. As expected from Equation (25), the spectrum exhibits two lines with the same
magnitude and at the frequencies of 1010 MHz and 990 MHz. In particular, the value of the
magnitude is also in agreement with Equation (25). Given gm= 7.725 mS and vIF = 1 mV,
the resultant calculation yields 2gmvIF/π = 4.92 µA.
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The differential output impedance ZOUT,DIFF(ω) was simulated by means of the
Periodic Scattering Parameter (PSP) simulation, with the square waveform large signal LO
setting the time variance rate of the circuit. The modulus of ZOUT,DIFF(ω) was found to
be equal to 1.42 kΩ at 990 MHz and 1.40 kΩ at 1010 MHz. In good agreement with the
simulated spectrum VRF,DIFF(ω) in Figure 14b, Equation (26) indeed yields a magnitude of
about 7.00 mV for the line at 990 MHz and of 6.89mV for the line at 1010 MHz. The error
between simulations and calculation is about 8%. Table 3 below collects and compares the
amplitudes discussed above.

Table 3. Amplitudes of the output tones for the mixer in Figure 13.

Frequency [MHz] Calculated [mV]
(from Equation (26)) Simulated Error [%]

990 6.98 7.60 8.16
1010 6.89 7.54 8.62
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Figure 15 shows that the node Σ in the USSB modulator in Figure 3 was obtained by
appropriately combining the RF currents generated by the couple of mixers. In particular,
the positive phase current coming out from one mixer was combined with the negative
phase current coming out from the other mixer. Since the two mixers share the same
differential resistive loads, the DC current flowing through the load resistors in Figure 15 is
two times the DC current flowing through the load resistors in Figure 13. The load resistors
for the double mixer were thus sized as half of the load resistors for the single mixer to
keep the same DC operating point used for the single mixer.

By means of the same analysis approach used for the single mixer in Figure 13, it
is straightforwardly demonstrated (see Appendix A) that, for the mixer in Figure 15, the
mathematical expression of the second-order intermodulation component of the output
short-circuit current is as follows:

iSC(t) =
4
π

gmvIFsin[(ωLO + ωIF)t]. (27)

Equation (27) shows that the one-sided spectrum ISC(t) of the short current iSC(t) is a
single line at the frequency ωLO + ωIF and of magnitude 4gmvIF/π. It is worth noticing
that this magnitude is two times the magnitude of the ISC(t) of the single mixer in Equation
(23). This stems from the fact that the short-circuit currents of the double mixer result from
the constructive interference of two short-circuit currents.

Figure 16a depicts the one-sided spectrum of the output short-circuit current simulated
under the same conditions used for the single mixer, that is vIF = 1 mV, fLO = 1 GHz, and
f IF = 10 MHz. Since the transconductances of the transconductor transistors are the same
for the two mixers, that is gm = 7.725 mS, and because the single and double mixers were
designed to have the same bias point, the simulated magnitude agrees with Equation (27),
which yields 4gmvIF/π = 9.84 µA. The magnitude of the one-sided spectrum of the output
differential voltage was calculated by means of the DPI. The PSP simulations yielded the
modulus of ZOUT,DIFF(ω), which is equal to 727.4 Ω at 1010 MHz. In agreement, within an
error of about 9%, with the simulated spectrum VRF,DIFF(ω) in Figure 16b, the DPI yields a
magnitude of 7.16 mV for the magnitude of VRF,DIFF(ω) at 1010 MHz. Table 4 summarizes
these calculated and simulated amplitudes.
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Table 4. Amplitudes of the output tones for the mixer in Figure 15.

Frequency [MHz] Calculated [mV]
(from Equation (27)) Simulated Error [%]

1010 7.16 7.84 8.67
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6. Design of the High-Frequency Mixer

Figure 17 depicts the schematic of the up-conversion mixer M3. It is the same mixer
in Figure 13, apart from the two RC bias networks for the transistors M1 and M2. The
resistance and capacitance are, respectively, 6 kΩ and 2 pF. The supply voltage VDD, tail
current I0, and DC gate bias for M1 and M2 are the same as those adopted for the mixer
in Figure 13.
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Figure 17. Mixer used for the up-conversion in Figure 3.

Figure 18 depicts the one-sided spectrum of the short-circuit current simulated for
vIF = 1 mV and f IF = 1 GHz and for an LO square wave oscillating between 0 and 1.7 V at
a frequency fLO = 8 GHz. Apart from the higher f IF and fLO, these are the same conditions
used for the simulation of the mixer in Figure 13. It is also worth noting that fLO = 8 GHz
corresponds to N = 8 in the architecture depicted in Figure 3. The spectrum exhibits
two lines with the same magnitude of about 4.87 µA, in agreement with Equation (25),
within a discrepancy of 1%, which yields 4.92 µA for gm = 7.725 mS and vIF = 1 mV.
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Once again, the one-sided spectrum VRF,DIFF(ω) of the differential output voltage
was calculated by means of the DPI technique. The PSP simulations yielded a modulus
of the differential output impedance of 318 Ω (240 Ω) at the frequency of 7 GHz (9 GHz),
corresponding to a magnitude of VRF,DIFF(ω), which is equal to 1.57 mV (1.18 mV), in
agreement with the simulated magnitude of 1.69 mV (1.36 mV), within a discrepancy of
about 7% (13%).

Table 5 below collects and compares the amplitudes discussed above.
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Table 5. Amplitudes of the output tones for the mixer in Figure 17.

Frequency [MHz] Calculated [mV]
(from Equation (26)) Simulated Error [%]

7000 1.57 1.69 7.10
9000 1.18 1.36 13.24

7. Simulation of the Modulator

This section addresses the transistor-level simulation of the modulator whose architec-
ture is depicted in Figure 3. The two input IF differential signals are two sinusoidal tones of
amplitude 10 mV and frequencies 140 MHz and 240 MHz. The LO differential signal was a
square wave of amplitude 1.7 V. Figure 19 shows the spectrum of the output differential
signal generated by the modulator when the division ratio N = 8, that is when the LO
frequency fLO is 8 GHz. The spectrum exhibits four tones at the frequencies of 6.76 GHz,
6.86 GHz, 9.14 GHz, and 9.24 GHz, in agreement with the Verilog simulation in Figure 4b.
Figures 20 and 21 also demonstrate the same agreement between circuit-level and Verilog
simulations for N = 4 ( fLO = 4 GHz) and N = 2 ( fLO = 2 GHz), respectively.
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Figure 21. One-sided spectrum of the output signal generated by the modulator for N = 2.

An assessment of the correctness of the amplitudes needs the evaluation of the voltage
conversion gain of the mixers at the frequencies of interest. For the mixer in Figure 15, it is
necessary to determine the voltage conversion gain for the output frequencies of 1140 MHz
and 1240 MHz. In this case, the mixer cannot be simulated on its own as in Section 5
because of the loading effect due to the up-conversion mixer. The simulations showed a
voltage conversion gain of approximately 3.1, which is lower than the gain deduced from
Figure 16, as expected.

On the other hand, the conversion gain of the up-conversion mixer in Figure 17 can be
calculated following the same approach used in Section 6, because the mixer was not closed
on an output load. The conversion gain was calculated for each of the twelve frequencies
addressed in Figures 19–21. For instance, for the frequencies in Figure 20, the following
moduli for the differential output impedances were obtained from the PSP simulations:
507.6 Ω at 2760 MHz, 502.5 Ω at 2860 MHz, 323.7 Ω at 5140 MHz, and 316.5 Ω at 5240 MHz.
The resulting calculated voltage conversion gain is about 1.24 at 2760 MHz and 2860 MHz
and about 0.80 at 5140 MHz and 5240 MHz. For the other frequencies, a voltage conversion
gain of 2.18 for the frequency couple 760 MHz and 860 MHz was found, of 1.12 for the
couple 3140 MHz and 3240 MHz, of 0.80 for the couple 6760 MHz and 6860 MHz, and
of 0.58 for the couple 9140 MHz and 9240 MHz. Figure 22 summarizes these voltage
conversion gains.
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By means of the rough representation of the modulator in Figure 22, it is possible
to calculate the amplitudes of the lines in the spectra in Figures 19–21. Note that after
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Figure 6b, the PPF exhibits an attenuation of about 0.5, because all the signals in Figure 22
are differential. It is worth noting that plots in Figure 6b are indeed the attenuation for each
single-ended signal Vi (i = 1. . .8) with respect to the input differential signal.

Since the input signal exhibits a differential amplitude of 10 mV, Figure 22 yields a
differential amplitude of the lines around 5 GHz, that is at 5140 MHz and 5240 MHz, of
12.4 mV, which matches with the spectrum in Figure 20, within an error of about 10%. For
the lines around 1 GHz, that is at 760 MHz and 860 MHz, Figure 22 yields a differential
amplitude of 33.8 mV, which agrees with the spectrum in Figure 21, within an error of
about 7%. For the lines around 9 GHz, that is at 9140 MHz and 9240 MHz, Figure 22 yields
a differential amplitude of 9.0 mV, in agreement with the spectrum in Figure 19, within an
error of about 3%. For the lines around 3 GHz, the agreement remains acceptable within an
error margin of 10%, whereas for the lines around 7 GHz, the error margin is 20%. Table 6
below summarizes the above comparison.

Table 6. Output differential amplitudes for the different output frequencies.

Frequency [GHz] Simulated [mV] Calculated [mV] Average Error [%]

1 31.3 33.8 7.4
3 17.3 18.3 5.5
5 13.8 12.4 11.3
7 9.7 12.4 21.8
9 8.7 9.0 3.3

The linearity of the modulator was assessed by means of transient simulations. A
first set of simulations was carried out for N = 4 and for a single 140 MHz input IF
sinusoidal tone, whose differential amplitude spanned from 10 mV to 100 mV. The picked-
up differential output signal was the tone at the 2.86 GHz frequency (see Figure 20). The
voltage gain was plotted versus the differential amplitude of the IF input signal. Table 7
collects the obtained results. It shows that a decrease of 1 dB in the voltage gain occurs
for a voltage input of 80 mV. The 1 dB compression point thus corresponds to an input
differential voltage amplitude of about 80 mV.

Table 7. Voltage gain of the modulator versus the amplitude of the input 140 MHz IF signal for N = 4.

Input [mV] Output [mV] Voltage Gain (dB)

10 17.02 4.62
40 66.28 4.39
60 95.02 3.97
80 118.86 3.46

100 137.08 2.73

A second set of simulations were carried out for N = 4 and for a couple of input IF
sinusoidal tones at the frequency of 140 MHz and 240 MHz and with the same magnitude
of 10 mV. The highest output intermodulation component was found at 2.96 GHz, with a
negligible amplitude of about 0.5 µV, in agreement with Figure 20. It is worth noting that,
in the literature, the pulse amplitude at the port of a qubit driver is estimated to be in the
range of a few mVs [36].

The proposed modulator dissipates about 100 mW, which is entirely ascribed to the
frequency divider. On the other hand, the two mixers dissipated about 5 mW. Even if it were
improved, the power dissipation is compatible with the power budget of 1 W estimated for
a cryostat working at 4 K [36] and in the same order of magnitude of the dissipated power
claimed in [17,18,37,38], as reported in Table 8. The 2 mW power dissipation claimed in [36]
for a 28 nm bulk-CMOS cryo-controller remains outstanding. It is worth noticing that the
adopted mixers are passive.
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The low- frequency SSB mixer sets the noise figure of the modulator to about 23 dB,
which should mainly be ascribed to the input PPF, whose simulated minimum noise figure
is about 13 dB, a value in agreement with the following formula [39]:

NFMIN = 10log
[
2N

(
1 +

√
2
)]

(28)

which provides the minimum noise figure for an N layer polyphaser filter. Equation (28)
yields NFMIN = 16 dB for N = 4. The up-conversion mixer exhibits a DSB NF of about
5 dB. Since the noise figure of transmitters are not usually reported in the literature, it
may be useful to cite the noise figure of 20–25 dB for the 180 nm CMOS 5 GHz quadrature
down-converter described in [40], which shares, with the proposed modulator, mixers
similar to the mixer in Figure 3 and a PPF in the input signal path.

Eventually, Table 8 below helps to compare the proposed modulator with other qubit
controllers in the literature. The Multi Project Wafer (MPW) costs are those available on the
websites of the IC services Europractice (Europe) and CMC Microsystems (Canada). Only
this paper and [41] keep a cost low by using bulk CMOS. All the other implementations
exhibit higher MPW costs because of the adopted FinFET technology.

Table 8. Comparison summary.

This
Work [17] [18] [36] [37] [38] [41] [42]

Operating
temperature

[K]
4 3 3 3 3 4 3.5 3

Qubit
technology

Spin and
Trans. Spin Spin and

Trans. Trans. Spin and
Trans. Spin Trans. Trans.

Dissipated
power
[mW]

100 360 384 2 384 190 12 23

Frequency
range
[GHz]

0.9–9 2–20 5–20 4–8 2–20 11–17 4.6–8.1 4.5–5.5

Number
of qubits 2 32 32 1 2 16 1 1

IF signal
source Off-chip On-chip On-chip On-chip On-chip On-chip On-chip On-chip

LO signal
source Off-chip Off-chip Off-chip Off-chip Off-chip Off-chip Off-chip Off-chip

CMOS
technology

130 nm
bulk

22 nm
FinFET

22 nm
FinFET

28 nm
bulk

22 nm
FinFET

22 nm
FinFET

40 nm
bulk

14 nm
FinFET

MPW cost
[kEUR/mm2] 7.3 27.2 27.2 14 27.2 27.2 6.1 14.7

8. Conclusions

This paper reported on the design of a modulator aimed to control 2 qubits. The
circuit was tailored as an RFIC and designed by using the cryogenic Design Kit of SG13G2
130 nm SiGe BiCMOS technology by the IHP foundry (Innovation for High-Performance
Microelectronics) in Frankfurt am Oder, Germany.

A low-frequency Upper Single-Side Band (USSB) modulator and a following high-
frequency up-conversion mixer form the core of the proposed modulator. An off-chip
microwave source provides a large LO signal for the mixers. In particular, a frequency
divider allows for the use of this external LO signal for both the low-frequency modulator
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and the high-frequency mixer. This is the most interesting peculiarity of the proposed
modulator, because the frequency divider leads to several advantages.

It enables the carrier and its image at the output of the up-conversion mixer to be suffi-
ciently spaced in frequency to accommodate a couple of qubits with resonance frequencies
close to the carrier or its image. For instance, with reference to Figure 20, you can address
two qubits of resonance frequencies equal to 2760 MHz and 2860 MHz (5140 MHz and
5240 MHz) without taking care of the tones at higher (lower) frequencies. Nevertheless,
the magnitudes of the unused tones can be reduced by introducing an off-chip band-pass
filter, whose quality factor is relaxed by the use of the frequency divider. In addition, the
frequency divider reduces the need for frequency synthesis to a single PLL, and it avoids the
use of Hilbert filters or quadrature oscillators to generate the in-phase and in-quadrature
tones for the USSB.

The frequency divider was designed to divide by 2, 4, and 8. This makes the proposed
modulator a multi-frequency one, because it allows for addressing qubits, whose resonance
frequencies are close to 1 GHz, 3 GHz, 5 GHz, 7 GHz, and 9 GHz. This may be useful,
because each qubit technology has different resonance frequency ranges. Indeed, for
Nitrogen-Vacancy qubits, the typically exploited resonance frequency is 2.87 GHz [43]; for
superconducting qubits, the resonance frequency spans between 500 MHz and 10 GHz; for
trapped ion qubits, the frequency range is in the order of a few GHz; and semiconductor
spin qubits cover a frequency range from hundreds of MHz to up to tens of GHz [44].

Nevertheless, it is worth noticing that even though the modulator does not use any
integrated inductor, the sensitivity curves of the frequency dividers make it narrowband.
The architecture can be re-employed for addressing a different set of frequencies but at the
effort of retuning the sensitivity curves of the frequency dividers, which is mainly possible
by choosing the capacitor CD appropriately (see Table 2).

The agreement between the mathematical modeling, the Verilog, and the transistor-
level simulations, together with the general good consistency between the transistor-level
simulations of the individual building blocks (polyphase filter and the lower and higher
frequency mixers) and of the whole modulator, proves that the architecture of the proposed
modulator is effectively implementable in the IHP 130 nm cryogenic BiCMOS technology.

The main advantage offered by the proposed architecture is that the SSB interferometry
takes place at a lower frequency with respect to other controllers claimed in the literature,
where the interferometry occurs at a high frequency (see, for instance, references [21,36,37]).
A low-frequency interferometric structure is less sensible to gain and phase impairments
due to the parasitics. This may relax the requirement for stringent IQ calibration, in contrast
to [21]. A final radiofrequency SSB signal may be obtained by adopting a classical filtering,
because the frequency divider relaxes the quality factor of the filter.

The price to be paid is the power dissipated by this frequency divider, which is the
main limitation of the proposed modulator. On the other hand, the estimated linearity and
noise figure appear to be comparable.
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Appendix A

Figure 15 shows that when LOI+ is high, the transconductor transistor M1 contributes
to the short-circuit current iSC(t) on the drain of the transistor M3. Since, as for the single
mixer, the transistors M1, M2, M′

1, and M′
2 are all identical and fully differentially driven,

their sources are at the virtual ground, after Equation (20) you can write the mathematical
expression of this contribution:

iSC(t) = gmvINcos(ωIFt) (A1)

On the other hand, when LOI− is high, the transconductor transistor M2 contributes via
M5 to iSC(t) at the node SUM_ so that you can write the mathematical expression of this
contribution as follows:

iSC(t) = −gmvINcos(ωIFt) (A2)

Similarly, when LOQ+ is high the transistor M′
2 provides, via M′

6, the following contribution
to the short circuit at the node SUM_:

iSC(t) = −gmvINsin(ωIFt) (A3)

whereas the transistor M′
1 contributes, via M’4, with the following current when LOQ−

is high:
iSC(t) = gmvINsin(ωIFt) (A4)

Figure A1 reminds that the two LO large differential signals controlling the switching
transistors in the two mixers in Figure 15 are time shifted of a quarter of period, because
they are at the quadrature. They split, therefore, the switching activity of the double mixer
into four phases instead of the two phases of the single mixer in Figure 13.
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Figure A1. LOI+ and LOQ+ square wave LO signals.

During the time interval T1 when LOI+ and LOQ− are high, Equations (A1) and (A4)
the short-circuit current on the drain of M3:

iSC(t) = gmvIN [cos(ωIFt) + sin(ωIFt)] (A5)

During the time interval T2 when LOI+ remains still high but LOQ+ has switched
from low to high, Equations (A1) and (A3) yield:

iSC(t) = gmvIN [cos(ωIFt)− sin(ωIFt)] (A6)



Electronics 2024, 13, 2546 24 of 26

During the time interval T3 when LOI− has switched from low to high and LOQ+

remains still high, Equations (A2) and (A3) yield:

iSC(t) = gmvIN [−cos(ωIFt)− sin(ωIFt)] (A7)

Eventually, during the time interval T4 when LOI− remains still high but LOQ− has
switched back from low to high, Equations (A2) and (A4) yield:

iSC(t) = gmvIN [−cos(ωIFt) + sin(ωIFt)] (A8)

Equation from (A5) to (A8) can be grouped in the following one:

iSC(t) = gmvIN
[
AI(t)cos(ωIFt) + AQ(t)sin(ωIFt)

]
(A9)

where the two square-wave functions AI(t) and AQ(t) are depicted in Figure A2.
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The Fourier series expansion of AI(t) and AQ(t) are, respectively:

AI(t) =
4
π

+∞

∑
n=0

sin[(2n + 1)ωLOt]
2n + 1

(A10)

AQ(t) = − 4
π

+∞

∑
n=0

sin
[
(2n + 1)ωLO

(
t − TLO

4

)]
2n + 1

(A11)

where TLO is the period of the LO square-wave large signal. By approximating the mixer
with a multiplier, only the second order intermodulation products are of interest, and
Equation (A9) reduces to:

iSC(t) =
4
π

gmvIN

{
sin(ωLOt)cos(ωIFt)− sin

[
ωLO

(
t − T

4

)]
sin(ωIFt)

}
(A12)

By remarking that ωLOTLO/4 = π/2, Equation (A12) takes the following shorter form:

iSC(t) =
4
π

gmvIN [sin(ωLOt)cos(ωIFt) + cos(ωLOt)sin(ωIFt)] (A13)
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where it was reminded that sin(α − π/2) = −cos(α). By also reminding the Werner’s
trigonometric identity sinαcosβ = [sin(α + β) + sin(α − β)]/2, Equation (A13) yields:

iSC(t) = 2
π gmvIN{sin[(ωLO + ωIF)t] + sin[(ωLO − ωIF)t] + sin[(ωLO + ωIF)t]

−sin[(ωLO − ωIF)t]} = 4
π gmvINsin[(ωLO + ωIF)t]

(A14)

which proves Equation (27). It is worth point out that Equation (A14), deduced from the
analysis of the circuit in Figure 15, reproduces the destructive interference of the tone at
lower frequency as already observed during the general discussion of the building block
diagram in Figure 3.
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