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Abstract: Robot-Assisted Minimally Invasive Surgery (RAMIS) procedures typically require
the presence of two expert figures in the operating room (OR): the main surgeon, sitting at
the console of a teleoperated surgical robot, and the assistant surgeon, who performs secondary
operations directly on the patient by means of manual tools. In this paper we propose a novel
strategy to allow the execution of a RAMIS procedure by a single surgeon, robotizing the role
of the assistant surgeon. In addition to the teleoperation system used by the main surgeon,
the architecture is augmented with an action recognition module, that recognize the operations
the surgeon is performing, and a supervisory controller, which takes decisions according to the
procedure state. The autonomous robotic arm serves as an assistant surgeon and it is equipped
by a surgical tool to accomplish the required tasks. The proposed solution has been validated
on a simplified physical set-up, with the aim of verifying and confirming its applicability and

effectiveness.
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1. INTRODUCTION

Nowadays, the execution of Robot-Assisted Minimally In-
vasive Surgery (RAMIS) procedures requires several units
of medical personnel working in the operating room. Just
to report an example, a typical laparoscopic intervention
needs the work of a main surgeon, of an assistant surgeon,
of two nurses and of an anesthetist. The advent of robotic
surgery and robots such as the da Vinci Surgical System
(Intuitive Surgical, Inc., Sunnyvale, CA) has not decreased
this number. Indeed, several assistants are required into
the operating room for supporting the main surgeon that
teleoperates the surgical robot. Among these people, an
assistant surgeon is always requested for performing all
surgical procedures that the main surgeon cannot perform
with the robot he/she is teleoperating, e.g. aspiration of
blood, removal of dead tissues and moving organs Chiu
et al. (2008). Typically, the role of the assistant surgeon
is taken by an expert surgeon, even if he/she is requested
to perform critical tasks for 30% of the time of the sur-
gical procedure. Considering the hourly cost of a surgeon,
the current practice is very inefficient from an economic
point of view. Furthermore, the current practice is very
inefficient also from a social point of view. Indeed, both
assistant and main surgeons need to rest for a fixed num-
ber of hours among interventions, reducing by a half the
number of available surgeons leading to unnecessary long
waiting lists.

Artificial Intelligence (AI) (Winston (1992)) is the theory
and development of computer systems able to perform
tasks normally requiring human intelligence, such as vi-
sual perception, speech recognition, decision making and
translation between languages'. AI has been constantly

1 https://www.oxfordreference.com/

rising in the last years and it represents a powerful tool
when employed in applications where human errors need
to be mitigated. In the surgical field, it finds application
in a variety of areas, such as clinical decision support,
patient monitoring, pre-operative surgical planning and
many others. A very interesting domain in which the power
of Al started to be exploited is the possibility of providing
the robot with autonomy during surgeries. Indeed, the in-
troduction of autonomy in robotic surgery would result in
increasing efficiency and repeatability, reducing costs, and
improving execution quality thanks, for example, to real-
time bio-signal feedback and computer-aided guidance.

In this paper, we will focus on reaching a greater degree
of autonomy through the introduction of an autonomous
robotic surgeon’s assistant that can make decisions on
its own and properly cooperate with the main surgeon
autonomously. To achieve this goal, it is necessary to
develop an intelligent system that can recognize the ac-
tions the main surgeon performs during the surgical op-
eration and consequently robotize the assistant’s tasks
accordingly. The benefits derived from such automation
are the reduction of the number of surgeons required for a
single surgical operation and the possibility to parallelize
operations within hospitals. This leads to greater economic
and social efficiency by reducing medical expenses and
speeding up the long waiting lists. The authors in van
Amsterdam et al. (2021) proved that so far deep-learning-
based models are the go-to choice. Actually, unlike graph-
ical models, they are able to capture even complex tempo-
ral dependencies during surgical motions. On the other
hand, unsupervised and semi-supervised methods reach
lower performances and related works in this area are
still very limited. To report some examples, Funke et al.
(2019) propose to use a 3D Convolutional Neural Network
(CNN) to learn spatiotemporal features from consecutive
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video frames. Different approaches based on the use of
CNNs are developed also by Khatibi and Dezyani (2020).
However, both cases propose a generic solution for the
action recognition problem, without explicitly relating it
to a robotic assistance.

The majority of current state-of-the-art approaches are
restricted also to offline functionalities, making their use
impossible in real-world scenarios, where high speed is
one of the main requirements. In scenarios like the one
considered in this paper, where a collaboration between
surgeon and robot is required and the goal is to automatize
the assistant tasks, video frames must be processed and
recognized in real-time.

A cognitive robotic architecture for assisting an opera-
tor to perform a cooperative task has been proposed in
De Rossi et al. (2019), using a CNN to recognize the
actions, and a Model Predictive Controller-based motion
control to deal with an unreliable confidence level of the
action recognition. In this paper we propose an alternative
approach to De Rossi et al. (2019), based on a different AT
module and capable of providing more stable detections.
Moreover, we neglect the effect of the confidence level
on the action recognition since our strategy allows us to
retrieve high level of accuracy in the action recognition,
simplifying also the design of the supervisory controller,
which here has been implemented as a simple Finite State
Machine.

In this paper we exploit the model proposed in Singh et al.
(2017) which aims at achieving a real-time spatio-temporal
action localisation and prediction. It adopts a real-time
Single Shot Multibox Detector (SSD) CNN to regress and
classify detection boxes in each video frame potentially
containing an action of interest. A SSD is capable of
predicting the object’s bounding box in a single shot,
making it one of the fastest object detection algorithms
available. Starting from the resulting detections, some
post-processing is then applied to link up the spatial action
bounding boxes over time to create the so-called action
tubes. The SSD model has been evaluated on UCF101-24
dataset, a subset of the UCF101 dataset Gao et al. (2014),
containing 24 human action categories of sports.

We started by establishing a series of simplified actions
to form a surgical procedure of cutting, puncturing and
suturing, and by creating a specific dataset of these actions
emulating the surgical procedure. Moreover, we developed
a control architecture for allowing cooperation between the
surgeon and the robot.

The contribution of this paper are:

e A strategy to allow the execution of a RAMIS pro-
cedure by a single surgeon providing superior perfor-
mance than previous works with a simpler architec-
ture.

e An experimental validation of the proposed strategy.

The rest of this paper is organized as follows. Section 2
reports the strategies we followed to create the dataset,
while Section 3 describes the system architecture. Section
4 reports the experimental validation. Finally, conclusions
and future works are reported in Section 5.

EPIDERMIS

Fig. 2. Artificial setup for the acquisition of the dataset.
2. DATASET CREATION

In order to evaluate the applicability of the proposed
architecture regardless of the problems related to the
execution of a real surgical operation, we created an ad-
hoc artificial set-up which emulates a surgical procedure.
We created an artificial phantom, shown in Fig. 1(a), to
emulate the part of the body involved in the operation.
In particular, we used two layers of foam rubber laid to
emulate the skin. The first layer is movable and represents
the epidermis, while the second one is fixed and represents
the subcutaneous tissue. The emulated surgical tools used
to carry out the tasks, shown in Fig. 1(b), are 3D printed
and simulate a scalpel and a forceps. Fig. 2 shows the
setup during the acquisition of the videos for the dataset
creation.

The surgical operation we take into consideration consists
in performing a subcutaneous injection. This procedure
is performed by a main surgeon and an assistant surgeon
performing the following tasks:

(1) Holding the upper tissue to make it stable;

(2) Cutting the tissue;

(3) Lifting the flap of tissue resulting from the cutting
operation;

(4) Making a puncture into the subcutaneous tissue;

(5) Holding the upper tissue;

(6) Suturing the wound.

Tasks 1, 3, and 6 are allocated to the main surgeon,
while tasks 2, 4, and 5 are performed by the assistant
surgeon. Nevertheless, the tasks could be easily exchanged
between the main surgeon and the assistant surgeon.
We recorded six videos of the procedure using an Intel
RealSense Depth Camera D415 with a resolution of 960 x
540 pixels and a frame rate of 60 fps. The annotations were
performed using Microsoft Virtual object Tagging Tool 2,
which allows to draw bounding boxes around regions of
interest in visual data and save them in the preferred
format (COCO? in our case). Bawa et al. (2021) was

2 https://github.com/microsoft/VoTT
3 https://cocodataset.org/#format-data
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Table 1. Number of action samples in the
training, validation and test phase.

Label Train Val Test Total
Idle 258 32 33 323
FlapHoldDown 1509 167 187 1863
FlapHoldUp 837 127 95 1059
Suture 1482 185 185 1852

? P
2

Fig. 3. Annotated bounding boxes of action categories.

considered as a guideline. The actions we annotate concern
only those which are performed by the main surgeon since
the main purpose of the system is to recognize the main
surgeon’s actions and not the assistant’s ones, that will be
subsequently robotized on the basis of recognition. Four
action categories were chosen:

e Idle: the action in which both the surgical tools are
positioned in the middle of the operating area waiting
for a movement to be executed.

e FlapHoldDown: the action of holding the tissue
involved in the surgical operation, i.e. holding the
upper tissue during the incision.

e FlapHoldUp: the action of lifting the flap of tissue
resulting from the incision. This action is needed to
allow further operations that require having access to
the subcutaneous tissue, such as inserting the needle
for making the puncture.

e Suture: the action of sewing the tissue to close the
wound.

Table 1 reports a list of the actions in the created dataset,
with the number of samples in each of the training,
validation and test phase. Finally, Fig. 3 reports a picture
of each of the actions segmented in the created dataset and
described so far. The main surgeon tool has two different
colors, which distinguish accordingly to the action the
surgeon is performing.

3. COGNITIVE ARCHITECTURE FOR
ROBOT-ASSISTED SURGICAL PROCEDURES

The proposed control architecture, shown in Fig. 4 is
composed by an Action Recognition Module and a robotic
assistant managed by a Supervisory Controller. The action
recognition module, based on a real-time Single Shot
Multibox Detector (SSD) Convolutional Neural Network

(Liu et al. (2016)), elaborates the frames of the video
of the procedure and provides as output the detection
boxes frame by frame, along with the confidence scores.
The supervisory controller, implemented as a Finite State
Machine (FSM), decides the action the robot has to
perform depending on the recognized action performed by
the main surgeon. In the following we will describe each of
these modules.

8.1 Action Recognition Module

Network for action recognition ~ The proposed system
needs to detect the actions performed in real-time by the
main surgeon, in order to command the corresponding
actions to the robot as soon as the main action is recog-
nized. Indeed, the robot must cooperate with the surgeon
in a smooth and coordinated way, while avoiding every
kind of delay that could make the system inefficient. To
this aim, we exploited and implemented a Single Shot
Multibox Detector (SSD) Convolutional Neural Network
since it allows to perform regression and classification
in a single-stage efficiently. Then, we trained the SSD
with the dataset already presented in Section 2. SSD is
based on a feed-forward CNN scores for the presence of
object category instances in those boxes, followed by a
non-maximum suppression step to generate the final detec-
tions. It is based on a so-called base network used for high-
quality image classification, which is composed of the early
layers of VGG 16 (Simonyan and Zisserman (2015))and
truncated before any classification layer. At the end of
the base network, some convolutional features layers that
progressively decrease in size are added: this peculiarity
allows to predict detections at multiple scales. Each of
these convolutional features layers is able to provide a fixed
set of detection predictions by using a set of convolutional
filters. For a feature layer of size m x n with p channels,
there is a 3 x 3 X p small kernel that produces either a score
for a category or a shape offset relative to the coordinates
of the default box. The kernel is applied to each of the
m x n locations and it generates an output value.

The bounding box offset output values are measured in
comparison to a default box position relative to each
feature map location.

Since in the emulated setup the environment is highly
controlled and the actions to be recognized are quite
different from each other, we did not use optical flow
images, since the information provided by them would
be redundant. However, they could be integrated and
exploited in case of more complex environments, like for
example in a real surgical procedure, to detect even the
motion information.

Evaluation metrics  Before introducing the results ob-
tained by the action recognition module, we need to intro-
duce the metrics we used to evaluate the network perfor-
mance: the precision, the recall, the average precision, the
mean average precision, and the intersection over union.

The Precision of the network represents the percentage
of instances correctly classified as positive over the total
number of instances classified as positive, and it is defined
as:
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Fig. 4. Proposed control architecture. An action recognition module detects the action performed by the main surgeon.
Then, the supervisory controller enables the robot to provide assistance to the main surgeon.

TP
~ TPYFP )
where P € R represents the precision, TP € R represents
the number of true positives, and FP € R represents the
number of false positives.

P

The Recall of the network represents the rate of positive
instances correctly recognized as such, and it is defined as:

TP
SR — 2
TP+FN @)

where R € R represents the recall, and F'N € R represents
the number of false negatives.

R

The Average Precision AP € R is obtained by plotting
precision against recall yielding to a precision-recall curve
and then integrating the area under the curve.

The mean Average Precision mAP € R over a set of
classes is the mean of the average precision scores for each
class.

Finally, in order to understand if a predicted detection
is right, we can measure the percentage overlap between
the predicted and the ground truth bounding boxes. The
Intersection over Union IoU € R is the ratio between
the area of the intersection of the two bounding boxes
over the area of their union. If its value is 0, it means that
there is no overlap between the predicted and ground truth
boxes; otherwise, if its value is 1, then the predicted and
ground truth boxes are completely overlapping.

Training and Testing We adopted the SSD architecture
with an input image size of 300 x 300 and an ImageNet pre-
trained VGG 16 network. The network has been trained
for 5000 iterations with a learning rate of 0.001,a batch
size of 16, a total number of 4086 frames and 4 action
classes. The model has been implemented in PyTorch and
trained using CUDA.

The goal of training is to find the set of weights and biases
that reports a low average value of localisation loss and
confidence loss across all the examples. The localisation
loss represents the mismatch between the ground truth
box and the predicted boundary box while the confidence
loss is the loss of making a class prediction. From Fig. 5
we can observe that, during the iterations of the training
phase, both the localisation and confidence loss decrease
until reaching a value that is very close to 0, which is a
very promising result.

We tested the network with a total number of 1012 frames
and by choosing a confidence threshold equals to 0.9.
Results are reported in Table 2. We can observe that

—Localization Loss

— Confidence Loss

| | | f
0 500 1000 1500 2000 2500 3000 3500 1000 1500 5000
Iterations

Fig. 5. Plot of training losses (confidence loss and locali-
sation loss).

Table 2. mAP results of the SSD trained on
the created dataset.

IoU threshold § 0.5 0.8 0.85 0.9
AP Idle 1.0 0.9576 0.5903 0.3989
AP FlapHoldDown 1.0 0.9941 0.9941 0.4044
AP FlapHoldUp 1.0 1.0 1.0 1.0
AP Suture 0.9597  0.9147  0.7944  0.4631
mAP 0.9899 0.9666 0.8447  0.5666

the AP related to each class of action and the mAP
over all the classes vary according to the chosen IoU
threshold § € R. It can be noted also that AP decreases
as 0 increases. However, even by keeping a more stringent
0, such as 0.8, the results are very good and reach an
mAP value of approximately 0.97. On the other hand,
by choosing a § very stringent, such as 0.9, the results are
not trustworthy. This is due to the fact that, in general, it
is extremely unlikely that the coordinates of the predicted
bounding box are going to exactly match the coordinates
of the ground truth bounding box. Usually, a § > 0.5 is
considered a good prediction.

3.2 Supervisory Controller

The results obtained by the action recognition module
determine the tasks the robot must carry out. The super-
visory controller is required to coordinate the recognized
actions performed by the main surgeon and the motion
of the robotic arm. The supervisor has been implemented
as a Finite State Machine (FSM), and its schematics is
reported in Fig. 6. The initial state is INIT, in which the
robot is located by the surgeon in the operational area. If
the action recognized by the neural network corresponds
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Fig. 6. Finite State Machine implemented as supervisory
controller.

to Idle, a transition from INIT to START occurs. The
system remains in this state until the recognized action
is FlapHoldDown, the one corresponding to holding the
flap down. This action triggers the transition to the state
FLAP HOLD DOWN, which will command the robot to
perform the incision of the tissue. Once the cut is over
and the action performed by the surgeon is recognized as
Idle, the transition to state WAIT1 happens. The system
remains in this state until the action FlapHoldUp, cor-
responding to holding the flap up, is detected and causes
the transition to the state FLAP HOLD UP. Once entered
this state, the robot has to perform the injection. Once the
puncture is over, the transition to state WAIT2 happens
when Idle is recognized. Then, the robot is commanded to
hold down the flap and the system moves to the WAIT3
state. At this stage, when an action corresponding to
Suture is recognized, the transition to the state SUTURE
occurs and just when the neural network recognizes an
action corresponding to Idle, the transition to the last
state END happens. Here the robot has accomplished all
its tasks and comes back to its initial position.

3.3 Robot control

To allow the emulation of the robotic surgery, a 3D printed
laparoscopic instrument was mounted to the end-effector
of the robot. This tool allows at the same time to emulate
the cut performed by a scalpel, a puncture, and to be used
to immobilize tissues. Since the automation of movements
according to the action to be performed is not the focus
of this work, the actions performed by the robot are pre-
programmed, using the robot’s position control.

4. EXPERIMENTAL VALIDATION

In order to validate the effectiveness and the proper func-
tioning of the developed system, an experimental vali-
dation on the emulated setup has been performed. In
particular, a real-time video of the emulated subcutaneous
injection is provided as input to the control system. The
main surgeon starts performing actions of his responsibil-
ity and expects the robot to replace the assistant’s tasks
and cooperate properly with him. A videoclip showing
the setup and the entire experiment can be found at
https://youtu.be/U3n4Kd0-elQ.
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Cut,
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I FlapHoldDown

NoAction
mmidle

I FlapHoldDown
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L i
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Fig. 7. Evolution over time of the surgical actions per-
formed by the surgeon and recognized by the system
and the corresponding robot actions.

It is important to specify that, as regards the SSD, a confi-
dence threshold equal to 0.9 has been chosen. This choice
is dictated by the fact that we labeled only the actions
which are of interest for triggering the robot and making
it cooperate with the surgeon in a synchronous way. For
this reason, the intermediate movements among actions,
such as approaching the operational area or moving away
from it, could be mistaken for the actual annotated actions
if a low confidence threshold is chosen. The value of 0.9 has
been experimentally chosen.

To evaluate the performance of the system, we compared
the actions performed by both the surgeon and the robot
over time, as reported in Fig. 7. The results confirm the
right execution of the operations. Indeed, as shown in Fig.
7, when the surgeon starts holding the tissue of the body
part involved in the surgical operation (green area in Fig.
7(b)), then the robot starts performing the incision of the
tissue (orange area in Fig. 7(a)). Once the incision has been
successfully completed, the surgeon releases the tissue,
comes back to the idle position and starts holding the
flap of cut tissue (yellow area in Fig. 7(a)). At this point,
the robot starts making a puncture into the subcutaneous
tissue (red area in Fig. 7(a)) and once this operation
has been concluded, the surgeon releases the lifted tissue
coming back to the idle position and this triggers the
robot to start holding the tissue (green area in Fig. 7(a)).
Then, the surgeon can now proceed with the suture (blue
area in Fig. 7(b)). Once the suture is over, the robot
has accomplished all its tasks and the surgical operation
terminates.

We can thus conclude that surgeon and robot cooperate
as expected and their tasks are synchronized, resulting
in a successful surgical operation. Furthermore, it can
be noticed that the SSD is actually able to recognize
accurately and in real-time the surgeon’s actions over time.
However, it is possible to see that it suffers from a bit of
uncertainty in the recognition of the suture action, which
sometimes is mistaken for no action. This aspect does not
influence the correct functioning of the system since it is
properly managed by the FSM. Nevertheless, it has to be
taken into consideration for future developments and to
improve the performance of the SSD.

Fig. 8 reports the robot end-effector position and orienta-
tion (pose) among with the robot action. We can notice
that the pose change according to the actions performed
by the robot, which in turn depend on the surgeon’s
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actions recognized by the SSD. In the same way, when
the robot is not acting (grey areas in Fig. 8(c)), position
and orientation remain the same, as expected. The evo-
lution over time of the robot end-effector pose could be
exploited also for understanding other information about
the surgical procedure, such as the length and the depth
of an incision or a puncture, or to check collisions with
other organs not involved in the operation. Moreover, some
post-surgical complications may be due to medical errors
and the monitoring of the trajectories followed by the
autonomous robotic surgeon’s assistant might be useful
to understand what went wrong in the operation.
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— e ~L—
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Fig. 8. Evolution over time of robot actions along with
Tool Center Point position and orientation.

5. CONCLUSION

In this work we developed an autonomous system that
allows the execution of a RAMIS procedure by a single
surgeon. The results achieved in this work have revealed
the correct functioning of the system, and its capacity
to accurately recognize the surgeon’s actions over time,
providing an efficient and well-coordinated cooperation
between surgeon and robot.

It must, however, be emphasized that the use of a dataset
composed of a few elementary surgical tasks, captured in
the same artificial environment, precludes the considera-
tion of different issues that could arise in a real setup.
Among these, we find the deformable nature of organs,
which could vary from person to person, the diversity of
the same organ depending on the orientation of the camera
that captures the surgical scene, and the surgeon’s skill
level and operative style. All these aspects could prevent
the SSD, or more in general neural networks, to learn how
to discriminate different categories of actions. Despite this,
the results of this work allow us to affirm the effectiveness
of the proposed strategy in a controlled environment, as a
first step towards the application of autonomous robotic
assistance in surgical environments.

Possible future developments in this direction could be the
creation of an exhaustive dataset inclusive of several sur-
gical operations performed in complex environments with
blood, camera motions, illumination changes, occlusions

and variability in motion and action order. This could
help towards generalizing and avoiding learning just a
few specific training samples, leading to overfitting and
lack of accuracy against unseen data. Moreover, the use of
optical flow images, together with RGB ones, could help
the network to improve the learning of how to differenti-
ate actions, exploiting the information of motion among
frames.
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