
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

Study of RRAM-Based Binarized
Neural Networks Inference
Accelerators Using an RRAM
Physics-Based Compact Model
Tommaso Zanotti, Paolo Pavan and Francesco Maria Puglisi

Abstract

In-memory computing hardware accelerators for binarized neural networks based
on resistive RAM (RRAM) memory technologies represent a promising solution for
enabling the execution of deep neural network algorithms on resource-constrained
devices at the edge of the network. However, the intrinsic stochasticity and
nonidealities of RRAM devices can easily lead to unreliable circuit operations if not
appropriately considered during the design phase. In this chapter, analysis and design
methodologies enabled by RRAM physics-based compact models of LIM and mixed-
signal BNN inference accelerators are discussed. As a use case example, the
UNIMORE RRAM physics-based compact model calibrated on an RRAM technology
from the literature, is used to determine the performance vs. reliability trade-offs of
different in-memory computing accelerators: i) a logic-in-memory accelerator based
on the material implication logic, ii) a mixed-signal BNN accelerator, and iii) a hybrid
accelerator enabling both computing paradigms on the same array. Finally, the
performance of the three accelerators on a BNN inference task is compared and
benchmarked with the state of the art.

Keywords: RRAM, logic-in-memory, binarized neural networks, compact modeling,
in-memory computing

1. Introduction

The increasing adoption of devices for the internet of things (IoT) combined with
the diffusion of data-driven computing approaches, such as artificial neural networks
[1], is promoting innovation in multiple sectors. Thus, to sustain the diffusion of these
technologies, a constant research effort is being directed to the development of ultra-
low power computing devices and architectures that will enable the execution of
complex computations directly on low-power devices at the edge of the network,
reducing the burden on the cloud computing infrastructure. In-memory computing
(IMC) architectures based on new nanoelectronics devices, are considered a key
enabling technology. In these architectures, computations are executed directly inside

1

or in the proximity of the memory array, removing the main source of inefficiencies,
i.e., the von Neumann bottleneck (VNB), which is caused by the time and energy
hungry data transfer between the memory and the processing unit. Among novel
nonvolatile memory devices, resistive random access memory (RRAM) technologies
are one of the most mature and are considered as the frontrunners for enabling the
diffused adoption of IMC accelerators, thanks to their low-cost, back end of line
compatibility, high-density, high switching speed, and relatively low programming
voltages. Still, RRAM technologies present several nonideal effects (e.g., cycle-to-
cycle (C2C) and device-to-device variations, and random telegraph noise (RTN))
which can negatively impact the reliability of RRAM-based circuits and limit the
number of bits that can be reliably stored in a single device.

Thus, to address these nonideal effects appropriate design methodologies need to
be followed, and IMC accelerators in which RRAM devices are used as binary ele-
ments preferred. Among these IMC accelerators, logic-in-memory (LIM) [2–5] and
mixed-signal binarized neural networks (BNN) inference accelerators [6–8] are
promising solutions for resource-constrained edge devices. LIM accelerators enable
the in-memory computation of logic operations. BNNs [9] are neural networks in
which neurons’ weights and activations are encoded using a single bit, and 2D RRAM
arrays can be used to compute vector-matrix multiplication (VMM) operations (i.e.,
the most executed computation in neural networks) in the analog domain, achieving
high energy efficiency and performance.

In this chapter, analysis and design methodologies enabled by an RRAM physics-
based compact model, are discussed and applied to LIM and mixed-signal BNN infer-
ence accelerators. As a use case example, the UNIMORE RRAM physics-based com-
pact model [10, 11] calibrated on an RRAM technology from the literature [12], is used
to extract performance vs. reliability trade-offs of different IMC accelerators: (i) a
LIM accelerator based on the material implication logic, (ii) a mixed-signal BNN
accelerator, and (iii) a hybrid accelerator enabling the coexistence of both computing
paradigms on the same array. Finally, the performance of the three accelerators on a
BNN inference task are compared and benchmarked with a state-of-the-art solution.

2. Resistive RAM memory technologies and compact modeling

RRAM technologies are considered a promising nonvolatile memory technology
for next-generation embedded systems applications, thanks to their low fabrications
cost, small feature size, back end of line compatibility, and performance. Specifically,
RRAMs typically provide fast switching speed (i.e., < 10 ns [13]), low programming
energy (i.e., < 1pJ [13]), long retention (i.e., > 10 years [13]), high endurance (i.e.,
106

–1012 [13]), and a relatively large memory window (i.e., > 102 [13]) when used as
binary memory elements. These devices can be electrically switched between nonvol-
atile a low and a high resistive state (LRS and HRS, respectively) that can be used to
encode a logic 1 and a logic 0, respectively. Depending on the materials used for their
fabrication, different switching mechanisms can occur [14, 15]. In this chapter, bipolar
metal-oxide-based RRAM cells that exhibit filamentary switching are considered, but
the methods described apply also to other resistive switching memory technologies.

A bipolar metal-oxide-based RRAM is programmed into a LRS by biasing it with a
sufficiently large positive voltage, which causes the bond breakage and drift toward
the top electrode (TE) of oxygen ions in the metal oxide layer, resulting in the
formation of an oxygen deficient conductive filament (CF) assisting ohmic-like drift

2

Neuromorphic Computing

conduction [14, 16]. During a device set, a current compliance (IC) must be provided
to prevent dielectric breakdown. The device is reset into a HRS by biasing it with a
sufficiently negative voltage (i.e., VRESET) which induces drift and recombination of
oxygen ions with oxygen vacancies in the dielectric which partially dissolve the CF.
The current conduction in HRS is associated with trap-assisted tunneling in the
dielectric [14, 16]. Due to the physical mechanisms behind the device’s operation,
these devices present intrinsic nonidealities. Specifically, programming C2C varia-
tions of the CF morphology and the dielectric composition [17], result in stochastically
distributed resistive states which can influence the available memory window and
circuit reliability. Also, random telegraph noise (RTN), which is caused by the effect
of interstitial oxygen ions and vacancies [11, 18], is typically observed in low voltage
reads.

2.1 The UNIMORE RRAM physic-based compact model

When designing novel RRAM-based circuits, RRAM devices nonideal effects and
complex switching mechanism, result in non-trivial design constraints that need
appropriate analysis tools to be studied. Thus, compact models of RRAM devices have
been developed to enable circuit simulations [19]. Different compact models typically
adopt different approximations, and two main categories can be identified, i.e., gen-
eral purpose and physics-based compact models. The formers, typically adopt simpler
equations that enable to simulate larger circuits, however at the expense of lower
accuracy when simulating the device operation outside the operating range considered
for parameter calibration, and a lack of a clear mapping between model and technol-
ogy related parameters. Conversely, in physics-based compact models, parameters
and equations are linked to the device physics, enabling to reproduce the device
characteristic in multiple operating conditions [11] and simplifying the parameter
extraction [20]. Thus, as a first step when studying the performance and reliability
tradeoffs of novel RRAM-based circuits, physics-based compact models should be
employed [21].

For the analysis and use-case examples reported in this chapter, the UNIMORE
RRAM physics-based compact model available in [10, 11], is used. Other physics-
based compact models could also be used to perform the analysis [21–23], however for
other compact models, clear parameter extraction procedures are currently not avail-
able [20]. The UNIMORE RRAM compact model is implemented in Verilog-A and
reproduces the effects of self-heating, C2C variability, multi-level RTN, and is com-
pleted by an automated parameter extraction procedure [20]. The RRAM device
approximated by the compact model is shown in Figure 1a and b for a device in LRS
and HRS, respectively. The compact model considers a CF and a dielectric barrier
whose thickness x is modulated by means of a system of differential equations, which
take into account thermal effects, the field-driven oxygen ions drift and recombina-
tion during the device reset, and the field-accelerated bond breaking during the device
set [10, 11]. Internally, the compact model includes two sub modules that reproduce
the effects of C2C variability and RTN, as shown in Figure 1b. A detailed description
of the modeling of C2C variability and RTN is available in [11, 18]. The compact
model was calibrated in [11] on 4 RRAM metal-oxide-based bipolar RRAM technolo-
gies. In the rest of the chapter, data and results of simulations are reported considering
the model calibrated on the TiN/HfOx/AlOx/Pt RRAM technology from [12], which
has an IC of 100 μA. The calibrated compact model can well reproduce the experi-
mental data in different operating conditions, as shown in Figure 1c and d, the

3

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

experimental probability distributions of the resistive states, see Figure 2a, and multi-
level RTN signals, as shown in Figure 2b and c. Simulations are performed with
Cadence Virtuoso®.

2.2 Using compact models to study RRAM-based IMC architectures

As discussed in the following sections, IMC accelerators can be quite complex, and
composed of a large number of RRAM devices and components. As the size of the
accelerators increases, circuit simulation can quickly require excessive computing
resources that are often not available. A possible approach is to study the problem at
different abstraction layers. Specifically, the three steps approach shown in Figure 3
can be followed. The first step of this methodology requires the electrical characteri-
zation of novel emerging nonvolatile memory devices, and the application of param-
eter extraction strategies to calibrate compact models on the specific technology. In
the second step, the compact model is used to perform circuit simulations of smaller
portion of the entire architecture. Specifically, the functionality of the core of opera-
tions of the in-memory computing framework of interest is first simulated using the
compact model without including nonideal effects. The results of these simulations
can provide indications regarding valid circuit operating points and the existing
design tradeoffs. Parametric simulations including the device nonideal effects are then
used to identify appropriate operating points that satisfy the desired reliability vs.
performance tradeoffs, and to estimate the performance in the worst-case (WC in
Figure 3) corners of the circuit. Finally, the results from the previous analysis can be
used to estimate the performance of a more complex design based on the core

Figure 1.
Representation of an RRAM device as approximated in the compact model for a device in (a) LRS and (b) HRS,
respectively. The defects causing RTN are also shown. (b) Functional block diagram of the compact model. The
internal models for the device nonidealities are shown. Experimental and simulated, (c) quasi-static IV, and (d)
pulsed reset characteristics of a TiN/HfOx/AlOx/Pt device. Data from [12].

Figure 2.
Experimental and simulated cycle-to-cycle variability at different reset voltages. (b) and (c) simulated RTN at
different read voltages for a device in (b) LRS, and (c) HRS.

4

Neuromorphic Computing

operations studied with the compact model. Specifically, the worst-case performance
estimates for the core operations are mapped to each operation executed at the archi-
tectural level. Although this step introduces several approximations, the use of the
worst-case performance for each operation results in an underestimation of the energy
efficiency therefore providing a sufficient headroom to account, to first order, for
additional energy overheads possibly existing in the complete architecture.

A use case example of this methodology is discussed in the following sections of
this chapter. In Section 3, the compact model is used to study the performance and
reliability of the core operations of a LIM architecture, while in Section 5 the results of
analysis enabled by the compact model are used to estimate the performance, at a
higher abstraction level, of an inference accelerator based on BNNs.

3. Logic-in-memory with RRAM devices

In recent years, several IMC hardware accelerators based on resistive memory
technologies have been proposed in the literature as a solution for improving compu-
tation efficiency, especially for data intensive tasks. Among these accelerators, LIM
circuits enable the computation of logic operations on arrays of RRAM devices. Two
different approaches can be commonly distinguished, i.e., stateful and non-stateful
computing paradigms. Stateful LIM frameworks include the material implication
[4, 24] and the memristor-aided logics (MAGIC) [2]. In these approaches, RRAM
devices are treated at the same time as computing and storing elements. When
performing an operation, inputs are stored as the resistive state of RRAM devices, and
by using specific voltage pulses, the resistive state of an output device is either
changed or preserved depending on the input combination. Non-stateful LIM
approaches such as the scouting logic [25] and the smart material implication logic
(SIMPLY) [26], instead, exploit the peripheral circuit to perform part of the compu-
tations. Inputs are encoded in the nonvolatile resistance of RRAM devices which are
read in parallel with small voltages (i.e., ≈100 mV). The voltage at a specific circuit
node changes depending on the input combination, and by sensing this voltage it is
possible to implement different logic operations.

In the following subsections, the compact model is used to study the performance
and reliability of a stateful and a non-stateful LIM frameworks based on the material

Figure 3.
Flow-chart of the methodology enabled by the RRAM physics-based compact model that can be used to design
reliable RRAM-based in-memory computing architectures and to estimate their performance.

5

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

implication logic. In addition, in Section 3.3 the performance and characteristics of
different LIM frameworks are compared considering the computation of a 1-bit full
addition operation as a benchmark.

3.1 RRAM-based material implication logic

The material implication logic is type of stateful logic that is functionally complete
[27] and is based on two core operations, the IMPLY and the FALSE. These two
operations were demonstrated in [4] to be easily implemented with RRAM devices
and a circuit such as the one reported in Figure 4a, which consists of RRAM devices,
that store the inputs and outputs of IMPLY and FALSE operations and act as comput-
ing elements, a control logic and analog tri-state drivers that deliver appropriate
voltages to RRAM devices, and a resistor RG. The IMPLY is a two inputs one output
operation and its truth table is reported in Figure 4b. To execute an IMPLY operation,
the inputs are encoded in the resistive state of devices P and Q. Then, the control logic
delivers two voltage pulses with amplitudes VCOND and VSET, on P and Q, respec-
tively. The voltage pulse amplitudes are dimensioned so that the state of device P
never changes, while the state of device Q changes according to the truth table in
Figure 4b. The FALSE operation is a 1 input 1 output logic operation which always
results in logic 0 output and is implemented by delivering a negative voltage VFALSE to
an RRAM device.

However, the use of high voltage pulses to conditionally program the output device
in the IMPLY operation, leads to intrinsic reliability challenges that need to be studied
with accurate compact models, including the effects of temperature and variability.
Using the UNIMORE RRAM physics-based compact model, simulations of the IMPLY
operation performed in [5] for different pairs of VSET and VCOND voltages show that
only a very narrow design space exists. As shown in Figure 4c, voltage variation of
tens of mV, easily introduced by voltage drivers and line parasitic resistances, can lead
to a malfunction of the circuit [5]. Also, the use of high voltage pulses induces the
problem of logic state degradation [3, 5, 26] on devices that should preserve a HRS
after the operation execution. These are devices P and Q in the first and third cases of
the truth table, respectively. In these cases, although the voltage drop across these
RRAM devices cannot fully switch a device, it can induce a drop of their resistance.
Repeatedly executing IMPLY operations on these devices eventually leads to a bit

Figure 4.
(a) RRAM-based material implication logic core gate. (b) IMPLY operation truth table. Q’ is the state of Q after
the operation execution. (c) Map of the VSET and VCOND pairs leading to a correct IMPLY gate operation. The
effect of C2C variations is considered. Data from [5]. d), and e) effect of the resistive state degradation on device P
and Q, due to the repeated execution of IMPLY operations on the same input device when both inputs are zero and
when P = 1 and Q = 0, respectively.

6

Neuromorphic Computing

corruption. This effect cannot be prevented completely, due to existence of opposite
requirements on VCOND for the two cases of the truth table. The number of cycles
before a corruption depends on the VSET and VCOND pair, but also on the initial device
resistance, as shown in Figure 4d and e.

Thus, although promising, the analysis performed with the compact model
highlighted that this stateful LIM framework is intrinsically unreliable and other
approaches should be preferred.

3.2 The smart material implication logic

The SIMPLY LIM framework was proposed in [26] as a more reliable and efficient
solution to implement the material implication logic on RRAM devices. The circuit
used to implement an IMPLY operation is similar to the one used in the stateful
approach with the addition of a comparator which is feedback to the control logic, see
Figure 5a. Since, during an IMPLY operation, the state of the output device Q changes
only when both P and Q are in HRS, in the SIMPLY framework the operation is split
into a read step, which detects this input configuration, followed by a conditional
programming step, as sketched in Figure 5b. During a read step small (i.e., ≈ 100 mV)
voltage pulses are delivered to the input RRAM devices. As a result, the voltage across
RG (i.e., VN) when both inputs are in HRS is lower than in all the other cases. Thus, a
sufficient read margin exists to discriminate the first case of the truth table from all
the others by using a comparator with an appropriate threshold VTH. In the condi-
tional programming step, the control logic delivers VSET to Q only when the compar-
ator detects the first case of the truth table, while it keeps the analog drivers in high
impedance otherwise. Since only a sufficient read margin needs to be ensured, this
approach is intrinsically more reliable than the stateful one. In fact, circuit simulations
performed in [26, 28, 29] with the compact model, including the effect of variability
and RTN showed that a sufficiently large read margin is easily obtained by tuning the
read voltage and VFALSE (i.e., higher HRS leads to larger memory windows). Also,
simulations confirmed that by delivering only small read voltages to the RRAM
devices, the effect of variability is virtually solved. In addition, VCOND is no more

Figure 5.
a) SIMPLY core logic gate. b) Signals used to perform an IMPLY operation in the SIMPLY framework. When the
input configuration P = Q = 0 is detected, VSET is delivered to Q. In all the other cases the voltage drivers are kept in
high impedance (hi-Z). c) Sense amplifier circuit from [26] used as comparator. d) Control (i.e., CTRLIN,
CTRLOUT, RD, TAIL, and RST) and output signals (i.e., VOUT) of the sense amplifier circuit in c). A complete
comparison is completed in four steps: 1) the internal nodes of the VSA are pre-charged with the input and
threshold voltage (i.e., VTH); 2) the comparison is performed by turning on the TAIL transistor; 3) the result of the
comparison is passed to the output node; 4) the control logic delivers the conditional VSET pulse and resets the
internal nodes of the VSA.

7

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

required, and since VSET is applied only when P and Q are zero, in three out of four
cases of the truth table the energy consumption is greatly reduced with respect to the
stateful implementation, as discussed in [28]. Additional energy can be saved using
the same approach on the FALSE operation, thus splitting the operation into a read
step followed by a conditional VFALSE pulse. When the device is already in the HRS,
delivering VFALSE to the device would waste additional energy.

Also, the multi-input IMPLY operation was proposed in [30] to speed up compu-
tations, and its feasibility up to four inputs operations was demonstrated by means of
circuit simulations on SIMPLY-based architectures in [31]. In the SIMPLY framework
the multi-input IMPLY operation (hereafter called n-IMPLY, where n indicates the
number of inputs) is executed in the same way as the two inputs IMPLY operation,
with the only difference that all the input devices are read in parallel. VSET is then
delivered to the output device only when all the inputs are in HRS. The logic operation

is equivalent to Q 0 ¼ Q þ Pþ Sþ … , where the output is written on Q while P and S
are other input devices. Although the read margin at the input of the comparator
decreases for increasing number of inputs, the same voltage threshold VTH can be
used. The SIMPLY architecture enabling the execution of n-IMPLY operations is
referred to as n-SIMPLY in this chapter.

To correctly evaluate the performance of SIMPLY-based architectures it is impor-
tant to also evaluate the performance of the comparator. The latter was implemented
as a voltage sense amplifier (VSA) designed in [26] with a 45 nm technology from
[32]. The circuit of the VSA and the timing of the control signals are reported in
Figure 5c and d. The proposed design consumes less than 8 fJ per comparison when
VDD is 2 V and the temperature is in the range 0 to 85°C.

3.2.1 Full adder implementation on a n-SIMPLY-based architecture

To implement more complex logic functions, sequences of IMPLY and FALSE
operations and a sufficient number of devices are required. To highlight the remark-
able energy efficiency of the n-SIMPLY architecture here we consider the implemen-
tation of a full adder (FA). As shown in Figure 6a, to implement a 1-bit FA an array
with at least 8 RRAM devices is needed. These devices are used to store the inputs
(i.e., IN1, IN2, and CIN), the outputs (i.e., S, COUT), and partial results (i.e., M1, M2,
and M3) of the operation. To compute the result of the 1-bit addition, the 15 comput-
ing steps of n-IMPLY and FALSE operations reported in Figure 6b need to be exe-
cuted sequentially [31]. The circuit in Figure 6a was simulated in [31] using the
compact model and considering a clock frequency of 500 MHz, to estimate its perfor-
mance. As reported in [31] the computation of a 1-bit FA consumes a worst-case

Figure 6.
a) Implementation of a 1-bit FA on the n-SIMPLY architecture. b) Sequence of computing steps from [31]
required to compute the output for a 1-bit FA when exploiting the n-SIMPLY framework.

8

Neuromorphic Computing

energy of 4.2 pJ and it is computed in 60 ns. Although these numbers are orders of
magnitude higher than those achievable with full CMOS implementations, n-SIMPLY-,
and LIM-based architectures in general, provide considerable advantages when data
intensive tasks are considered. Thus, in [31] the parallel execution on conventional
CMOS circuits and on the n-SIMPLY architecture of 512 32-bit FA operations was
compared. When including the VNB overhead, the n-SIMPLY architecture was demon-
strated to achieve a > 106 energy delay product (EDP) improvement with respect to the
CMOS implementation.

3.3 Comparison with other RRAM-based logic circuits

Although in this chapter material implication-based LIM frameworks are analyzed
as a use case example, other approaches have been studied in the literature. Here
follows a description and an analysis of the main characteristics and performance of
the most common LIM frameworks in which RRAM devices are used both as
computing and as memory elements, and hence can enable the implementation of
non-von Neumann computing architectures.

3.3.1 Memristor ratioed logic

Although the Memristor Ratioed Logic (MRL) [33, 34] enables to fabricate logic
gates with smaller footprints with respect to conventional CMOS logic circuits, it is
not included in the analysis because in this framework RRAM devices are used only as
computing elements, while inputs are encoded as voltages. Ali et al. demonstrated in
[34] a possible realization on a crossbar array of a MRL-based FA design, however in
this approach the computation parallelism is limited, and retrieving the input data
would still incur in the VNB overhead.

3.3.2 Memristor-aided logic

The MAGIC LIM framework is similar to the stateful RRAM-based material impli-
cation logic one described in Section 3.1. The core logic operations in the MAGIC
framework are the NOR and the NOT operations that can be implemented with
RRAM devices using the circuit shown in Figure 7a. Differently from the stateful
material implication logic gate, the resistor RG is replaced with an RRAM device (i.e.,
O in Figure 7a) which stores the result at the end of an operation execution. Thus,
before each operation O is set into LRS. The inputs are stored on the devices P and Q
(see Figure 7a), and by delivering a negative voltage pulse with amplitude V0 to their
TE, the resistive state of the device O changes depending on the resistive state of the
inputs. As in the stateful material implication logic implementation, the conditional
programming of an RRAM device reduces the circuit reliability, increasing the BER.
As discussed in [35, 36], RRAM-based MAGIC implementations are affected by the
small design space, and by logic state degradation, the latter affecting both the input
and output devices. Also, as discussed in [35], the circuit reliability is strongly
influenced by the RRAM technology characteristics. Indeed, larger |VSET/VRESET|and
ROFF/RON ratios can potentially improve the circuit reliability, provided that the effect
of C2C variability is considered in the design phase. This further underlines the
importance of accurate compact models for the implementation of device-circuit co-
optimization strategies.

9

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

3.3.3 Scouting logic

The approach used in scouting logic is similar to the one employed in the SIMPLY
framework. As shown in Figure 7b, also in this case RRAM devices encode the input
bits of logic operations, and their state is read in parallel using current or voltage sense
amplifiers. The equivalent parallel resistance of the input RRAM devices changes
depending on the number of inputs in LRS, leading to different distributions at the
input of the sense amplifier [25]. By using different thresholds, the sense amplifier can
implement different logic operations. Specifically, by discriminating the 11 input
combination from the others using the sense amplifier and VTH2 (see Figure 7b), the
control logic in the array periphery can compute the AND and NAND logic opera-
tions. Conversely, the OR and the NOR operations can be implemented by discrimi-
nating the 00 input combination from the others using the VTH1 threshold (see
Figure 7b). Also, in this framework the XOR and XNOR operations could be poten-
tially implemented in only two read steps which discriminate the 01 input combina-
tion from the others. However, although as discussed in Section 3.2 for the SIMPLY
framework, the 00 input combination can be reliably distinguished from the others,
the distributions at the input of the sense amplifier for the 01 and 11 input combina-
tions overlap due to the effects of variability and RTN, leading to very high bit error
rates and a low circuit reliability when computing AND, NAND, XOR, or XNOR
operations. Thus, in this framework only OR and NOR operations can be reliably
computed [37]. Also, differently from SIMPLY, in which the output device is also an
input of IMPLY operations, in scouting logic if more complex operations are
implemented, partial results need to be stored on an additional device. Using the same
device to accumulate multiple partial results (i.e., to OR together the partial results)
may cause a set voltage pulse to be applied to a device already in LRS, thus causing
high energy consumption.

3.3.4 Enhanced scouting logic

To improve the reliability of the scouting logic, Yu et al. introduced in [37] an
enhanced version which is based on 2T1R memory arrays. As sketched in Figure 8a
and b, the transistors in series with the RRAM devices can be used to either read the

Figure 7.
a) NOR operation as implemented in the MAGIC LIM framework on a linear RRAM array. The resistive state of
the output device O changes depending on the input configuration. b) Sketch of the scouting logic LIM framework
and associated reliability issues. Similarly to SIMPLY, two devices are read in parallel and the voltage (VN) at the
input of a sensing circuit changes depending on the input configuration. The sensing circuit tries to detect how many
devices are in LRS, but as shown in the sketched distribution of VN for different input combinations, while a
sufficient read margin exists to detect the 00 combination, the 01 and the 11 VN distributions are partially
overlapped, thus leading to high BER.

10

Neuromorphic Computing

equivalent parallel or series resistance between the two RRAM devices storing the
input bits. As in the scouting logic, when reading the resistive state of the two devices
in parallel the 00 input combination can be easily distinguished from the others to
compute the OR or NOR operations. Instead, by reading the equivalent series resis-
tance, the 11 input combination can be distinguished from the others thanks to a
sufficiently large read margin, which enables the correct implementation of AND and
NAND operations. Thus, by trading an increased chip area for reliability, in this
framework both OR and AND operations can be reliably computed. Compared to the
SIMPLY framework this approach can potentially reduce the number of computing
steps required to compute more complex operations, however at the cost of a larger
chip area that is required to accommodate the additional bit line and selector transis-
tor, and a more complex sense amplifier circuit.

3.3.5 Performance comparison on a 1-bit FA implementation

The performance of LIM frameworks can be compared considering different met-
rics. As shown in Table 1, these include both metrics that can be directly associated
with specific LIM frameworks (i.e., number of devices and of computing steps used to
implement a specific logic function, and the feasibility in crossbar arrays), and other
metrics that also depend on design choices and the specific technology employed to
fabricate or to simulate the circuits, making the comparison between different LIM
solutions non-trivial. To identify key differences between different LIM approaches
the execution of a 1-bit FA operation is considered, since it represents a common
simple benchmark for LIM frameworks.

Considering the stateful material implication-based implementations (i.e.,
“Stateful Mat. Imp.” in Table 1) different approaches can be followed to optimize the
number of required devices or the number of computing steps. As reported in the

Figure 8.
Operation of the enhanced scouting logic implementation on 2T1R arrays from [37]. a) Execution of an OR/NOR
operation. The WL and BL are controlled so that the parallel resistance between the input devices is connected to
the sense amplifier. b) Execution of an AND/NAND operation. The WL and BL are controlled so that the series
resistance between the input devices is connected to the sense amplifier.

11

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

Author(s) Type of

LIM (Sim/

Exp)

Physics-

Based

Model

Number

of

Devices

Feasible

in RRAM

Array

Number of

Elementary

Steps

Delay Energy Circuit parameters** Retains

input values

Endurance

before

Refresh*

Talati et al.

[38]

MAGIC

(Sim)

NO 5–19 YES 13–15 ≈ 17–19.5 ns

(Reported)

≈3–6pJ

(Reported)

V0 = 1 V VSET = 2 V VRESET = -

1 V fop = 0.77GHz RLRS ¼ 1kΩ

RHRS ¼300kΩ

NR (Tech. &

Design

Dependent)

NR

Yu [37] Enhanced

scouting

logic

NR 9 RRAM YES 17 68 ns

(Estimated at

0.5 GHz)

NR VSET = NR

VRESET = NR

VREAD=NR

fop = 0.33GHz

RLRS ¼ 30kΩ

RHRS ¼16.6 MΩ

RG = 160kΩ

YES NR (Expected

to be high)

Siemon

et al. [39]

n-bits

Stateful

Mat. Imp.

(Sim)

YES 8 RRAM YES 19 3.61 μs

(estimated)

202 pJ

(estimated)

VSET = 1.45 V

VCOND = 1.24 V

fop = 1 MHz

RLRS ¼NR

RHRS ¼NR

RG = 15kΩ

NO NR

Lehtonen

et al. [27]

Stateful

Mat. Imp.

(Sim)

NO 8 RRAM YES 136 NR NR NR YES NR

Kvatinsky

et al. [3]

Stateful

Mat. Imp.

(Sim)

NO 9 RRAM YES 23 9.1 μs

(estimated)

NR VSET = 1 V

VCOND = 0.5 V

fop = 2.5 MHz

RLRS ¼1kΩ

RHRS ¼ 100kΩ

RG = 10kΩ

NO ≈ 300 up to

105 (trades

with energy)

Kvatinsky

et al. [3]

Stateful

Mat. Imp.

(Sim)

NO 6 RRAM YES 29 11.5 μs

(estimated)

NR VSET = 1 V

VCOND = 0.5 V

fop = 2.5 MHz

RLRS ¼1kΩ

NO ≈ 300 up to

105 (trades

with energy)

12 N
eu
rom

orp
h
ic
C
om

p
u
tin

g

Author(s) Type of

LIM (Sim/

Exp)

Physics-

Based

Model

Number

of

Devices

Feasible

in RRAM

Array

Number of

Elementary

Steps

Delay Energy Circuit parameters** Retains

input values

Endurance

before

Refresh*

RHRS ¼ 100kΩ

RG = 10kΩ

Cheng

et al. [40]

Stateful

Mat. Imp.

(Exp)

NA 8 RRAM YES 27 54 μs

(reported)

19.5 pJ

(reported)

VSET = -2 V

VCOND = -1 V

VRESET = 1.5 V

fop = 200 kHz

RLRS ¼ 3kΩ

RHRS ¼300kΩ

RG = 20kΩ

NO NR

Zanotti

et al. [26]

Stateful

Mat. Imp.

(Sim)

YES 9 RRAM YES 43 345 ns

(Reported)

6.4 nJ

(reported)

VSET = 2.15 V

VCOND = 1.7

VRESET = -1.45 V

fop = 0.05GHz

RLRS ¼ 2:8kΩ

RHRS ¼150kΩ

RG = 1kΩ

YES 67

Zanotti

et al. [26]

Stateful

Mat. Imp.

(Sim)

YES 8 RRAM YES 28 560 ns

(Reported)

518 pJ VSET = 2.15 V

VCOND = 1.7

VRESET = -1.45 V

fop = 0.05GHz

RLRS ¼ 2:8kΩ

RHRS ¼150kΩ

RG = 1kΩ

YES ≈ 30

Zanotti

et al. [26]

SIMPLY

(Sim)

YES 8 RRAM YES 28 920 ns

(Reported)

172 pJ VSET = 2.15 V

VRESET = -1.45 V

VREAD = 0.2 V

fop = 25 MHz

RLRS ¼ 2:8kΩ

RHRS ¼150kΩ

RG = 1kΩ

YES > 4.5∙106

(no energy

trade-off)

13 Stu
d
y
of

R
R
A
M
-B
a
sed

B
in
a
rized

N
eu
ra
l
N
etw

orks
In
feren

ce
A
ccelera

tors
U
sin

g
a
n
R
R
A
M
…

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.110340

Author(s) Type of

LIM (Sim/

Exp)

Physics-

Based

Model

Number

of

Devices

Feasible

in RRAM

Array

Number of

Elementary

Steps

Delay Energy Circuit parameters** Retains

input values

Endurance

before

Refresh*

Zanotti

et al. [31]

n-SIMPLY

(Sim)

YES 8 RRAM YES 15 60 ns

(Reported)

4.2 pJ VSET = 3 V

VRESET = -2.8 V

VREAD = 0.2 V

fop = 0.25GHz

RLRS ¼ 10:5kΩ

RHRS ¼ 550kΩ

RG = 10kΩ

YES > 4.5∙106

(no energy

trade-off)

Junsangsri

et al. [41]

CMOS LIM

(Sim)

YES

(FET)

NO

(RRAM)

41 FET +

4 RRAM

NO NA 52 ps

(Reported-

excludes RRAM

delay)

2.2 fJ (reported-

excludes RRAM

energy)

VDD = 3.3 V

RLRS ¼30kΩ

RHRS ¼100 MΩ

YES NR (Limited

by FET

Reliability)

*This estimate can be trusted only when a physics-based model was used.**Circuit parameters reported by the authors in their manuscripts. fop is the frequency of single operation execution (e.g., 1/
tIMPLY). NA stands for “not applicable.” NR stands for not reported.
In the table, reported indicates that the values were explicitly reported in the paper. Estimated indicates that the corresponding value was extrapolated from data in the paper since it was not
explicitly reported.

Table 1.
Comparison of 1-bit FA implementations based on different LIM frameworks.

14 N
eu
rom

orp
h
ic
C
om

p
u
tin

g

literature [3, 26, 27, 40], typically a 1-bit FA operation can be implemented using from
6 up to 9 RRAM devices, and sequences of IMPLY and FALSE operations which length
vary from as low as 23 steps, when the inputs are overwritten, up to 136 steps when
the sequence is not optimized. To further reduce the number of computing steps, the
multi-input stateful material implication framework was proposed by Siemon et al. in
[39], showing that by using three-inputs IMPLY operations the number of computing
steps can be reduced down to 19 steps when using 8 RRAM devices. The n-SIMPLY
framework discussed previously in Section 3.2, enables to reliably compute 4-inputs
IMPLY operations, and thus it reduces the number of computing steps down to 15. In
terms of number of computing steps, the different set of core operations used in the
enhanced scouting logic and the MAGIC LIM frameworks provides additional advan-
tages compared to most of the material implication-based solutions. Although, not
explicitly reported in the literature, by combining AND, NAND, NOR, and OR oper-
ations in the enhanced scouting logic array implementation (see Figure 8), the 1-bit
FA operation is executed in 15 steps, which could be further reduced as in the n-
SIMPLY approach by increasing the parallelism of the OR/NOR operations (the par-
allelism of the AND/NAND operations cannot be increased in the architecture
reported in [37]). MAGIC-based implementations in [38] can achieve the lowest
number of computing steps (i.e., 13 steps) among the different LIM implementations
reported in Table 1.

Although the number of computing steps is linked to the computing delay (i.e.,
delay = #steps ∙ tstep) and can give an idea about the energy efficiency of the specific

implementation (i.e., Etot ¼
P#steps

i¼1 Ei, where Ei is the energy dissipated in each step),
the achievable time (tstep) and energy (Ei) per single computing step depend on the
characteristics of the RRAM technology that is used on the adopted design choices.
Also, the accuracy of the performance and reliability analysis depends on the type of
compact model used in the circuit simulations. Indeed, compared to general purpose
memristor models, the use of physics-based compact models can provide more accu-
rate results when fast voltage pulses are used and enable to analyze important
nonideal effects such as the logic state degradation. Thus, in Table 1, along with the
energy and computing delay of different implementations from the literature, also the
main circuit parameters and an indication regarding the type of compact model used
in the simulations are reported. In general, to reduce the energy per computing step,
increasing the LRS resistances can be a viable solution. However, larger voltages must
be employed to program a device without increasing the programming pulse width,
potentially conflicting with the desired circuit design space. In terms of energy effi-
ciency, currently a hybrid FET-RRAM design from [41] shows the best performance.
However, this implementation is not feasible in crossbar arrays, limiting the area
efficiency, and simulations were performed with an extremely simplified RRAM
model, suggesting the need for a more accurate performance analysis. Among the
available data regarding crossbar-feasible implementations, MAGIC and n-SIMPLY
achieve the best energy and delay performance. However, although MAGIC is slightly
more efficient than n-SIMPLY, the 1-bit FA implementation does not retain the input
states and is affected by the problem of logic state degradation, which can discourage
its adoption in applications such as hardware accelerator for BNNs. In BNN the
network parameters, stored in the nonvolatile resistance of RRAM devices, must be
preserved through computations. Thus, the effect of logic state degradation intro-
duces the need for frequent memory refresh cycles, causing high inefficiencies.
Therefore, in the following sections, the design of a LIM-based accelerator for BNNs is
discussed considering an n-SIMPLY implementation.

15

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

4. RRAM-based binarized neural networks accelerators

In BNNs [9] weights and activations of neural networks are represented with a
single bit. Despite the considerable reduction in the required hardware resources,
for some classification tasks, BNNs were demonstrated to achieve similar perfor-
mance with respect to full precision neural network implementations, with only
slight accuracy degradation [9]. The use of binary weights and activations, not only
leads to a reduction of the size of the memory used to store the network parame-
ters, but also reduces the complexity of the operations performed by each neuron of
the network. As shown in Figure 9a, in full precision neural networks each neuron
computes the dot product between its input activations (i.e., X) and the learned
weights (i.e., W), adds a bias term (i.e., b) to the result, and finally applies a
nonlinear activation function (i.e., ReLu in Figure 9a) to compute the output
activation. In BNNs, these operations translate to simpler logic operations. Specifi-
cally, the dot product becomes a bitwise XNOR followed by an accumulation, or
popcounting, of the results, and the activation function becomes the comparison
with a learned threshold. Despite using less memory space to store the network
parameters, BNNs are still characterized by a large number of parameters. Running
inference tasks on conventional hardware would incur in the VNB, therefore
degrading the performance. Thus, several IMC hardware accelerators based on
RRAM technologies have been proposed in the literature [7, 8, 42], showing prom-
ising efficiency improvement without considerable accuracy degradation. In fact,
binary storage is currently a more robust approach for state-of-the-arts RRAM
technologies with respect to multibit storage on a single which is more affected by
device nonidealities.

Figure 9.
(a) Sketch of a fully connected neural network, with k inputs,m neurons in the hidden layer, and n neurons in the
output layer. The operation performed by each neuron is shown. (b) Implementation of a neuron in BNNs. The
vector-vector multiplication becomes the accumulation of the results from bitwise XNOR operations, and the
activation function the comparison with a threshold. (c) 2D array of 1T1R devices that can be used to accelerate in
hardware the operations required for classification tasks based on BNNs, in the SIMPLY framework. FETs control
signals are managed by the control logic.

16

Neuromorphic Computing

In the following sections, three different BNN hardware accelerators based on
1T1R memory arrays are discussed and benchmarked. Specifically, Section 4.1
describes SIMPLY-based implementations, Section 4.2 discusses analog accelerators
for VMM used in BNNs, and Section 4.3 describes a hybrid accelerator combining the
previous two approaches on the same array.

4.1 SIMPLY-based BNN accelerators

Since the core operations of BNNs are logic operations, SIMPLY-based architec-
tures can be used to realize energy efficient hardware accelerators for inference tasks.
Such accelerators can be realized on memory arrays and a peripheral circuit such as
the one shown in Figure 9c, enabling the implementation of single instruction multi-
ple data architectures, which can exploit the intrinsic parallelism of BNN inference
algorithms [28, 31, 43]. In fact, depending on the number of comparators placed in the
array periphery, and the design of the drivers and control logic, multiple devices in
different rows and in the same column can be read and programmed in parallel. For
instance, to perform an IMPLY operation in the SIMPLY framework on multiple rows
of the array, the columns of interest are biased with the read voltage and the
corresponding select lines are biased to turn on the selector FET. At the same time,
FET devices in the array periphery are biased to implement RG and bring the voltage
at the row of interest to the input of a VSA. Then the column corresponding to the
output device is biased with VSET and FET devices in the array periphery provide a
low conductive path for the devices that need to be programmed.

In the rest of this section, the implementation of the different core operations of
BNNs on the SIMPLY architecture is discussed.

4.1.1 XNOR operation

In BNNs, a dot product operation is equivalent to a bitwise XNOR operation
between the input activations and the weights of the neuron, followed by an accumu-
lation of positive results. As shown in Figure 10, for BNN applications, each XNOR
operation can be implemented with 5 RRAM devices and 5 computing steps [31],

provided that both the weight (i.e., W) and its complement (i.e.,W) are stored in the
memory array and never overwritten. The other three devices store the input (i.e.,
IN), the output (i.e., O), and the partial result (i.e., N1) of the XNOR. Since operations

Figure 10.
(a) XNOR gate implementation used for BNN inference tasks in the SIMPLY framework. To reduce the number of
computing steps, the weight, and its complement (i.e., W, and W, respectively) are stored in the array and
preserved through the computations. (b) Sequence of computing steps in the n-SIMPLY framework.

17

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

on the same row of an array are sequentially executed, N1 can be reused in the
subsequent XNOR operation when computing a dot product.

4.1.2 Accumulation operation

To implement the accumulation operation, different approaches corresponding to
different sequences of IMPLY and FALSE operations can be followed. As proposed in
[31, 43], the accumulation operation can be implemented with a chain of half adders
(HAs), see Figure 11a and b. Each HA receives in input its output from the previous
step and a new input bit when it computes the least significant bit (LSB), or the output
carry from the previous HA in the chain otherwise. In the SIMPLY implementation,
when a new bit is accumulated, the result of each HA in the chain is computed
sequentially, starting from the LSB. However, based on the position of an HA in the
chain (i) its result is computed only after 2i input bits have been accumulated, since
when fewer bits have been accumulated the corresponding HA output would be zero.
Although the number of HAs grows as the log2() of the number of input bits, the
number of computing steps grows exponentially. As shown in Figure 11e and f,
exploiting different maximum parallelism in the framework of n-SIMPLY to optimize
the sequence of computing steps results in a > 15% reduction in the number of
computing steps with respect to the 2-SIMPLY implementation [31], however, to
further improve the efficiency different approaches can be followed.

Here we propose a SIMPLY-based implementation of a binary tree adder architec-
ture as the one shown in Figure 11d. In each level of the tree, the results from the
previous level are added two by two, until all the input bits are accumulated. Thus, the
number of levels of the tree corresponds to the log2() of the number of input bits.
From one level of the tree to the following, the size of the FA increases by 1 bit. Each
adder is implemented as a ripple-carry adder, see Figure 11c, with a 1-bit HA requir-
ing 9 computing steps, and a 1-bit FA requiring 15 steps (see Figure 6b). This

Figure 11.
(a) Implementation of the accumulation operation on m input bits with a chain of n HAs, as in [31]. (b) Truth
table of the 1-bit HA used in the HA chain. (c) n-bit ripple-carry adder implementation used as the core element
of the binary tree adder-based accumulator. (d) Example of a binary tree adder used to accumulate 16 input bits.
The number of levels in the binary tree grows as the log 2 mð Þ. (e) Comparison of the number of steps required to
accumulate (2n-1) bits for different accumulator implementations. (f) Percentage of saved computing steps with
respect to the 2-SIMPLY HA chain implementation of the different accumulator implementations.

18

Neuromorphic Computing

approach provides a considerable performance improvement compared to the HA
chain implementation as shown in Figure 11e and f.

4.1.3 Comparison operation

In the original BNN implementation form Courbariaux et al. [9], weights and
activations are encoded with +1 and � 1 values, meaning that the result of the
accumulation operation spans from negative to positive values. Thus, the activation
operation is commonly implemented using the sign() function. Conversely, in the
SIMPLY-based implementation, weights and activations are encoded with 0 and 1,
and the result of the accumulation is a positive value, ranging from zero to the number
of products performed in the neuron. Thus, the activation function in SIMPLY-based
implementations corresponds to the comparison with a threshold (i.e., half the num-
ber of products performed in the corresponding neuron). The comparator outputs a
logic 1 only when the result of the accumulation is above the threshold. The logic
function implementing this operation in the sum of products form is reported in
Figure 12a. As discussed in [31], increasing the parallelism in the read step of n-
IMPLY operation, considerably reduces the required number of computing steps
required for a comparison. In fact, when using only 2-IMPLY operations the number
of computing step grows exponentially with the number of inputs, while using
n-IMPLY operations with n > 2 leads to linear trends, as shown in Figure 12b. More
details regarding the different sequence of computing steps implementing the
comparison operation are available in [31].

4.1.4 Hard max operation

To determine the output class of an inference task the hard max function can be
used. This function determines the index of the maximum value among a group of
elements. A sketch of the approach used for the SIMPLY-based implementation is
shown in Figure 12c. Similarly to the binary tree adder, also in this case a binary tree
structure is used, and at each level of the tree pairs of elements are compared. To do
so, for each pair of elements, the one stored in the upper position of the array is copied
in the same row of the other element together with its ID. Then the two elements are

Figure 12.
(a) Comparator sketch and corresponding logic function, which outputs a logic 1 when a > th, and a logic 0
otherwise. (b) Number of computing step required for different n-SIMPLY-based implementations and increasing
number of compared bits (l). In the legend, n indicates the maximum degree of parallelism used in the parallel
read step of IMPLY operations. (c) Sketch of the hard max activation function implemented in the n-SIMPLY
framework. Inputs are compared pairwise using the comparator implementation in (a) and (b).

19

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

compared using the same comparator implementation used for the neuron activation
function. For each pair, the initial value and ID stored in the row are replaced with the
larger element resulting from the comparison. In just log2(number of elements) levels of
the tree, the result is computed and stored in place of the last element. Additional
information regarding the SIMPLY-based implementation is available in [11, 31].

4.1.5 Batch normalization operation/bias term addition

Batch normalization layers are often used in neural networks to speed up the train-
ing of the network parameters and consist in the scaling of the inputs of a layer using
learned parameters. In BNNs, instead, batch normalization is introduced between the
MAC operation and the sign() activation function, as discussed by Courbariaux et al.
[9]. Thus, during training, the average (m) and the standard deviation (σ) of the results
of the MAC operations of a layer are computed, while a scaling (γ) and a bias terms (βÞ
are learned and optimized through each iteration. In forward passes of the neural
network these parameters are used to regularize the results of the MAC operations (a),
so that the input to the sign() function is â ¼ a�mð Þ⨀ γ⨀ 1

σ
þ β.

As discussed in Section 4.1.3, in the SIMPLY-based implementation the activation
function is implemented as the comparison with a threshold (th), that is equivalent to
half the number of inputs of a layer if no bias term is added to the result of MAC
operations. Thus, the effect of the batch normalization parameters can be introduced
in the SIMPLY-based neural network by adjusting the value that is mapped to the

threshold of the activation function for each neuron (t̂h ¼ th�β

γ
σ þm).

In the output layer of a neural network, the hard max activation function is used to
infer the output of the network. Thus, batch normalization or equivalently the addi-
tion of a bias term, needs to be performed also on the SIMPLY-based architectures.
These operations consist in the addition of a fixed value to the results of the MAC
operation, and can be implemented on the SIMPLY-based architecture by adding the
bias term, that is stored on the memory array, using the ripple-carry adder described
in Section 3.2.1 and shown in Figure 11c.

4.1.6 Array level implementation

As discussed in the previous sections, the SIMPLY-based implementation of BNN
inference accelerators requires mapping to the resistive state of RRAM devices of
memory arrays, the inputs, the neurons weights, the thresholds of the activation func-
tions, the IDs of the output layer, and devices for storing partial results of computations.
Ideally, infinitely large arrays would simplify this task by storing all the parameters of a
single layer of the neural network onto a single array and the parameters of a single
neuron all on a single row of that array. However, real memory arrays have a limited
size due to nonideal effects, such as line parasitic resistance [44]. Thus, in practical
applications, the parameters of a neural network are split onto multiple arrays, and the
parameters of a single neuron onto multiple adjacent rows of the same sub-array, as
shown in Figure 13a. When the parameters related to a single neuron are split onto
multiple rows of the array, as in Figure 13b, each row of the array must still contain an
equal number of devices for storing the inputs, the weights, their complement, and the
outputs, for computing the partial results of the accumulation operations. Also, suffi-
cient space on the array must be left to store support devices and other network
parameters (e.g., the thresholds of the activation functions). After partial results are

20

Neuromorphic Computing

computed on each row, these must be copied to adjacent rows to compute the final
result. Despite the increased complexity in the mapping of the neural network weights
and the increased chip area occupied by the peripheral circuitry, the use of multiple
arrays enables increasing the computation parallelism, reducing the computation
latency. Results relative to different neurons stored on different sub-arrays can be
computed in parallel. Also, the intrinsic parallelism of 2D array implementations of the
SIMPLY architecture enables the parallel computation of partial results relative to a
single neuron when its parameters are split onto multiple rows on the same array.

However, the number of devices on the same column of an array that can be
programmed in parallel is constrained by the maximum current that can flow on a
single array line, potentially decreasing the maximum parallelism that can be
achieved. Indeed, this effect is connected to the current compliance used to program
RRAM devices in the array, and the use of RRAM technologies that can reliably store
binary values when programmed at low current compliance values would alleviate
this constraint and enable the parallel programming of devices located onto multiple
rows of the array.

4.2 BNN analog vector matrix multiplication accelerators

4.2.1 State of the art on RRAM-based analog BNN vector matrix multiplication
accelerators

Thanks to their intrinsic reconfigurability, LIM computing architectures such as
SIMPLY, are an effective solution for resource-constrained devices deployed at the
edge of the network. However, the high level of reconfigurability comes at the cost of
suboptimal performance when specific tasks need to be accelerated. For instance,
considering BNNs inference tasks, most of the computations performed are required
to compute the result of dot products [45]. Thus, designing optimized accelerators for
the VMM operation would provide a considerable improvement of the overall accel-
erator performance. Thus, several analog/mixed-signal RRAM-based accelerators of
the VMM used in BNNs have been proposed in the literature [6, 8, 42, 46, 47]. To
encode the �1 and +1 weights of BNNs, a common solution adopted in analog/mixed-
signal RRAM-based accelerators is to use a pair of devices (i.e., either 1T1R or 1R
devices) programmed in complementary resistive states for each weight of the BNN.
Driving these pairs of devices with appropriate voltage schemes enables to compute
the result of XNOR operations using only positive RRAM conductances. However,
different RRAM implementations vary depending on the array implementation, the
sensing scheme (i.e., current sensing or voltage sensing), and peripheral circuitry. The

Figure 13.
(a) Mapping of the neural network parameters on 256x256 memory array. The number of arrays (i.e., j ∙ k)
depends on the number of inputs (m) and outputs (n) of each layer of the neural network. (b) Description of the
mapping strategy used in a single array. Each row of the array stores portions of the input activations (IN), the
weights, and their complement, for a single neuron. Additional space to store partial results of the computations
and additional parameters needs to be left and appropriately sized. The parameters and inputs of a single neuron
may be split onto multiple rows of the array based on the number of available columns in the array.

21

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

main approaches that can be found in the literature are summarized in Figure 14.
Specifically, Figure 14a shows a solution exploiting 1T1R arrays and a current sensing
scheme to compute the bitwise XNOR and accumulation operations. In this approach,
the weights of the BNN are encoded in pairs of devices located in adjacent rows of the
same column of the array. The select lines of the selector transistors encode the input
activations using complementary signals, see Figure 14a. In the array periphery, a
transimpedance amplifier, implemented with an operational amplifier (OPA), ensures
a virtual ground at the end of the column of the array, so that the current flowing in
each column (i.e., Isum in Figure 14a) is linearly proportional to the number of +1
results from the bitwise XNOR operations in that column. Also, the transimpedance
amplifier converts the current to a voltage that is then digitized using an analog to
digital converter (ADC). However, this solution is inefficient in terms of energy
consumption and chip area, meaning that the transimpedance amplifier and the ADC
must be shared among adjacent columns by means of analog multiplexers. A similar
approach that is more efficient in terms of area occupation and energy efficiency was
proposed by Yin et al. in [8], and the core elements of their solution are sketched in
Figure 14b. The working principle is similar to the previous approach, with the main
difference being that no OPA is used in the array periphery, thus saving considerable
area and energy. However, without the OPA, no virtual ground is provided at the end

Figure 14.
Different implementations of the VMM operation with RRAM arrays. (a) 1T1R implementation in which each
weight of the network is encoded as complementary resistive state of RRAM devices located in adjacent rows.
Weights associated with the same neuron are stored in the same column of the array. An OPA provides a virtual
ground node at the end of each column so that the current flowing in each column is equivalent to the sum of all the
positive results of the bitwise XNOR operation. (b) Similar 1T1R implementation from [8], which uses a pull-
down FET device and a flash ADC implemented with multiple VSAs instead of introducing a virtual ground node.
(c) Sketch of the 2T2R implementation from [46]. Differently from a) and (b), the weights associated with the
same neuron are located on the same row. A single vector-vector product is computed at a time by activating the
desired word line (WL). Appropriate capacitive sensing circuits convert the results of the bitwise XNOR operations
encoded in the select lines (SL) voltages to the output result. (d) 1T1R array implementation from [47], which
exploits the select line capacitance to compute the result of the vector-vector multiplication. The SL is kept in hi-Z so
that during a read-out step the voltage at the input of the ADC is proportional to the number of positive results of
the bitwise XNOR operation.

22

Neuromorphic Computing

of the columns of the array. The authors instead, introduced a pull-up or pull-down
FET device, which creates a voltage divider with the equivalent resistance of the
column which depends on the result of the bitwise XNOR operations. The voltage
drop on the pull-down (pull-up) device increases (decreases) with the number of +1
from the bitwise XNOR operations in that column. Such voltage can be compared with
a threshold using a VSA to compute the output activation. As discussed by Yin et al. in
[8], multiple VSA and threshold voltages can be used to implement a flash ADC for
improving the accuracy of the computation. The compact area and faster response of
the VSAs compared to OPAs, not only reduce the area occupation but also increase the
speed of the computation. In fact, the VSAs must be shared between fewer columns of
the array compared with OPA-based solutions, thus increasing the throughput of the
computation. A drawback of this approach is the nonlinear increment of the voltage at
the input of the VSAs for an increasing number of positive results, which may require
a fine tuning of the voltage thresholds to retain high accuracy in BNN inference tasks.
Alternatively, approaches based on voltage mode sensing schemes have been recently
proposed in the literature [46, 47], and shown to achieve high accuracy and energy
efficiency. Specifically, Ezzadeen et al. proposed a solution based on 2T2R arrays
which is sketched in Figure 14c. In this approach, the weights of each neuron are
stored on the same row of the array, and the results for each neuron are computed one
at a time. To do so, a single WL (see Figure 14c) is turned on at a time, and the input
activations and their complements are applied to the corresponding pairs of devices
which encode the neuron’s weights. As a result, the voltage at each SL line (see
Figure 14c) encodes the result of a single XNOR operation. In their paper, the authors
proposed a capacitive sensing scheme to compute the result of the accumulation. Such
a scheme requires a smaller chip area compared to other solutions, however at the cost
of reduced computing speed since the result for a single neuron is computed at each
step. Another voltage mode sensing scheme, sketched in Figure 14d, was proposed by
Zhao et al. [47]. In this approach, the weights associated with the same neuron are
encoded in adjacent RRAM devices programmed in complementary resistive states
that are connected to the same SL (see Figure 14d). Input activations are encoded as a
fixed bias (Vbias) term applied to both devices encoding a single neuron’s weight, and
an additional voltage contribution with amplitude Vpulse to the first or second line
depending on the polarity of the input activation, as shown in Figure 14d. During a
VMM, the WLs are activated, and the SLs are kept in Hi-Z. By exploiting the intrinsic
capacitance of the array lines, the voltage on the SL lines is linearly proportional to the
number of positive bitwise XNOR operations. Such voltage is then digitized by means
of an ADC. Compared with the more common current mode sensing scheme, this
approach is more energy efficient since smaller currents flow in the circuit.

Overall, each different scheme provides different tradeoffs, in terms of chip area
(i.e., cost), computing speed, and energy. Thus, it is up to circuit designers to choose
the design that better suits a specific application.

4.2.2 Circuit design tradeoffs: analysis of a case of study

In this section, we analyze in detail the tradeoffs existing in the BNN analog VMM
accelerator shown in Figure 14b proposed by Yin et al. [8], since it can provide high-
throughput combined with high energy efficiency, and a compact peripheral circuit
design. An example of the core elements of a BNN VMM accelerator based on this
approach is sketched in Figure 15a, where additional FET devices and the required
control logic are also represented. As discussed in the previous section, the voltage at

23

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

the input of the VSA increases nonlinearly with an increasing number of positive
results of bitwise XNOR operations due to the existence of a voltage divider between
the pull-down device and the equivalent resistance of the devices connected to the
same column of the array. The reliability of this accelerator is linked to the linearity of
the transfer characteristic and the read margin available at the input of the VSA.
Indeed, a higher read margin over the whole span of possible inputs (i.e., the number
of positive bitwise XNOR operations) would reduce the error rate of the VSA. Differ-
ent design parameters can influence the linearity of the transfer characteristic and the
available read margin at the input of the VSA. Specifically, the pull-down resistance
(i.e., RPD) changes the linearity of the transfer characteristic. As shown in Figure 15b,
low RPD values increase the linearity of the transfer, but too low values reduce the
dynamic range, and thus the read margin, at the input of the VSA. Also, very low RPD

values may require excessively large FET devices which would reduce the area effi-
ciency. Conversely, larger RPD values increase the nonlinearity of the transfer charac-
teristic, and too large values can quickly saturate the input of the VSA when just a few
positive results are accumulated. Also, C2C variability can further reduce the read
margin available at the input of the VSA, introducing possible overlaps between the
distributions of the voltage at the input of the VSA for consecutive numbers of
accumulated XNOR results, as shown Figure 15c. To increase the read margin higher
power consumption can be traded by increasing the read voltage, provided that
devices in HRS are not corrupted during a read step. All these circuit parameters must
be optimized to ensure a reliable circuit operation. Still, a limited number of devices
can be reliably read in parallel, introducing the need for the input split method
described in [7]. In this approach, the computation of the complete sum of products is
split into multiple steps, in which a partial number of the sum of products is com-
puted, and the results of each step are accumulated using digital circuits. As suggested
in [8], to improve the accuracy of the accelerator multiple VSA amplifiers and appro-
priately designed thresholds can be employed for each column, implementing a flash
ADC converter. Specifically, in their work [8], the authors achieved high inference
accuracy by using a 3-bit flash ADCs implemented with seven VSA, for computing
operations with 64 inputs. Even when increasing the number of VSAs in the array

Figure 15.
(a) 1T1R memory array and peripheral circuits that can be used to accelerate the binary VMM operation in the
analog domain, by storing the weights of the neural network and their complement in columns of the array, and
controlling transistors select line depending on the input activations. As shown in (b), the current flowing in each
column increases with the number of positive products. The transfer characteristic depends on the value of the pull-
down resistance (RPD). (b) Effect of RRAM resistive state variability and RTN on the equivalent output voltage,
showing possible overlaps between adjacent accumulated positive products.

24

Neuromorphic Computing

periphery, this approach can provide considerable efficiency improvement with
respect to LIM-based accelerators since only read operations are performed without
the need to use more energy-hungry programming steps.

4.3 Reconfigurable hybrid BNN SIMPLY/analog accelerator

To combine the reconfigurability of the SIMPLY architecture described in Section
4.1 and the efficiency of the BNN analog VMM accelerator discussed in Section 4.2.2, a
hybrid architecture merging the two approaches on the same array was proposed in
[28]. Here we discuss a variation of the architecture proposed in [28] which is less
sensitive to sneak paths and requires fewer VSAs in the array periphery. Such archi-
tecture is shown in Figure 16 and is similar to the SIMPLY-based architecture shown
in Figure 9c. IMPLY and FALSE operations can be performed in the array as
described in Section 4.1. Conversely, the architecture is slightly different to the one
implementing the analog BNN VMM accelerator, shown in Figure 15a. Still the work-
ing principle is the same, with the only differences being that the currents encoding
the results of multiplications flow in the rows of the array instead of the columns, that
the columns of the array are biased with the read voltage, and that the pair of devices
in complementary state encoding a single weight are encoded in adjacent columns
instead of rows. To enable both computing paradigms the control logic and peripheral
circuits need to be adapted, so that the reference voltage of the VSAs, and the bias
voltage of the FET implementing either RG or RPD can be changed when performing
computations in the SIMPLY or the analog BNN VMM frameworks, respectively.
Also, if multiple VSA amplifiers are used to implement a flash ADC to improve the
accuracy of the analog VMM operation, multiple rows of the array may share the same
group of VSAs, thus reducing the maximum parallelism achievable, compared to the
SIMPLY architecture in Figure 9c.

Despite the increased complexity of the peripheral circuits and the possible
reduced parallelism, the proposed hybrid accelerator provides a more efficient
exploitation of the hardware resources that are often scarce in low-power embedded
devices.

Figure 16.
Sketch of the hybrid IMC accelerator enabling the coexistence of the SIMPLY and analog BNN VMM frameworks
shown in Figure 9c and 15a, respectively. Shaded VSAs highlight the possible use of flash ADCs in the
architecture.

25

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

4.4 Performance benchmark

In this section, the performance of the architectures discussed in sections 4.1–4.3,
are estimated on a BNN inference task, and benchmarked against an implementation
running on conventional embedded system hardware [48]. The performance was
estimated on a classification task on the MNIST handwritten digits dataset. The 20x20
pixels images of the dataset were converted to black and white images before training.
The adopted neural network consists of a single fully connected hidden layer with
1000 neurons and 10 output neurons and was trained on 9500 sample images using
the DoReFa-Net algorithm [49]. Other 2500, and 2000 images were used for valida-
tion, and testing, respectively, and the trained neural network achieves an accuracy of
91.4% [29], which is comparable with other results in the literature and the BNN
implementation considered as a reference [48]. The performance of each accelerator
was estimated considering that the computations were executed on an appropriate
number of 256x256 1T1R memory arrays. In the case of the SIMPLY-based
implementations, the network parameters were mapped to memory arrays as
discussed in Section 4.1.6, while in the hybrid architectures, the network weights and
their complements were mapped to memory arrays, filling them completely, and
parameters and devices required for computing logic operations in the SIMPLY
framework were mapped onto other memory arrays. The two approaches require a
similar number of arrays since most of the memory is used to store the neural network
parameters. Energy and latency estimates were computed by mapping all the IMPLY,
FALSE, and VMM operations required to implement the BNN inference task to the
memory arrays. For the SIMPLY accelerator, two different implementations were
studied to evaluate the performance improvement provided by the binary tree adder
accumulator with respect to the HA chain implementation. All the test set was ran-
domly shuffled and classified by the implemented neural network, preserving the
memory states between classification tasks. In the case of SIMPLY-based
implementations, the worst-case energy consumption for n-IMPLY and FALSE oper-
ations was estimated by considering the data of the maximum energy consumption for
each input combination available in Table 2 that were estimated by means of circuit
simulations performed considering a 500 MHz clock frequency, meaning that IMPLY
and FALSE operations are computed in 4 ns, and including the comparator overhead.
The energy for BNN analog VMM operations was estimated considering RRAM
devices approximated as resistors and computing the equivalent resistance for each
active row of the array. To estimate the latency, when possible, operations are
parallelized among different arrays, while inside each array two different degrees of
parallelism were considered. Specifically, in the “serial” (see Table 3) case no

Operation Input combination/Worst-case Energy

FALSE (0/12 fJ), (1/190 fJ)

2-IMPLY (00/509 fJ), (01/6.19 fJ), (11/6.5 fJ)

3-IMPLY (000/409 fJ), (001/11.6 fJ), (011/13.1 fJ), (111/13.3 fJ)

4-IMPLY (0000/409 fJ), (0001/11.6 fJ), (0011/13.1 fJ), (0111/13.3 fJ), (1111/13.7 fJ)

The effects of variability, RTN, and the comparator overhead, are included.

Table 2.
Worst-case energy estimates from circuits simulations of FALSE and n-IMPLY operations executed on the
SIMPLY architecture.

26

Neuromorphic Computing

additional parallelism was introduced, and operations were all executed sequentially.
In the “parallel” (see Table 3) case the read step is executed in parallel on the rows of
the array but, due to the high Ic of the considered technology (i.e., IC = 100 μA), the
conditional programming step is performed sequentially on the rows of the array. For
the computation of BNN VMM operation in the hybrid accelerators, the same design
choice performed in [8] was considered. Up to 128 lines were activated in parallel, 3-
bit flash ADCs were used to digitize the partial results of the products, and each ADC
was shared among 8 rows of the array. The digitized partial results were written onto
other arrays, grouping on the same rows of the array the partial results related to the
same neuron. Logic operations required to accumulate the results and to compute
activation functions were executed in the SIMPLY framework.

The results of the simulations are reported in Table 3 and show that all the
proposed accelerators provide a > 7∙102 EDP improvement with respect to the refer-
ence embedded system implementation [48]. All the accelerators considerably reduce
the energy consumption, and except for the “n-SIMPLY Serial HA chain” implemen-
tation, they can also considerably reduce the computing time. In the SIMPLY-based
accelerators, the adoption of the binary tree adder accumulator reduces considerably
the number of computing steps leading to considerable latency and energy savings. As
expected, additional improvements can be achieved by performing VMM in the
analog domain using the hybrid accelerators, which can achieve an EDP improvement
of >105 and > 3.5 with respect to the embedded system implementation and the
SIMPLY-based implementations, respectively.

The latency of SIMPLY-based implementations could be further improved by
adopting RRAM technologies with lower current compliance provided that a suffi-
cient read margin and high retention are preserved. Adopting lower current compli-
ances would potentially increase the maximum number of devices that can be written
in parallel. Also, lower current compliance values would reduce the energy consump-
tion in both computing approaches further highlighting the advantages of both
approaches.

In addition, to compare the performance of the n-SIMPLY and hybrid BNN accel-
erators, the performance and characteristics of RRAM-based BNN inference accelera-
tors from the literature [6, 8, 42, 46, 47, 50, 51] are summarized in Table 4. In
general, these works employ the different schemes discussed in Section 4.2.1 to

Implementation # 256x256

Arrays

Steps Latency Energy EDP

Improvement

Embedded System [48] NA NA 17.35 ms 5.37 mJ 1

n-SIMPLY Serial HA chain 29 10,153,416 40.6 ms 3.27 μJ 7∙102

n-SIMPLY Parallel HA chain 29 724,306 2.9 ms 3.27 μJ 9.8∙103

n-SIMPLY Serial Binary Tree Adder 29 1,647,124 6.6 ms 1.69 μJ 8.4∙103

n-SIMPLY Parallel Binary Tree Adder 29 406,280 1.6 ms 1.69 μJ 3.4∙104

Hybrid Serial 28 214,795 859 μs 907 nJ 1.2∙105

Hybrid Parallel 28 112,518 450 μs 907 nJ 2.3∙105

(NA = not applicable).

Table 3.
Benchmark of different SIMPLY-based BNN accelerators against a state-of-the-art embedded system
implementation from the literature.

27

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

Author(s) VMM Implementation RRAM Array

Topology (Size)

Sim./Exp.& TOPS/W (For

MAC ops.)

MNIST

Inference

Energy

MNIST

Inference

Latency

MNIST Inference

EDP (J∙s)

This Work

n-SIMPLY

Binary Tree Adder

(Serial/Parallel)

LIM 1T1R (256x256) Sim. / 1.69 μJ 6.6 ms/

1.6 ms

≈1∙10�8/

2.6∙10�9

This Work Hybrid

(Serial/Parallel)

Analog + LIM (3-bits ADC + 8:1

MUX for the columns)

1T1R (256x256) Sim. / 907 nJ 859 μs/

450 μs

≈ 7.8∙10�10/

4∙10�10

Minguet et al. [50] Analog 1S1R Sim. (28 nm

CMOS)

/ 42.5 μJ

(Reported)

103 μs$$

(Estimated)

4.4∙ 10�9

(Estimated)

Yin et al. [8] Analog (3-bits ADC + 8:1 MUX for

the columns)

1T1R (128x64) Exp. (90 nm

CMOS)

24.1$ (Reported) / / /

Yu et al. [42] Analog (Online training) 1T1R (32 x

512x1024)

Exp. (130 nm

CMOS)

/ 2.4 mJ$$$

(Reported)

2.7 s$$$

(Reported)

6.5∙10�3

(Estimated)

Zhao et al. [47] Analog (Low-power voltage mode

sensing scheme)

1T1R (32x32) Sim. (180 nm

CMOS)

19.7 (Reported) / / /

Zhao et al. [47] Analog (Low-power voltage mode

sensing scheme)

1T1R (32x32) Sim. (40 nm

CMOS)

63 (Reported) / / /

Pal Chowdhury [6] Analog (Voltage sensing) 2R Sim. (45 nm

CMOS)

/ / / /

Ezzadeen et al. [46] Analog (Capacitive neuron) 2T2R (32x32) Exp. (130 nm

CMOS)

/ / / /

Lopez et al. [51] Analog (Subthreshold read

scheme)

1S1R (32x32) Sim. (28 nm

CMOS)

/ ≈ 62 nJ$$$$

(estimated)

&Exp. is used to indicate that at least one array prototype was fabricated, and its performance experimentally measured.$Best-case for a 64x64 layer, so that no external logic is required and
included in the energy-efficiency estimate.$$For arrays of arbitrary size, one neuron output computed per read operation (tREAD = 100 ns as reported). The ADC and external logic overhead and the
limitation of the maximum current in a column is not considered.$$$Data from [52].$$$$Estimated considering the reported energy per single bit read operation (i.e., 76 fJ/bit).

Table 4.
Performance comparison of different BNN inference accelerators from the literature.

28 N
eu
rom

orp
h
ic
C
om

p
u
tin

g

accelerate in the analog domain the BNN VMM. However, each work uses different
arrays sizes, topologies, devices, and technologies, thus complicating the comparison
between different accelerators. Ideally, for a direct comparison between different
implementations the same task should be executed on all the accelerators, however
these data are rarely reported. Some works focus only on demonstrating the feasibility
of their proposed implementation of the VMM [46], while other studies simulate a
different inference task [6], or report different metrics that cannot be easily used to
estimate the performance on a specific inference task. Specifically, in [8, 47] the TOPS/
W metric is reported, however this metric indicates the maximum performance that
can be achieved in specific conditions, which are not necessarily the one achieved by the
circuit in a generic inference task. Still, some works [42, 50–52] directly report the
performance, or sufficient data that can be used to estimate the performance of their
accelerator on an MNIST handwritten digits classification task. Among these works, the
results reported by Yu et al. in [42, 52] show the worst performance, however their
solution was optimized for training directly on chip the entire network parameters, thus
introducing additional overheads. Compared with the results reported by Minguet et al.
in [50], the n-SIMPLY Binary Tree Adder implementation achieves similar EDP per-
formance while the Hybrid implementation can further reduce the EDP. The lowest
energy consumption for an MNIST inference task, was estimated from the work of
Lopez et al. [51], where the authors proposed a subthreshold read scheme in which 1S1R
devices are read using a read voltage that is lower than the threshold voltage of the
selector device, achieving a read energy of 76 fJ/bit.

5. Conclusions

In this chapter, we discussed the implementation of different RRAM-based IMC
accelerators describing an appropriate methodology for their analysis and design. The
methodology is enabled by the use of physics-based compact models and consists in
studying, by means of circuit simulations which also include devices nonideal effects,
the performance and reliability of the core elements of IMC frameworks. The results of
these simulations are then used to project the performance to larger architectures
implemented on multiple arrays. An analysis of the reliability and performance of two
LIM frameworks based on the material implication logic was presented. Due to its better
performance and reliability, the SIMPLY architecture was used to implement a BNN
hardware inference accelerator. The limitations of this approach were discussed and the
benefits of using analog accelerators for the VMM operations were examined. Also, the
implementation of an architecture which combines both approaches on the same hard-
ware was discussed. The EDP estimates of these different RRAM-based BNN inference
accelerators were compared against a state of the arts embedded system implementa-
tion, demonstrating considerable energy improvements. Overall, these hardware accel-
erators, by providing high reconfigurability and energy efficiency, represent a valuable
solution for the implementation of future ultra-low power hardware.

Acknowledgements

Project funded under the National Recovery and Resilience Plan (NRRP), Mission
04 Component 2. Investment 1.5 – NextGenerationEU, Call for tender n. 3277 dated
30/12/2021. Award Number: 0001052 dated 23/06/2022.

29

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

Author details

Tommaso Zanotti*, Paolo Pavan and Francesco Maria Puglisi
Dipartimento di Ingegneria “Enzo Ferrari,” Università di Modena e Reggio Emilia,
Modena, Italy

*Address all correspondence to: tommaso.zanotti@unimore.it

© 2023 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

30

Neuromorphic Computing

References

[1] Xiao TP, Bennett CH, Feinberg B,
Agarwal S, Marinella MJ. Analog
architectures for neural network
acceleration based on non-volatile
memory. Applied Physics Reviews. 2020;
7(3):031301. DOI: 10.1063/1.5143815

[2] Kvatinsky S, Belousov D, Liman S,
Satat G, Wald N, Friedman EG, et al.
MAGIC—Memristor-aided logic. IEEE
Transactions on Circuits and Systems II:
Express Briefs. 2014;61(11):895-899.
DOI: 10.1109/TCSII.2014.2357292

[3] Kvatinsky S, Satat G, Wald N,
Friedman EG, Kolodny A, Weiser UC.
Memristor-based material implication
(IMPLY) logic: Design principles and
methodologies. IEEE Transactions on
Very Large Scale Integration (VLSI)
Systems. 2014;22(10):2054-2066.
DOI: 10.1109/TVLSI.2013.2282132

[4] Borghetti J, Snider GS, Kuekes PJ,
Yang JJ, Stewart DR, Williams RS.
‘Memristive’ switches enable ‘stateful’
logic operations via material implication.
Nature. 2010;8(464):873. DOI: 10.1038/
nature08940

[5] Zanotti T, Puglisi FM, Pavan P.
Reliability-aware design strategies for
Stateful logic-in-memory architectures.
IEEE Transactions on Device and
Materials Reliability. 2020;20(2):278-285.
DOI: 10.1109/TDMR.2020.2981205

[6] Pal Chowdhury A, Kulkarni P,
Nazm BM. MB-CNN: Memristive binary
convolutional neural networks for
embedded Mobile devices. Journal of Low
Power Electronics and Applications.
2018;8(4):38. DOI: 10.3390/jlpea8040038

[7] Yin S, Kim Y, Han X, Barnaby H,
Yu S, Luo Y, et al. Monolithically
integrated RRAM- and CMOS-based In-
memory computing optimizations for

efficient deep learning. IEEE Micro.
2019;39(6):54-63. DOI: 10.1109/
MM.2019.2943047

[8] Yin S, Sun X, Yu S, Seo JS. High-
throughput In-memory computing for
binary deep neural networks with
monolithically integrated RRAM and 90-
nm CMOS. IEEE Transactions on Electron
Devices. 2020;67(10):4185-4192.
DOI: 10.1109/TED.2020.3015178

[9] Courbariaux M, Hubara I, Soudry D,
El-Yaniv R, Bengio Y. Binarized neural
networks: Training deep neural
networks with weights and activations
constrained to+ 1 or-1. arXiv preprint.
2016. Available from: https://arxiv.org/
abs/1602.02830

[10] Puglisi FM, Zanotti T, Pavan P.
Unimore resistive random access
memory (RRAM) Verilog-a model.
nanoHUB. 2019. DOI: 10.21981/15GF-
KX29. Available from: https://nanohub.
org/publications/289/about/1#citethis

[11] Zanotti T, Pavan P, Puglisi FM.
Comprehensive physics-based RRAM
compact model including the effect of
variability and multi-level random
telegraph noise. Microelectronic
Engineering. 2022;27:111886.
DOI: 10.1016/j.mee.2022.111886

[12] Yu S, Wu Y, Chai Y, Provine J,
Wong HSP. Characterization of
switching parameters and multilevel
capability in HfOx/AlOx bi-layer RRAM
devices. In: Proceedings of 2011
International Symposium on VLSI
Technology, Systems and Applications.
Hsinchu, Taiwan: IEEE; 2011. pp. 1-2

[13] Zahoor F, Azni Zulkifli TZ,
Khanday FA. Resistive random access
memory (RRAM): An overview of
materials, switching mechanism,

31

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

performance, multilevel cell (mlc)
storage, modeling, and applications.
Nanoscale Research Letters. 2020;15(1):
90. DOI: 10.1186/s11671-020-03299-9

[14]Wong HSP, Lee HY, Yu S, Chen YS,
Wu Y, Chen PS, et al. Metal–
Oxide RRAM. Proceedings of the IEEE.
2012; 100(6):1951–1970. DOI: 10.1109/
JPROC.2012.2190369

[15] Kozicki MN, Barnaby HJ. Conductive
bridging random access memory—
Materials, devices and applications.
Semiconductor Science and Technology.
2016;31(11):113001. DOI: 10.1088/
0268-1242/31/11/113001

[16] Bersuker G, Gilmer DC, Veksler D,
Yum J, Park H, Lian S, et al. Metal oxide
RRAM switching mechanism based on
conductive filament microscopic
properties. In: 2010 International
Electron Devices Meeting, San
Francisco, CA, USA. New York City,
USA: IEEE; 2010. pp. 19.6.1-19.6.4

[17] Celano U, Fantini A, Degraeve R,
Jurczak M, Goux L, Vandervorst W.
Scalability of valence change memory:
From devices to tip-induced filaments.
AIP Advances. 2016;6(8):085009.
DOI: 10.1063/1.4961150

[18] Puglisi FM, Zagni N, Larcher L,
Pavan P. Random telegraph noise in
resistive random access memories:
Compact modeling and advanced circuit
design. IEEE Transactions on Electron
Devices. 2018;65(7):2964-2972.
DOI: 10.1109/TED.2018.2833208

[19] Panda D, Sahu PP, Tseng TY. A
collective study on modeling and
simulation of resistive random access
memory. Nanoscale Research Letters.
2018;13(1):8. DOI: 10.1186/s11671-017-
2419-8

[20] Zanotti T, Pavan P, Puglisi FM.
Self-consistent automated parameter

extraction of RRAM physics-based
compact model. In: ESSDERC 2022 -
IEEE 52nd European Solid-State Device
Research Conference (ESSDERC). 2022.
pp. 316-319

[21] Li H, Jiang Z, Huang P, Wu Y,
Chen H, Gao B, et al. Variation-aware,
reliability-emphasized design and
optimization of RRAM using SPICE
model. In: 2015 Design, Automation Test
in Europe Conference Exhibition (DATE),
Grenoble, France. New York City, USA:
IEEE; 2015. pp. 1425-1430

[22] Bengel C, Siemon A, Cuppers F,
Hoffmann-Eifert S, Hardtdegen A, von
Witzleben M, et al. Variability-aware
modeling of filamentary oxide-based
bipolar resistive switching cells using
SPICE level compact models. IEEE Trans
Circuits Syst I. 2020;67(12):4618-4630.
DOI: 10.1109/TCSI.2020.3018502

[23] Guan X, Yu S, Wong HP. A SPICE
compact model of metal oxide resistive
switching memory with variations. IEEE
Electron Device Letters. 2012;33(10):
1405-1407. DOI: 10.1109/
LED.2012.2210856

[24] Lehtonen E, Laiho M. Stateful
implication logic with memristors. In:
2009 IEEE/ACM International
Symposium on Nanoscale Architectures,
San Francisco, CA, USA. New York City,
USA: IEEE; 2009. pp. 33-36

[25] Xie L, Du Nguyen HA, Yu J,
Kaichouhi A, Taouil M, AlFailakawi M,
et al. Scouting logic: A novel Memristor-
based logic Design for Resistive
Computing. In: 2017 IEEE Computer
Society Annual Symposium on VLSI
(ISVLSI). 2017. pp. 176-181

[26] Zanotti T, Puglisi FM, Pavan P. A
smart logic-in-memory architecture for
low-power non-von Neumann

32

Neuromorphic Computing

computing. IEEE Journal of the Electron
Devices Society. 2020;8:1-1.
DOI: 10.1109/JEDS.2020.2987402

[27] Lehtonen E, Poikonen JH, Laiho M.
Two memristors suffice to compute all
Boolean functions. Electronics Letters.
2010;46(3):230-231. DOI: 10.1049/
el.2010.3407

[28] Zanotti T, Puglisi FM, Pavan P.
Energy-efficient non-Von Neumann
computing architecture supporting
multiple computing paradigms for logic
and Binarized neural networks. Journal
of Low Power Electronics and
Applications. 2021;11(3):29.
DOI: 10.3390/jlpea11030029

[29] Zanotti T, Puglisi FM, Pavan P.
Reliability and performance analysis of
logic-in-memory based Binarized neural
networks. IEEE Transactions on Device
and Materials Reliability. 2021;21:1-1.
DOI: 10.1109/TDMR.2021.3075200

[30] Lehtonen E, Poikonen J, Laiho M.
Implication logic synthesis methods for
memristors. In: 2012 IEEE International
Symposium on Circuits and Systems,
Seoul, Korea (South). New York City,
USA: IEEE; 2012. pp. 2441-2444

[31] Zanotti T, Pavan P, Puglisi FM.
Multi-input logic-in-memory for ultra-
low power non-Von Neumann
computing. Micromachines. 2021;
12(10):1243. DOI: 10.3390/mi12101243

[32] Stine JE, Castellanos I, Wood M,
Henson J, Love F, Davis WR, et al.
FreePDK: An open-source variation-
aware design kit. In: 2007 IEEE
International Conference on
Microelectronic Systems Education
(MSE’07). 2007. pp. 173-174

[33] Kvatinsky S, Wald N, Satat G,
Kolodny A, Weiser UC, Friedman EG.
MRL — Memristor Ratioed logic. In:

2012 13th International Workshop on
Cellular Nanoscale Networks and their
Applications. 2012. pp. 1-6

[34] Ali KA, Rizk M, Baghdadi A,
Diguet JP, Jomaah J. MRL crossbar-based
full adder design. In: 2019 26th IEEE
International Conference on Electronics,
Circuits and Systems (ICECS). 2019.
pp. 674-677

[35]Hoffer B, Rana V, Menzel S,
Waser R, Kvatinsky S. Experimental
demonstration of Memristor-aided logic
(MAGIC) using valence change memory
(VCM). IEEE Transactions on Electron
Devices. 2020;67(8):3115-3122.
DOI: 10.1109/TED.2020.3001247

[36] Escudero López M. Reliability-
Aware Circuit Design to Mitigate Impact
of Device Defects and Variability in
Emerging Memristor-Based Applications
[Thesis]. TDX (Tesis Doctorals en
Xarxa). Catalonia, Spain: Universitat
Politècnica de Catalunya; 2020

[37] Yu J, Du Nguyen HA, Abu
Lebdeh M, Taouil M, Hamdioui S.
Enhanced scouting logic: A robust
Memristive logic design scheme. In:
2019 IEEE/ACM International
Symposium on Nanoscale Architectures
(NANOARCH), Qingdao, China.
New York City, USA: IEEE; 2019. pp. 1-6

[38] Talati N, Gupta S, Mane P,
Kvatinsky S. Logic design within
Memristive memories using Memristor-
aided loGIC (MAGIC). IEEE
Transactions on Nanotechnology. 2016;
15(4):635-650. DOI: 10.1109/
TNANO.2016.2570248

[39] Siemon A, Drabinski R, Schultis MJ,
Hu X, Linn E, Heittmann A, et al.
Stateful three-input logic with
Memristive switches. Scientific Reports.
2019;9(1):1-13. DOI: 10.1038/
s41598-019-51039-6

33

Study of RRAM-Based Binarized Neural Networks Inference Accelerators Using an RRAM…
DOI: http://dx.doi.org/10.5772/intechopen.110340

[40] Cheng L, Zhang MY, Li Y, Zhou YX,
Wang ZR, Hu SY, et al. Reprogrammable
logic in memristive crossbar for in-
memory computing. Journal of Physics
D: Applied Physics. 2017;50(50):505102.
DOI: 10.1088/1361-6463/aa9646

[41] Junsangsri P, Han J, Lombardi F.
Logic-in-memory with a nonvolatile
programmable metallization cell. IEEE
Transactions on Very Large Scale
Integration (VLSI) Systems. 2016;24(2):
521-529. DOI: 10.1109/TVLSI.2015.2411258

[42] Yu S, Li Z, Chen P, Wu H, Gao B,
Wang D, et al. Binary neural network
with 16 Mb RRAM macro chip for
classification and online training. In:
2016 IEEE International Electron
Devices Meeting (IEDM). 2016.
pp. 16.2.1-16.2.4

[43] Zanotti T, Puglisi FM, Pavan P.
Reconfigurable smart In-memory
computing platform supporting logic
and Binarized neural networks for low-
power edge devices. IEEE Journal on
Emerging and Selected Topics in Circuits
and Systems. 2020;10(4):478-487.
DOI: 10.1109/JETCAS.2020.3030542

[44] Yu S, Chen PY, Cao Y, Xia L,
Wang Y, Wu H. Scaling-up resistive
synaptic arrays for neuro-inspired
architecture: Challenges and prospect.
In: 2015 IEEE International Electron
Devices Meeting (IEDM), Washington,
DC, USA. New York City, USA: IEEE;
2015. pp. 17.3.1-17.3.4

[45]Welser J, Pitera JW, Goldberg C.
Future computing hardware for AI. In:
2018 IEEE International Electron
Devices Meeting (IEDM). 2018.
pp. 1.3.1-1.3.6

[46] Ezzadeen M, Majumdar A,
Bocquet M, Giraud B, Noël JP, Andrieu F,
et al. Low-overhead implementation of
Binarized neural networks employing
robust 2T2R resistive RAM bridges. In:

ESSCIRC 2021 - IEEE 47th European
Solid State Circuits Conference
(ESSCIRC). 2021. pp. 83-86

[47] Zhao Y, Yu J, Zhang D, Hu Q, Liu X,
Jiang H, et al. A 0.02% accuracy loss
voltage-mode parallel sensing scheme
for RRAM-based XNOR-net application.
IEEE Transactions on Circuits and
Systems II: Express Briefs. New York
City, USA: IEEE. 2022;69(6):2697-2701.
DOI: 10.1109/TCSII.2022.3157767

[48]McDanel B, Teerapittayanon S,
Kung HT. Embedded Binarized neural
networks. In: Proceedings of the 2017
International Conference on Embedded
Wireless Systems and Networks.
Uppsala, Sweden: Junction Publishing;
2017. pp. 168-173

[49] Zhou S, Wu Y, Ni Z, Zhou X,
Wen H, Zou Y. DoReFa-net: Training
low Bitwidth convolutional neural
networks with low Bitwidth gradients.
arXiv preprint. 2016. Available from:
https://arxiv.org/abs/1602.02830

[50]Minguet Lopez J, Hirtzlin T,
DampfhofferM, Grenouillet L, Reganaz L,
Navarro G, et al. OxRAM+OTS
optimization for binarized neural network
hardware implementation. Semiconductor
Science and Technology. 2022;37(1):
014001. DOI: 10.1088/1361-6641/ac31e2

[51] Lopez JM, Rummens F, Reganaz L,
Heraud A, Hirtzlin T, Grenouillet L,
et al. 1S1R sub-threshold operation in
crossbar arrays for low power BNN
inference computing. In: 2022 IEEE
International Memory Workshop
(IMW), Dresden, Germany. New York
City, USA: IEEE; 2022. pp. 1-4

[52] Yu S. Binary Neural Network and Its
Implementation with 16 Mb RRAM
Macro Chip [Internet]. Available from:
https://www.src.org/calendar/
e006125/yu-presentation2.pdf

34

Neuromorphic Computing

