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A B S T R A C T

This is the first part of two papers where we propose and apply a methodology for confinement loss analysis in
tube lattice fibers (TLFs). The methodology is based on azimuthal Fourier decomposition (AFD) of the fiber’s
cladding and core modes along the perimeters of the cladding tubes composing. This technique, combined with
coupled mode theory, constitutes an effective approach to gain insight in the inhibited coupling waveguiding
mechanism and design, along with fiber non-idealities impact on confinement loss. In this part I, we describe
the approach and apply it to loss analysis of ideal TLFs. The approach is then applied to the analysis of the
effects of tube thickness variation in part II.
1. Introduction

Modern optical systems require light guidance media that combine
highly sought features such as very low loss, high power-handling
capabilities, and strong interaction with gases and liquids. Hollow-
core photonic-crystal fibers (HC-PCFs) are highly investigated in this
regard, as they offer the ability to satisfy all these requirements at
the same time, owing to their ability to guide light in a hollow core
where it has minimal interaction with the dielectric cladding, mak-
ing them attractive in applications as diverse as gas lasers (Debord
et al., 2015; Nampoothiri et al., 2012), light-gas interaction (Debord
et al., 2019; Hoang et al., 2020), terahertz systems (Setti et al., 2013),
gas- and bio-sensing (Jaworski et al., 2020; Bomse and Ediger, 2014;
Khozeymeh et al., 2022), and classical (Hong et al., 2021) and quantum
communications (Chen et al., 2021).

Their guidance mechanism relies on preventing the core-guided
mode from coupling to the cladding by either photonic bandgap (PBG)
(Cregan et al., 1999) or inhibited coupling (IC) guidance (Couny et al.,
2007). In IC fibers, core and cladding modes (CMs and CLMs respec-
tively) with the same effective index are prevented from coupling
by increasing the CLMs field transverse oscillation frequency, and by
minimizing their transverse field spatial-overlap with that of the core
modes (Couny et al., 2007; Vincetti and Setti, 2010; Debord et al.,
2017). An effective way to strengthen these effects is to deploy hypocy-
cloid core-contour (i.e. negative curvature) fiber designs (Wang et al.,
2011), which dramatically reduce transmission loss and optical overlap
with the dielectric material of the cladding (Debord et al., 2013a).
Whilst the principles of IC guidance and the criteria for decreasing
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the IC fibers’ transmission loss are known and exemplified by the
introduction of the negative curvature core contour (Debord et al.,
2019), there is thus far no in-depth treatment for CMs-CLMs coupling.
This, in turn, strongly limits the prediction power in designing IC fibers
and the explanation of their defining properties such as scaling of CL
with wavelength, transmission band width, polarization dependence of
the coupling between core and cladding modes. This situation primarily
results from the fact that the analysis of HCPCF guidance has predomi-
nantly relied on numerical simulation tools, with limited utilization of
analytical or semi-analytical approaches.

From this regard, single ring hollow core Tube Lattice Fibers (TLFs)
provide an excellent platform to investigate the coupling between CMs
and CLMs in Inhibited-Coupling Hollow-Core Photonic Crystal Fibers
(IC-HCPCF). TLFs achieve a negative curvature core by utilizing a
cladding structure consisting of thin isolated dielectric tubes arranged
around the hollow core (Vincetti and Setti, 2010; Pryamikov et al.,
2011). These fibers have demonstrated impressive reductions in trans-
mission loss (Debord et al., 2017; Pryamikov et al., 2011; Belardi and
Knight, 2014; Jasion et al., 2022; Gao et al., 2019; Amrani et al.,
2021; Osório et al., 2023), and possess desirable properties such as
wide transmission bandwidth, low loss, low dispersion, and a relatively
simple cladding structure (Debord et al., 2017). The simplicity of the
cladding structure in TLFs, combined with the mathematical expres-
sions for the dielectric modes of a single tube (Kharadly and Lewis,
1969) makes them an ideal platform for developing mathematical
models to analyze IC guidance. Such models can help explain the dis-
crepancy between experimentally measured loss and the theoretically
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achievable minimum confinement loss (CL) in real fibers (Debord et al.,
2017; Ding et al., 2020). Real fibers exhibit non-ideal structures with
imperfections like glass surface roughness caused by frozen-in thermal
surface capillary waves (SCW) during fiber drawing (Roberts et al.,
2005), deformations of the fiber cross section (Weiblen et al., 2016),
and micro-bending loss (Sakr et al., 2020). However, there is currently
a lack of comprehensive theoretical analysis thoroughly examining the
impact of these geometric imperfections on the CL of HCPCFs.

The objective of this series of papers (Part I, the current paper, and
the subsequent Part II Melli et al., 2022) is to address, to some extent,
the existing knowledge gap. In this paper, we introduce and establish
an analysis technique utilizing the Azimuthal Fourier Decomposition
(AFD) of the fiber’s modes. This method, when employed on ideal TLFs,
demonstrates a promising capability to model the interactions between
Core Modes (CMs) and Cladding Modes (CLMs), and determine their
influence on CL. In the subsequent paper (Melli et al., 2022), we will
further explore and expand upon these findings to analyze the effect
of tube thickness variation on TLF modal spectrum and transmission
spectral structure and loss.

2. Inhibited-coupling waveguiding

Here, we briefly recap the fundamental principles of the Inhibited
Coupling model. HCPCFs can be considered as comprised of two dis-
tinct regions with different sets of modes: the core and the surrounding
cladding. Core modes, mainly confined in the fiber hollow core, exhibit
low transmission loss only if they are strongly decoupled from the
highly lossy cladding modes. In other words, it is crucial to minimize
or ideally eliminate the transfer of power from the core modes to
the cladding modes. According to Coupled Mode Theory (CMT), the
optical power transfer from core modes to cladding modes occurs
when both longitudinal and transverse phase matching conditions are
satisfied. This implies the simultaneous fulfillment of the following
criteria (Kogelnik, 1988):

• longitudinal phase matching 𝑛𝑒𝑓𝑓𝑐𝑜 = 𝑛𝑒𝑓𝑓𝑐𝑙 ;
• non-zero overlap integral 𝐾 = ∬𝑆∞

𝐸𝑡𝑐𝑜 ⋅ 𝐸𝑡𝑐𝑙 𝑑𝑆 ≠ 0.

Here, 𝑛𝑒𝑓𝑓𝑐𝑜 and 𝑛𝑒𝑓𝑓𝑐𝑙 are the effective indices and 𝐸𝑡𝑐𝑜 , and 𝐸𝑡𝑐𝑙 are
the transverse components of the electric field of the CM and CLM,
respectively. Alternatively, we can state that in order to achieve low
loss in HCPCFs, it is sufficient for at least one of the two aforementioned
conditions to not be satisfied.

In Photonic Band-Gap HCPCFs (PBG-HCPCFs), the first condition is
inherently unfulfilled since there are no Cladding Modes (CLMs) that
have the same effective index as the core mode. This absence of CLMs
at the core effective index naturally results in a complete elimination
of the overlap integral. In contrast, in IC-HCPCFs, the first condition
cannot be avoided due to the existence of a quasi-continuum of CLMs
that are longitudinally phase-matched with CMs (Debord et al., 2019).
However, despite this, IC-HCPCs can exhibit extremely low CL. This
stems from the overlap integral 𝐾 reaching close-to-zero values when
CLMs exhibit quick spatial oscillations (more accurately, quick spatial
oscillations along the tubes’ perimeters; see Supplementary Material
in Debord et al. (2017)) and strong light confinement within the tubes’
dielectric material. Consequently, in IC-HCFs the CL and its spectrum
are chiefly driven by the CLMs field spatial structure at their crossing
point with CMs in effective index-frequency space. We note that the
CMs and CLMS strong coupling inhibition is akin to bound state in a
continuum (BIC) when the integral 𝐾 is nil, and to quasi-BIC when 𝐾
is close-to-zero (Couny et al., 2007; Hsu et al., 2016).

In order to analyze this CMs-CLMs coupling, we proceed with the
following approximations. First, we only consider Fundamental Core
Mode (FCM) (i.e. the 𝐿𝑃01-like mode), and set its effective index to 1,
i.e. the 𝑛𝑒𝑓𝑓𝑐𝑜 = 1. This approximation is justified by the fact that, in
IC-HCPCFs, FCM effective index is very close to unity, with a relatively
2

Fig. 1. Cross-section of an 8-tube TLF.

weak variation versus frequency over its transmission bandwidth and
it allows to estimate the frequency corresponding to the longitudinal
phase matching condition with the CLM cut-off frequency. Second, in
Tube Lattice Fibers (TLFs), shown in Fig. 1, the larger distance be-
tween adjacent tubes compared to the glass tube-thickness and working
wavelength puts us in the regime of large pitch (Debord et al., 2019).
This enables a simplified analysis of Cladding Modes (CLMs) using
the single-tube approximation, where each CLM can be considered
as a combination of modes from the individual tubes with identical
transverse effective index and field profile:

𝐸𝑡𝑐𝑙 =
𝑁
∑

𝑖=1
𝐸𝑡𝑐𝑙𝑖

. (1)

Hence, the field distribution and dispersion curve are well approxi-
mated by those of an isolated single tube completely surrounded by
air (Vincetti and Rosa, 2019). Hereafter we will refer to the modes
confined within the dielectric of a single isolated tube as CLMs. Thanks
to that, the integral to calculate 𝐾 can be split into the sum of 𝑁 terms,
one for each tube composing the cladding:

𝐾 =
𝑁
∑

𝑖=1
𝐾𝑖 =

𝑁
∑

𝑖=1
∬𝑆𝑡𝑢𝑏𝑒𝑖

𝐸𝑡𝑐𝑜 ⋅ 𝐸𝑡𝑐𝑙𝑖
𝑑𝑆, (2)

where now 𝐸𝑡𝑐𝑙𝑖
is the CLM electric field transverse component of

the 𝑖th tube composing the cladding and 𝑆𝑖 is a domain containing and
surrounding the tube defined so that 𝐸𝑡𝑐𝑙𝑖

is negligible outside of it (see
Supplementary Material in Debord et al. (2017)). CLMs can be classified
into 𝐻𝐸𝜇,𝜈 and 𝐸𝐻𝜇,𝜈 modes where 𝜇 and 𝜈 are the mode field
azimuthal and radial indices, respectively (Kharadly and Lewis, 1969).
The two mode families differ in their field polarization. The 𝐸𝐻𝜇,𝜈
modes have predominantly radial polarization, while the 𝐻𝐸𝜇,𝜈 modes
have predominantly azimuthal polarization. A detailed description of
the single tube modal properties can be found in Vincetti and Setti
(2010), Debord et al. (2017), and Vincetti and Rosa (2019).

Since the azimuthal index 𝜇 determines the CLM electric field spatial
oscillation along the tube perimeter, the magnitude of 𝐾, and thus
the CL spectrum, are directly related to 𝜇 and to how the CLMs cut-off
frequencies change in relation to it.

Fig. 2 illustrates this point for TLF Fiber #1 (see Table 1 and Fig. 1
for the fiber geometrical parameters). 𝐹 = 2𝑡

𝜆

√

𝑛2𝑑 − 1 is the normalized

frequency being 𝑛𝑑 the tube refractive index and 𝜆 the wavelength.
Fig. 2(a) shows the 𝜇−𝐹 curves, which show the link between the CLM
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Fig. 2. Fiber #1. (a): cut-off frequencies 𝐹𝑐 of CLMs 𝐻𝐸 (filled circles) and 𝐸𝐻 (empty circles) by varying the azimuthal index 𝜇 and for four values of the radial index 𝜈 (𝜈 = 1
red; 𝜈 = 2 blue; 𝜈 = 3 green; 𝜈 = 4 orange). (b): CL of the 𝐿𝑃01 FM. Background color related to the azimuthal index of the CLM having cut-off frequency 𝐹 . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
cut-off frequency 𝐹 𝜇,𝜈
𝑐 and its indices 𝜇 and 𝜈 both for 𝐻𝐸 and 𝐸𝐻

CLMs. Four distinct branches of positively sloped curves are observed,
each associated with a constant radial index𝜈. Notably, 𝐻𝐸 modes
exhibit steeper slopes and slightly lower cut-off frequencies compared
to 𝐸𝐻 modes. The red curve in Fig. 2(b) shows the CL loss spectrum
with its spectral structure consisting of low loss transmission bands (TB)
and high loss region (HLR) edges located at 𝐹 = 𝜈 − 1. In this context,
the radial index 𝜈 represents the TB order.

By comparing the spectral evolution of CMs with CL spectrum
structure of the FCM, several important observations can be made. It
is evident that the fiber TB red-edge corresponds to cut-off frequencies
of the 𝐻𝐸0,𝜈 CLMs, i.e. 𝐹𝑐 = 𝜈 − 1. These frequencies align with values
commonly used in anti-resonant reflecting optical waveguide (ARROW)
literature (Debord et al., 2019; Duguay et al., 1986). However, the
ARROW model disregards the presence of CLMs and their coupling
with CMs. Fig. 2(b) clearly shows that the HLRs structure and fre-
quency location are more intricate to be solely attributed to resonances
at 𝐹 = 𝜈 − 1. The shape of the HLRs and the observed correlation
between CL decrease with the 𝜇 slope at their blue-edges are some of
the examples that emphasize the limitations of the ARROW model in
comprehensively explaining the behavior of CLMs and their influence
on the overall CL spectrum. To better illustrate the correlation between
the FCM CL decrease and cladding mode azimuthal index 𝜇 increase,
the background of Fig. 2(b) is gray-scaled according to the lowest value
of the azimuthal index 𝜇 of the CLM (i.e. that of𝐸𝐻𝜇,𝜈). The darker
color corresponds to the smaller values of 𝜇, and the lighter color to the
larger values. We clearly note that the HLRs correspond to the darkest
regions, which is consistent with our expectation of a larger coupling
coefficient 𝐾 between CMs and low azimuthal index CLMs (Couny
et al., 2007; Debord et al., 2013b). By increasing the frequency, the
azimuthal index increases, which in turn induces a reduction in the
coupling factor 𝐾 and thus in CL (Debord et al., 2017). The decrease in
confinement loss continues until the normalized frequency approaches
the next integer value, i.e. 𝐹 = 𝜈, where CL once again starts to
increase. This increase appears with the end of the first-order TB and
the onset of the modes 𝐸𝐻∕𝐻𝐸0,𝜈+1 associated with the second branch
in the 𝜇−𝐹 curves (Fig. 2(Top)). This correlation between CL and CLMs
is replicated for every TB, with the difference, however, that as the TB
order (i.e. the CLMs radial index 𝜈) increases, the bandwidth of the HLR
narrows down, and the TB minimum CL further decreases. The spectral
narrowing of HLR is explained with the steeper slope of the 𝜇-curves
for larger radial index value (see Fig. 2(Top)). It is worth noting that
the HLRs are characterized by the presence of CLMs with lower values
of azimuthal index 𝜇, typically around 10 or lower.
3

Table 1
TLF parameters. All geometrical parameters are given in microns.

Fiber 𝑡 𝑟𝑒𝑥𝑡 𝑛𝑑 𝑁 𝑅𝑐𝑜 𝜌

#1 0.75 6.0 1.45 8 13.6 0.875
#2 0.75 10.0 1.45 8 20.0 0.925
#3 0.75 10.0 2.45 8 20.0 0.925

In order to emphasize that the results are not solely determined
by cladding tube thickness, as it is the case in the ARROW model,
we recall that in the context of the single-tube approximation, the
spectral distribution of the modes within the glass depends on two
key parameters: the refractive index 𝑛𝑑 of the dielectric, and the tube
aspect ratio coefficient 𝜌 = 𝑟𝑖𝑛𝑡∕𝑟𝑒𝑥𝑡 = 1 − 𝑡∕𝑟𝑒𝑥𝑡 (Kharadly and Lewis,
1969; Vincetti and Setti, 2010). In this context, the slope of the 𝜇-𝐹
curves increases with 𝜌 and decreases with 𝑛𝑑 (Debord et al., 2019).
As a result, we anticipate a decrease in CL with higher 𝜌 values and
lower 𝑛𝑑 values. This relationship is depicted in Figs. 3 and 4, which
show the same dataset as in Fig. 2. However, these figures focus on
two different TLFs with distinct physical and geometrical parameters,
while having identical tube thickness as shown in Table 1. In Fig. 3, the
simulated fiber is labeled as Fiber #2, differing from Fiber #1 only by a
larger tube radius and consequently a larger 𝜌 value. Despite both fibers
having the same tube thickness, the results reveal significant differences
in the spectral structures Fiber #2 exhibits narrower high loss region
(HLR) bandwidths. This can be attributed to the steeper slope of the
𝜇-𝐹 curves. Fiber#3, which shares the same geometrical parameters as
Fiber#2 but has a higher glass index, demonstrates the impact of higher
refractive index in Fig. 4. The CLMs exhibit 𝜇 − 𝐹 curves with slower
slopes and more spread between the 𝐻𝐸𝜇,𝜈 and 𝐸𝐻𝜇,𝜈 modes, leading
to wider HLRs as shown in Fig. 4(b). Consequently, this results in higher
CL and narrower TB.

3. Local azimuthal Fourier decomposition

In the previous section, we used numerical simulations to discuss
the influence of CLMs azimuthal and radial indices on CL values and
spectral characteristics. However, relying solely on numerical methods
restricts our ability to gain deeper physical insights and predictive
capabilities. To address this limitation, we introduce a mathematical
approach in this section, allowing for a more effective analysis of the
coupling between CLMs and CMs, and subsequently, the dynamics of
CL. This approach utilizes a local azimuthal Fourier decomposition
(AFD) of CMs and CLMs.
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Fig. 3. Fiber #2. (a): cut-off frequencies 𝐹𝑐 of CLMs 𝐻𝐸 (filled circles) and 𝐸𝐻 (empty circles) by varying the azimuthal index 𝜇 and for four values of the radial index 𝜈 (𝜈 = 1
red; 𝜈 = 2 blue; 𝜈 = 3 green; 𝜈 = 4 orange). (b): CL of the 𝐿𝑃01 FM. Background color related to the azimuthal index of the CLM having cut-off frequency 𝐹 . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Fiber #3. (a): cut-off frequencies 𝐹𝑐 of CLMs 𝐻𝐸 (filled circles) and 𝐸𝐻 (empty circles) by varying the azimuthal index 𝜇 and for four values of the radial index 𝜈 (𝜈 = 1
red; 𝜈 = 2 blue; 𝜈 = 3 green; 𝜈 = 4 orange). (b): CL of the 𝐿𝑃01 FM. Background color related to the azimuthal index of the CLM having cut-off frequency 𝐹 . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
In the context of the single isolated tube approximation, we consider
a single tube with a local frame of reference (𝑟, 𝜃) having the origin at
the center of the tube (Vincetti and Setti, 2012), as shown in Fig. 5.
Each component (radial, azimuthal, and longitudinal) of the CLM and
CM electric fields is a periodic function of 𝜃 and thus can be written in
terms of an azimuthal Fourier series (Baddour, 2009):

𝐸𝑐𝑜𝑠 (𝑟, 𝜃) =
+∞
∑

𝑚𝑐𝑜=−∞
𝑅𝑐𝑜𝑠
𝑚 (𝑟)𝑒𝑗𝑚𝑐𝑜𝜃 (3)

𝐸𝑐𝑙𝑠 (𝑟, 𝜃) =
+∞
∑

𝑚𝑐𝑙=−∞
𝑅𝑐𝑙𝑠
𝑚 (𝑟)𝑒𝑗𝑚𝑐𝑙𝜃 (4)

where 𝑠 = 𝑟, 𝜃, 𝑧, 𝑚 is the azimuthal Fourier index, and

𝑅(𝑐𝑜∕𝑐𝑙)𝑠
𝑚 (𝑟) = 1

2𝜋 ∫

2𝜋

0
𝐸(𝑐𝑜∕𝑐𝑙)𝑠 (𝑟, 𝜃)𝑒

−𝑗𝑚𝑐𝑜∕𝑐𝑙𝜃𝑑𝜃.

Fig. 6 shows an example of such an AFD for the case of tube 1 of
Fiber #1 (see Fig. 5). The left hand side of the figure shows the radial
and azimuthal components of the 𝑦-polarized FCM field distribution
along the tube perimeter at 𝐹 = 2.6. The orange curves are computed
at the inner (𝑟 = 𝑟𝑖𝑛𝑡) and the red curves at the outer (𝑟 = 𝑟𝑒𝑥𝑡)
boundaries of the tube. The right hand side of the figure shows the AFD
Spectra of this field radial components (top) and azimuthal components
(bottom), which hereinafter are simply called ‘‘azimuthal spectra’’. The
4

magnitude of each component of the azimuthal spectrum is given by
𝑅𝑐𝑜𝑟
𝑚𝑐𝑜

(𝑟) for the radial field component, and by 𝑅𝑐𝑜𝜃
𝑚𝑐𝑜

(𝑟) for the azimuthal
component. The spectra exhibit a ‘‘low pass’’ characteristic, in that
the significant coefficients are primarily observed for azimuthal indices
|𝑚𝑐𝑜| ≤ 10. When 𝑚𝑐𝑜 = 0, the radial component has its maximum,
whereas the azimuthal one has a zero because of the odd symmetry.
Notably, similar results are obtained for the 𝑥-polarization component
by interchanging the roles of the azimuthal and radial components.

To confirm the ‘‘low pass’’ filter property across the entire spectrum,
we computed the azimuthal spectra at various normalized frequencies.
Fig. 7 shows the evolution of the FCM azimuthal spectrum for varying
normalized frequency within the 3rd order TB. The side of the figure
shows the CL at this TB (blue curve). We can identify two significant
features in these spectra. Firstly, the azimuthal spectra exhibit a ‘‘low
pass’’ filter characteristic for the majority of the transmission band
(TB) bandwidth, except for the red-edge region. In this region, the
azimuthal spectrum bandwidth expands, indicating a stronger coupling
between the CMs and CLMs, in consistency with our numerical results.
Secondly, we note that the magnitude of the spectra calculated on the
inner boundary remains relatively constant across the TB bandwidth.
Conversely, for the spectra calculated on the outer boundary, they have
a similar magnitude to the inner boundary spectra near the TB edges.
However, as the frequency approaches the center of the TB, the magni-
tude decreases significantly by almost two orders of magnitude. Lastly,
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Fig. 5. Fiber cross section with FCM field distribution and detail of local polar frame of reference (𝑟, 𝜃) centered at the center of the 𝑖th tube. Red and orange curves highlight
the outer and inner tube boundaries, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Fundamental core mode. Left: radial 𝐸𝑐𝑜𝑟 (top) and azimuthal 𝐸𝑐𝑜𝜃 (bottom) electric field components along the inner (orange) and outer (red) tube boundaries. Right:
magnitude of the corresponding azimuthal spectra. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Azimuthal spectra of the FCM radial component 𝐸𝑐𝑜𝑟 for different normalized frequencies, calculated along the inner (orange) and outer (red) boundaries. The CL spectrum
on the same normalized frequency range is also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. FM azimuthal spectrum of the radial (left) and azimuthal (right) components at the inner boundary multiplied by the corresponding normalized frequency they are
calculated at: 𝐹 = 0.6 (black); 𝐹 = 0.6 (blue); 𝐹 = 1.6 (red); 𝐹 = 2.6 (green); 𝐹 = 3.6 (orange). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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e observed that these features hold true for all the transmission bands
TBs), except for a consistent scaling law of 1∕𝐹 . This is illustrated in
ig. 8, which compares the values of 𝑅𝑐𝑜𝑟

𝑚 ⋅ 𝐹 for specific normalized
requencies, including 𝐹 = 0.6, 1.6, 2.6, 3.6, 4.6. Remarkably, the spectra
xhibit substantial overlap, confirming the validity of the relationship
𝑐𝑜𝑟
𝑚 ∝ 1∕𝐹 . Moreover, this scaling trend is consistent across the various
omponents, aligning with the scaling law based on the square of
he electric field at the boundaries, as previously established in the
iterature (Vincetti, 2016).

Figs. 9 and 10 provide insights into the characteristics of two CLMs,
pecifically 𝐸𝐻5,3 and 𝐸𝐻10,3. On the left-hand side, we observe the
zimuthal and radial profiles of these CLMs at the inner (yellow curves)
nd outer (red curves) boundaries of an isolated tube. Meanwhile,
he right-hand side illustrates their corresponding azimuthal spectra.
ue to the sinusoidal dependence on the azimuthal angle (Kharadly
nd Lewis, 1969; Vincetti and Setti, 2010; Debord et al., 2017), each
omponent of the field exhibits a double component at |𝑚𝑐𝑙| = 𝜇
ith equal magnitudes. This symmetry arises from the fact that the

maginary parts of 𝐸𝑟 and 𝐸𝜃 are significantly lower than the real parts,
esulting in 𝑅𝑐𝑙𝑠

𝑚 ≃ (𝑅𝑐𝑙𝑠
−𝑚)∗. It is worth noting that the spectra of the 𝐻𝐸

LMs exhibit similar characteristics, and the same observations can be
pplied to them. Based on this analysis, the CLMs AFD can be written
s:

𝑐𝑙𝑠 (𝑟, 𝜃) ≃ (𝐴𝑠
𝑝)

∗𝑒𝑗𝜇𝜃 + 𝐴𝑠
𝑝𝑒

−𝑗𝜇𝜃 (5)

ith 𝑝 = 𝐻𝐸,𝐸𝐻 , 𝑠 = 𝑟, 𝜃, and 𝑟 = 𝑟𝑖𝑛𝑡, 𝑟𝑒𝑥𝑡 and thus

𝑐𝑙𝑠
𝑚 =

⎧

⎪

⎨

⎪

⎩

𝐴𝑠
𝑝 𝑚 = 𝜇

(𝐴𝑠
𝑝)

∗ 𝑚 = −𝜇

0 |𝑚| ≠ 𝜇

(6)

. The model

Now that we have expressed the fiber mode fields as a linear
ombination of azimuthal harmonics, we can utilize the AFD to explore
ode coupling and its effects on confinement loss in tubular fibers. The
FD provides an effective and useful tool for calculating and obtaining
emi-analytical expressions for the integrals in Eq. (2), as shown below.
he integral of one of the 𝑁 terms in (2) is:

𝐸𝑡𝑐𝑜 ⋅ 𝐸𝑡𝑐𝑙 𝑑𝑆 =
∞ 2𝜋 (

𝐸𝑐𝑜𝑟𝐸𝑐𝑙𝑟 + 𝐸𝑐𝑜𝜃𝐸𝑐𝑙𝜃

)

𝑟𝑑𝑟 𝑑𝜃 (7)
6

𝑆𝑡𝑢𝑏𝑒
∫0 ∫0 a
y substituting (3) and (4) in (7), and recalling that:
2𝜋

0
𝑒−𝑗𝑛𝜃𝑒−𝑗𝑚𝜃𝑑𝜃 =

{

0 if 𝑚 ≠ −𝑛

2𝜋 if 𝑚 = −𝑛

e obtain:

𝑆𝑡𝑢𝑏𝑒

𝐸𝑡𝑐𝑜 ⋅ 𝐸𝑡𝑐𝑙 𝑑𝑆 = 2𝜋 ∫

∞

0
𝑔(𝑟)𝑑𝑟. (8)

where

𝑔(𝑟) = 𝑔𝑟(𝑟) + 𝑔𝜃(𝑟), (9)

with

𝑟(𝑟) =
+∞
∑

𝑚=−∞
𝑅𝑐𝑜𝑟
𝑚 (𝑟)𝑅𝑐𝑙𝑟

−𝑚(𝑟) (10)

𝜃(𝑟) =
+∞
∑

𝑚=−∞
𝑅𝑐𝑜𝜃
𝑚 (𝑟)𝑅𝑐𝑙𝜃

−𝑚(𝑟), (11)

efined as the Azimuthal Spectra Overlap (ASO). The above can be
urther simplified by recalling that the CLMs are strongly localized
ithin and around the dielectric wall of the tube, and the radial profile

s solely dependent on radial index 𝜈. Secondly the amplitudes of the
M spectral coefficients are much larger on the inner boundary than
n the outer one. Consequently 𝑔 can be estimated just by calculating
ts value on the tube inner boundary (𝑟 = 𝑟𝑖𝑛𝑡). Finally, the radial
nd azimuthal ASO, 𝑔𝑟 and 𝑔𝜃 , respectively, are non-zero only if the
wo spectra of the corresponding components are at least partially
verlapping. Thus on the basis of above and of Eq. (6), it follows:

𝑟(𝑟) = 𝑅𝑐𝑜𝑟
𝜇 (𝑟𝑖𝑛𝑡)

(

𝐴𝑟
𝑝(𝑟𝑖𝑛𝑡)

)∗
+ 𝑅𝑐𝑜𝑟

−𝜇 (𝑟𝑖𝑛𝑡)𝐴𝑟
𝑝(𝑟𝑖𝑛𝑡) (12)

𝜃(𝑟) = 𝑅𝑐𝑜𝜃
𝜇 (𝑟𝑖𝑛𝑡)

(

𝐴𝜃
𝑝(𝑟𝑖𝑛𝑡)

)∗
+ 𝑅𝑐𝑜𝜃

−𝜇 (𝑟𝑖𝑛𝑡)𝐴𝜃
𝑝(𝑟𝑖𝑛𝑡). (13)

ccording to CMT, the loss due to coupling between a core and a
ladding leaky mode at the phase matching condition, 𝛥𝛼 is propor-
ional to |𝐾|

2, and 𝐾 can be estimated by 𝑔(𝑟𝑖𝑛𝑡) thus for each CLM:

𝛼 ∝ |𝐾|

2 ∝ |𝑔(𝑟𝑖𝑛𝑡)|
2. (14)

ccurring at 𝐹 = 𝐹𝑐 of the involved CLM. Eqs. (12), (13) and (14),
ighlight as loss contribution of the coupling between FM and a CLM
s primarily driven by the azimuthal spectral component of the former
t the azimuthal index of the latter. It is thus the azimuthal spectral
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Fig. 9. Cladding mode 𝐸𝐻5,3. Top: Transverse electric field distribution. Left: 𝐸𝑐𝑙𝑟 (top) and 𝐸𝑐𝑙𝜃 (bottom) profiles along the inner (orange) and outer (red) tube boundaries. Right:
magnitude of the corresponding AFS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Cladding mode 𝐸𝐻10,3. Top: Transverse electric field distribution. Left: 𝐸𝑐𝑙𝑟 (top) and 𝐸𝑐𝑙𝜃 (bottom) profiles along the inner (orange) and outer (red) tube boundaries.
Right: magnitude of the corresponding AFS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
shape of FM which shapes the HLRs and the spectral distribution of
the CLMs 𝐹𝑐 which defines the HLR bandwidths. These statements are
confirmed by the results presented and discussed in the next section.

5. Results

Fig. 11 compares the numerical results on the 𝑦-polarized FM CL
of Fiber#1 with |𝑔|2 values represented by vertical bars placed at the
corresponding 𝐹𝑐 by calculating 𝑔𝑟 and 𝑔𝜃 through Eqs. (12) and (13)
only on tubes 1 and 3 of Fig. 1. Blue bars refer to 𝐻𝐸 CLMs and the
red to 𝐸𝐻 ones. Fig. 12 shows a detail around the HLR corresponding
to CLM with 𝜈 = 2. Despite this and the previous described approxima-
tions, the agreement in describing the HLRs’ edges is very good. The
7

approach also allows to quantify the individual contributions of HE and
EH CLMs in defining the total CL in HLRs. Since for equal azimuthal and
radial indices, 𝐹𝑐 for the HE modes is smaller than for the EH modes
(see Fig. 2(Top) and related comments), HE CLMs, and in particular
those with low azimuthal index, define the red-edge of the HLRs or, in
other words, the blue-edge of the TBs. For the same reason, the HLR
blue-edges (or the TB red-edges) are mainly defined by the EH CLMs.
In accordance with Eq. (14) comments and the ASO concept, the HLR
blue-edges are mainly defined by the FM azimuthal spectrum and by
the spectral distribution of the EH CLMs cut-off frequencies. The former
defines the relative amplitudes of the CLMs spectral coefficients, the
latter their spectral positioning. The cut-off frequencies of 𝐸𝐻𝜇,𝜈 define
the transition between HLR and TB between 𝐹 = 𝜈 − 1 and 𝐹 = 𝜈.
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Fig. 11. Comparison of CL spectra of Fiber#1 obtained by numerical simulation (black) and |𝑔|2 computed on the inner boundaries of tubes 1 and 3 of Fig. 1. Blue and red bars
refer to 𝐻𝐸 and 𝐸𝐻 CLMs respectively and are placed at the corresponding 𝐹𝑐 . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 12. Detail of the CL and |𝑔|2 comparison shown in Fig. 11 around HLR centers at 𝐹 = 2.
As shown in Figs. 2, 3 and 4, those frequencies depend on the radial
index 𝜈, the tube aspect ratio 𝜌, and refractive index 𝑛𝑑 . This statement
is confirmed by analyzing the numerical CL and Eq. (14) spectra of
the other two TLFs reported in Table 1, as shown in Figs. 13 and 14.
The model reproduces with nice accuracy the variations of the spectral
bandwidths of both HLRs and TBs due to the variation of the tube
aspect ratio 𝜌 (Fig. 13 versus Fig. 11) and due to the refractive index 𝑛𝑑
variation (Fig. 14 versus Fig. 13).

6. Conclusion

In this work, a method of analysis based on the Azimuthal Fourier
Decomposition of the fiber’s modes along the tube boundaries com-
bined with Coupled Mode Theory has been developed in the framework
8

of the inhibited-coupling model, and then applied to the loss analysis
of ideal TLFs. The results show a good ability of the method to predict
TLF loss irrespective of geometrical and physical fiber parameters. The
method allows to highlight the crucial role played by the CMs-CLMs
coupling in defining the TLF loss. In particular the spectral distribu-
tion of the CLM cut-off frequencies 𝐹𝑐 , combined with the azimuthal
spectrum of CMs electric field along the cladding tube boundaries
define the main features of the HLRs and the TB bandwidth. The
method has been here applied to analyze the FM CL, but it can be
straightforwardly applied to higher-order CMs. Finally, the method is a
useful and effective theoretical tool for analyzing the impact of fiber
non-idealities on loss increase in real TLFs. The application of the
approach for analyzing the impact of non-constant thickness along the
tubes’ perimeter is presented and discussed in Part II.
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Fig. 13. Comparison of CL spectra of Fiber#2 obtained by numerical simulation (black) and |𝑔|2 computed on the inner boundaries of tubes 1 and 3 of Fig. 1. Blue and red bars
refer to 𝐻𝐸 and 𝐸𝐻 CLMs respectively and are placed at the corresponding 𝐹𝑐 . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 14. Comparison of CL spectra of Fiber#3 obtained by numerical simulation (black) and |𝑔|2 computed on the inner boundaries of tubes 1 and 3 of Fig. 1. Blue and red bars
refer to 𝐻𝐸 and 𝐸𝐻 CLMs respectively and are placed at the corresponding 𝐹𝑐 . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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