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Abstract
Following a previous article that focused on integrating epidemiological data from
prospective cohort studies into toxicological risk assessment, this paper shifts the focus
to case-control studies. Specifically, it utilizes the odds ratio (OR) as the main epi-
demiological measure, aligning it with the benchmark dose (BMD) methodology as
the standard dose–response modeling approach to determine chemical toxicity val-
ues for regulatory risk assessment. A standardized BMD analysis framework has been
established for toxicological data, including input data requirements, dose–response
models, definitions of benchmark response, and consideration of model uncertainty.
This framework has been enhanced by recent methods capable of handling both cohort
and case-control studies using summary data that have been adjusted for confounders.
The present study aims to investigate and compare the “effective count” based BMD
modeling approach, merged with an algorithm used for converting odds ratio to relative
risk in cohort studies with partial data information (i.e., the Wang algorithm), with the
adjusted OR-based BMD analysis approach. The goal is to develop an adequate BMD
modeling framework that can be generalized for analyzing published case-control study
data. As in the previous study, these methods were applied to a database examining
the association between bladder and lung cancer and inorganic arsenic exposure. The
results indicate that estimated BMDs and BMDLs are relatively consistent across both
methods. However, modeling adjusted OR values as continuous data for BMD estima-
tion aligns better with established practices in toxicological BMD analysis, making it a
more generalizable approach.

K E Y W O R D S
Arsenic exposure, Bayesian analysis, Benchmark dose, Bladder cancer, Epidemiological risk assessment,
Lung cancer

1 INTRODUCTION

Benchmark dose (BMD) methodology (Shao & Shapiro,
2018; US Environmental Protection Agency [US EPA], 2012)
has become the default approach for determining the toxicity
value of chemicals in regulatory risk assessments. Since its
introduction (Crump, 1984), the BMD method has evolved
into a mature and standardized framework, primarily applied
to toxicological data. This framework includes well-defined
input data requirements, various dose–response models,
accepted benchmark response (BMR) definitions, and strate-
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gies to address model uncertainty (Shao & Shapiro, 2018).
These components collectively ensure that BMD analysis of
toxicological data is generalizable and interpretable.

However, the application of BMD methodology to epi-
demiological data presents unique challenges due to the
complexities inherent in study designs, exposure measure-
ments, and outcome expressions (e.g., odds ratios [ORs]
and relative risks [RRs]). Recent studies have started to
bridge this gap by developing strategies to estimate BMDs
from epidemiological data. For instance, Kullar et al. (2019)
applied BMD methods to individual-level data for cognitive
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impairment in children exposed to manganese, while the US
Food and Drug Administration (US FDA, 2016) adapted
the BMD framework for cohort studies, modeling inci-
dence ratios with adjustments for exposure, and follow-up
durations. Allen et al. (2020b) and Shao et al. (2021)
further advanced these methods to handle both cohort
and case-control studies using summary data adjusted for
confounders.

Following our previous work that integrated epidemiolog-
ical data from prospective cohort studies into toxicological
risk assessment (De Pretis et al., 2024), this paper shifts focus
to case-control studies. Specifically, it uses the OR as the
primary epidemiological measure and aligns it with the com-
monly used BMD modeling framework for regulatory risk
assessment. The objective of this study is to investigate and
compare two approaches: the “effective count” based BMD
modeling approach (Allen et al., 2020b), combined with the
Wang algorithm (Wang, 2013), and the adjusted OR-based
BMD analysis approach (Shao et al., 2021).

This study aims to identify a BMD modeling framework
suitable for analyzing published data from case-control stud-
ies. By applying these methods to a dataset examining the
association between bladder and lung cancer and inorganic
arsenic exposure, we seek to determine the effective approach
in terms of consistency and computational efficiency. A sig-
nificant advancement in this field is the Bayesian BMD
methodology, which offers several advantages over tradi-
tional methods. Bayesian approaches provide a robust frame-
work for integrating prior information and addressing model
uncertainty more effectively. They allow for the incorporation
of prior knowledge and the generation of probabilistic state-
ments about model parameters, enhancing the interpretability
and reliability of the results. The Bayesian BMD methodol-
ogy is particularly superior in handling the complexities and
uncertainties associated with epidemiological data, making it
a powerful tool for regulatory risk assessment.

By focusing on case-control studies, this research aims
to develop a BMD methodology for epidemiological stud-
ies that is harmonized with its counterpart for toxicological
studies. The selected approach will be evaluated based on its
alignment with the established components of a typical BMD
modeling framework. Addressing uncertainties in exposure
ranges is crucial in epidemiological studies, but outside the
scope of this study. High-quality epidemiological data are
preferred over toxicological data for risk assessment because
they eliminate the need for animal–to–human extrapolation.
Therefore, developing a standardized and generalized BMD
modeling framework for epidemiological studies is critical
and can significantly impact regulatory risk assessment.

The rest of this article is organized as follows: section 2
describes the arsenic exposure dataset used in our analysis
and details the methods for pretreating and analyzing the data
using dichotomous and continuous BMD models. In section
3, we compare the models and present the main outcomes of
our analysis, exploring their statistical associations. Finally,
section 4 discusses the limitations and potential expansions
of our approach.

2 MATERIALS AND METHODS

The structure and representation of case-control data used
in this study are first introduced in this section to compare
two different modeling approaches for BMD estimation from
epidemiological studies. The two modeling methods to be
compared, model the epidemiological dose–response data (1)
as dichotomous data (subsection 2.3.1) or (2) as continuous
data (subsection 2.3.2), and are discussed here as well.

2.1 Basics for epidemiological data
representation

In line with De Pretis et al. (2024), we make use of the
notation introduced in Lash and colleagues (2021, Chapters
16–18) for categorical statistics purposes. We represent abso-
lute frequencies of person–time data and pure count data
by the contingency tables (a) and (b) shown in Figure 1.
Each of these tables is composed of two sub-tables, outlin-
ing the format used for two exposure groups (exposed and
background exposed) and multiple exposure groups (up to
a number G). In these two tables, we express cases by the
letter A, number of controls by the letter B, number of sub-
jects by N, and person–time by T. The latter quantities usually
appear as denominators in standard epidemiological ratio-
based measures: we will conform to such notation as well
in the formulas provided here. The superscripts e and r refer
to effective and raw (original) counts; they also signal if an
epidemiological measure is adjusted or unadjusted. The sub-
script i marks each of the G exposure groups, with i = 0
denoting the background exposed (Bkgnd Exp, abbreviated) /
unexposed / baseline / referent group, as it may be defined in
accordance with the context where the latter is used. In this
article, we will focus only on case-control study data type:
they are usually characterized by odds ratios, a measure of
association between an exposure and an outcome, as it will
be now detailed. However, for a more complete description
of such studies, we again refer the reader to Lash et al. (2021,
Chapter 7).

Similarly to the relative risk RR introduced in Lash et al.
(2021, Chapters 16–18), if we consider the number of sub-
jects as the primary denominator in our computations, we
favor constructing a Binomial model for the number of cases
occurring out of a fixed number of subjects. This leads to
defining not only a ratio measure for a given exposure group
(the RR), but also a risk-odds ratio OR, whose maximum
likelihood estimate reads as:

ORi =
Ai

Bi
∕

A0

B0
(1)

and with the SE of its logarithmic measure being:

SE
[
log (ORi)

]
=

√
1
Ai

+
1
Bi

+
1

A0
+

1
B0

(2)

 15396924, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.17671 by U

niversity M
odena, W

iley O
nline L

ibrary on [05/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Frisa.17671&mode=


BENCHMARK DOSE MODELING FOR EPIDEMIOLOGICAL DOSE–RESPONSE ASSESSMENT 3

F I G U R E 1 Common notation for contingency tables categorizing epidemiological data. Tables on the left side are employed to represent person–time
data, whereas those on the right side are used for pure count data. Examples for two exposure groups or a general number of G groups are provided in
sub-tables.

2.2 Dose–response data from case-control
studies

To compare the results from continuous and dichotomous
BMD models (see Subsection 2.3), we consider a list of
11 systematic reviews / meta-analyses published in 2006–
2021 and focused on the coupling between inorganic arsenic
exposure by water ingestion and onset of various forms of
tumors, principally bladder and lung cancer, since they repre-
sent the majority of loci in neoplastic formations recorded in
observational studies, next to kidney and liver tumors. There-
fore, we limit our analysis to such types of cancer and from
these systematic reviews / meta-analyses we extract data only
belonging to case-control studies (see Figure 2).

Information on extracted data is reported in Table 1: they
are all case-control studies and, differently from De Pretis
et al. (2024) which considered data coming only from the Tai-
wanese area, they account for different geographical exposure
zones, such as Bangladesh, Chile, Finland, the United States,
and again Taiwan.

From the same initial list, other 12 studies were reported
as case-control studies but were subsequently discarded,
because they did not fit some of the requirements needed
for our analysis, resulting in missing information or lacking
division by dose groups. Raw data from the selected case-
control studies are shown in the next section, in Tables 2
and 3.

2.3 BMD modeling methods for
epidemiological data

There are four parts in this subsection: we provide a descrip-
tion of the models we employ to analyze dichotomous
and continuous data in the first two parts respectively, and
then focus on the pre-treatment of the dose (adjusted expo-

sure midpoint computations), and of the response (BMR
calibration).

2.3.1 Model epidemiological data as
dichotomous data

This model works in two steps. Initially, data are pre-treated
to derive the “effective counts” based on an approach fol-
lowing Allen et al. (2020b) and the Wang algorithm (Wang,
2013), that is, the effective number of cases A and of controls
B obtained as we consider the OR and the interval of its SEs
both varying with respect to the different dose groups. Even-
tually, the effective counts are modeled as dichotomous data
to calculate BMDs as outlined in Shao and Shapiro (2018).

Effective Counts via Wang algorithm: We first set the
number of subjects to be invariant between raw and effective
counts, in line with Allen et al. (2020b):

Ne
i = Nr

i (3)

Then, we compute the number of effective counts for
the referent group via the Wang algorithm, in the following
manner:

(Ae
0; Be

0) = min(Ae
0; SS) W

(
Nr

0,N
r,OR

r
,OR

r

L,OR
r

U

)
(4)

where W symbolizes the Wang algorithm, N is the total num-
ber of subjects counting for all dosage groups, the bar symbol
operator represents the mean over all the odds ratios and their
lower and upper bound of the confidence interval at the 95%
level, and SS is a sum of squares as defined in Wang (2013).
Eventually, we derive the full number of effective counts for
the treatment groups (that is, for all remaining dosage groups)
by exploiting the previously mentioned condition on the num-
ber of subjects and, similarly, an equivalence of ORs between
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BENCHMARK DOSE MODELING FOR EPIDEMIOLOGICAL DOSE–RESPONSE ASSESSMENT 7

F I G U R E 2 Flowchart for the identification of case-control studies to be considered for the testing dataset. It maps out the number of records identified,
included, and excluded, and the reasons for exclusions.

raw and effective counts is also derived:{
Nr

i = Ae
i + Be

i

ORr
i =

Ae
i

Be
i

∕
Ae

0

Be
0

(5)

Bayesian benchmark dose modeling for dichotomous
data: In this case, we couple the Allen et al. (2020b) and
Wang (2013) “effective counts” method with the dichoto-
mous case of the Shao and Shapiro (2018) model. The latter
computes the dose–response model parameters by estimating
the following quantity:

log
[
P (data|𝜽)

]
=

G−1∑
i=0

{
log

(
ni
yi

)
+ yi log

[
f (di|𝜽)

]
+ (ni − yi) log

[
1 − f (di|𝜽)

]}
(6)

where, θ represents the parameters that define a dose–
response curve f(di│θ) (for our comparison purposes, we will
focus on the quantal-linear and dichotomous Hill models for
dichotomous data), di represents the dose level; ni is the num-
ber of subjects in each dose group (i.e., Ne

i ) and yi is the

number of subjects showing response in the corresponding
dose group (i.e., Ae

i ). Unlike its original version, the summa-
tion index is defined from i = 0 to i = G-1 since the referent
group is marked here by having i = 0.

With respect to input data, to incorporate the “effective
counts” treatment in a dichotomous model, it appears natural
to set ni = Ne

i and yi = Ae
i . However, it must be noted that

the ni and yi terms may no longer be integers, after undergo-
ing such a transformation. To counteract such a problem, as
in De Pretis et al. (2024), we consider a classical extension to
two real valued arguments through the Gamma function (for
instance, see Díaz and Cano (2019); Winkelmann (2008)). An
approximation to the closest integer can performed as well.

2.3.2 Model epidemiological data as
continuous data

The second way we model epidemiological dose–response
data and compare with the approach described in Sec-
tion 2.3.1 is to model the OR as a continuous response
following a typical BMD modeling framework. There are
four required input quantities for performing a BMD
modeling using continuous data, including dose or exposure
levels, the number of subjects in each dose group, the mean,
and standard deviation of the response in each dose group.
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8 DE PRETIS ET AL.

The method described in Section 2.3.3 can be used to derive
a reasonable point estimate for each exposure group if the
exposure was reported in ranges not as point estimates in the
original studies. The sample size of subjects in each expo-
sure group is typically reported in epidemiological studies
and can be directly used in BMD modeling. Then, we need to
convert the OR (typically reported as median and 95% confi-
dence interval) to mean and standard deviation to facilitate the
BMD modeling as continuous data. Usually, reported met-
rics of OR show that the confidence interval is skewed to the
upper end, indicating that it is reasonable to assume that OR
at each exposure level follows a lognormal distribution. The
lognormal distribution can be characterized by two parame-
ters, yi = log(ORe

i ) (i.e., the logarithm of the median OR) and
s′i (i.e., the standard deviation of OR on a log scale). Based on
the reported confidence interval of OR, the s′i can be calcu-

lated as (2 ⋅ z0.975)−1
⋅ log(ORU

i ∕ORL
i ) for 95th percentile CI

(note that z0.975 needs to be replaced by z0.95 if 90th percentile
CI was reported in the original study). Then, as described
in Shao et al. (2021), these four required quantities will be
used in the following log-likelihood function to estimate the
parameters of a continuous dose-response model:

log
[
P (data|𝜃)

]
= −

N
2

log (2𝜋) −
G−1∑
i=0

(ni

2
log

(
𝛾2
)

+
ni

{
yi
′
− log[f (di|𝜃)]

}2
+ (ni − 1) s

′2
i

2𝛾2

⎞⎟⎟⎟⎠ (7)

where ni is the number of subjects in each dose group, di is
the exposure level of each group, yi

′
is the log-transformed

mean value of OR in each group, s′i is the log-transformed
standard deviation of OR in each group, N is the total number
of subjects, and G−1 is the number of dose groups. f(di |θ)
represents a continuous dose–response model with a vector
of parameters θ. Based on the settings expressed in the log-
likelihood function above, we assume that the mean response
of OR on the log-scale is represented by a chosen continuous
dose–response model, and the within-dose–group standard
deviation, γ, is a constant across the dose groups. In this
study, for the purpose of comparison, one simple and one
complex dose–response model (i.e., the Linear model and the
Hill model as described in Shao and Shapiro [2018] corre-
sponding to the quantal-linear and dichotomous Hill models
for dichotomous data) are used for BMD estimation.

2.3.3 Point exposure computations

Point estimate of exposure/dose level (instead of expo-
sure/dose ranges) is required to be used in a typical BMD
modeling framework. To ensure the comparisons among dif-
ferent epidemiological studies tackling diverse populations
are effective and consistent, adjustment to the exposure met-
rics has to be taken into account as well. For example, Lynch

et al. (2017) estimated the midpoint arsenic concentration in
water of the dose groups, adjusted to account for differences
in body weight and water consumption rates in some foreign
populations as compared to the United States. To estimate the
midpoint exposures for open-ended highest dose groups pre-
sented as greater than a value, Lynch et al. (2017) assumed
the midpoint between the highest value and two times of
the highest value. If an open-ended lowest dose group exists
(i.e., less than a lowest dose), then it is simple to use half of
the lowest value as the midpoint for the lowest group. This
approach can be formalized in the following way. For the
datatype of dose ranges, 𝛿∗i and 𝛿♢i represent the supremum
and infimum (shortly, sup and inf) of a given dose interval
referring to the i-th group, respectively. Adjustment is made
based on the assumption that a water intake rate ω (in L/day)
and an average water intake rate �̂� (in L/day), serves as a
baseline and is typically set at 2 L/day to align with US stan-
dards. When open lower and upper intervals are available, we
have:

di =

⎧⎪⎪⎨⎪⎪⎩

1

2
⋅ 𝛿0 ⋅

(
𝜔

�̂�

)
for i = 0

1

2
⋅ (𝛿∗i + 𝛿♢i ) ⋅

(
𝜔

�̂�

)
for i ≠ 0 ∧ i ≠ G − 1

3

2
⋅ 𝛿G−1 ⋅

(
𝜔

�̂�

)
for i = G − 1

(8)

If no open-ended interval were present, the middle for-
mula di = 2−1 ⋅ (𝜹∗i + 𝜹♢i ) ⋅ (𝝎∕�̂�) can be used for all dose
groups. Eventually, in case of epidemiological studies report-
ing medians instead of intervals, the above formula can be
simplified to di = 𝜹i ⋅ (𝝎∕�̂�), where 𝜹i represents the median
dose of a given exposure group.

2.3.4 Definitions of benchmark response

To facilitate an effective comparison of two modeling meth-
ods for BMD estimation using case-control epidemiological
studies, equivalent benchmark responses (BMRs) should be
adequately defined for dichotomous and continuous data
to minimize the impact caused by inconsistency in BMR
definition. Since background exposure always exists in epi-
demiological studies, the reference group (typically the
lowest exposure group) is a more suitable choice as a ref-
erence for BMD calculation rather than the control group
(i.e., the dose level is zero) used in toxicological studies. To
determine equivalent BMRs, we first choose several BMR
levels for the dichotomous data, then estimate the counterpart
BMRs for the continuous data.

The BMR is well defined for dichotomous data. In this
study, we applied the BMR definition based on extra risk and
set the value at 0.1% (low level), 0.5% (medium level), and
1% (high level), that is, three levels for comparison purposes.
An important reason for choosing the BMR in this range is
that, using the effective counts of lung cancer, we estimated
for the selected studies, as an example, the BMRs can lead to
approximately 1–20 extra cases in a 1 million population at
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BENCHMARK DOSE MODELING FOR EPIDEMIOLOGICAL DOSE–RESPONSE ASSESSMENT 9

the BMD level, which is a reasonable protective goal. Given
the BMR definition, the BMD can be expressed as:

BMRD =
f (BMD) − f (ref)

1 − f (ref)
(9)

where, f(ref) is the response rate at the reference exposure
group and f(BMD) is the response rate at the BMD exposure
level. f(∙) represents a dichotomous dose–response model.
The numerator f(BMD)-f(ref) calculates the difference in risk
between the BMD exposed and background exposed groups.
This equation essentially estimates the excess risk attributable
to the exposure at BMD level by dividing the difference in
risk (i.e., the numerator) by the complement of the risk in the
background exposed group (i.e., the denominator).

On the other hand, for continuous data, we applied the cen-
tral tendency-based definition to define the BMR, that, the
BMD is the exposure level where the corresponding central
tendency of the response (i.e., OR in this case) has changed
by a certain amount (i.e., BMRC). The BMD calculation
function can be expressed as:

BMRC =
g (BMD) − g (ref)

g (ref)
(10)

where g(ref) is the OR at estimated OR at the reference
exposure level and g(BMD) is the OR at the BMD exposure
level. The g(∙) is a continuous dose–response model. For the
case of modeling OR as continuous data, g(ref) serves as the
reference point representing the risk level in the reference
exposure group, while the numerator g(BMD)−g(ref) esti-
mates the difference between the groups exposed at the BMD
and background level, respectively. Equation (10) expresses
the change in OR to the background level, providing a
quantity with which to measure the relative change in risk
associated with the BMD exposure.

To calculate an equivalent BMRC, we made two assump-
tions: (1) the OR and relative risk were generally similar
for low-prevalence diseases (e.g., bladder cancer used as an
example in this study); and (2) the incidence rate at the BMD
level in the scenario of OR as continuous data was equal to the
incidence rate at the BMD level in the case of dichotomous
data, therefore, g (BMD)= f(BMD)/f(ref). To avoid unwanted
interruptions from model fitting process, the conversion from
BMRD to the equivalent BMRC needs to be completed before
the fitting and BMD estimation. Consequently, we directly
used input dose–response data to calculate the quantities, for
example, g(ref) is 1 (because OR is 1 at the reference group)
and f(ref) is the incidence rate at the reference exposure group
estimated by dividing the effective counts of cases by the total
number of subjects. By substituting Equations (9) and (10) to
an equation ensuring the equivalence of BMR definitions, we
get Equation (11) as shown below:

BMRC + 1 =
f (BMD)

f (ref)
=

BMRD × (1 − f (ref)) + f (ref)
f (ref)

(11)

Using Pu et al. (2007) as an example, there are 18 and
110 effective counts of cases and non-cases, respectively
indicating f(ref) = 18/128, so BMRC is about 0.6% when
BMRD = 0.1%. Such conversion should be performed for
each epidemiological dataset considered in this comparison
study.

3 RESULTS

The results of the study are presented in three parts in this sec-
tion, including (1) the input data for BMD modeling obtained
after the data pre-treatment; (2) BMD estimation using the
Bayesian BMD analysis approach; and (3) the comparison
of the BMD estimates using the two strategies discussed in
Section 2.

For all the case-control studies considered in this study,
they were separated and summarized in Tables 2 and 3
according to the endpoints (i.e., bladder cancer and lung can-
cer). The estimated effective number of cases and of subjects
together with the adjusted exposure midpoints are listed in
the tables. These computed values were derived from the
raw data, such as the exposure concentration, adjusted OR,
and raw cases and non-cases, reported in the tables as well.
The water intake rate shown in the tables was used to cal-
culate the adjusted exposure midpoints as described in Tsuji
et al. (2019) and Lynch et al. (2017). Furthermore, as detailed
in the caption of Table 2, for the data originated from Tai-
wan, we employed an up-to-date water intake rate value (see
US Environmental Protection Agency (US EPA, 2023)), dif-
ferent from what was originally used by De Pretis et al.
(2024).

With the data shown in Tables 2 and 3 as input data, we
conducted a Bayesian BMD analysis using the models for
dichotomous and continuous data as discussed in the pre-
vious section. Also as mentioned in the previous section,
one simple model and one complex model were employed
for BMD estimation for both data types. For dichotomous
data, the Quantal-Linear and Dichotomous-Hill models are
the simple and complex model, respectively, while the coun-
terparts for continuous data are the Linear and Hill models.
As described in Subsection 2.3.4, we set the BMR at 0.1%,
0.5%, and 1% for all datasets when the modeling approach
for dichotomous data was applied, and the corresponding
BMRs for continuous data were calculated. The complete
results of the Bayesian BMD analysis together with the BMR
information are reported in the Supplementary Material. We
present the comparison between these two types of BMD
modeling approaches, that is, the BMDs and their lower and
upper bounds for a restriction to Linear vs. Quantal-Linear
model and Hill vs. Dichotomous-Hill model, in the scat-
terplots reported for each case-control study in Figures 3a
and 4a.

Related to the third point concerning the performance mea-
surement of both models, we first calculate the correlation
coefficient to compare the corresponding BMD estimates
(including the median, lower, and upper bound) obtained
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10 DE PRETIS ET AL.

(A) Scatter plot of computed BMDs and their upper and lower bounds at different dose levels 
for the dichotomous (X-axis) and continuous (Y-axis) data models. Data coming from different
case-control studies (see right legend) align with a strong positive correlation (r = 0.864).

(B) Spearman’s ρ and Kendall’s τ -b measures of association for the dichotomous and 
continuous data models. On the X-axis, we report the case-control studies which analyzed 
data belong to. On the Y-axis, we plot Spearman’s ρ and Kendall’s τ -b measures. Data are 
ordered according to the latter measures. Strong association between the two models is 
shown by almost all studies.

F I G U R E 3 Comparison of dichotomous and continuous data models via Quantal-Linear and Linear dose-response models. Panel (a): BMDs and their
lower and upper bounds computed via dichotomous and continuous data models. Panel (b): Measures of associations of the latter models.

from these two modeling strategies considered using the
same dataset. These BMD estimates obtained from the sim-
ple model and complex model are visualized in Figures 3a
and 4a with r = 0.895 and r = 0.857, respectively. We then
employed two common measures of rank correlation to quan-
tify the statistical non-independence between the rankings of
two variables over the same dose–response models, namely

the Kendall’s τ -b and Spearman’s ρ coefficients. Both mea-
sures range from −1 to 1. Positive values indicate how well
the relationship between two variables can be described by
an increasing monotonic function (Spearman’s ρ) and how
effectively a direct ordinal association between two measured
quantities can be established (Kendall’s τ -b). The results of
such an analysis were visualized in Figures 3b and 4b. These
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BENCHMARK DOSE MODELING FOR EPIDEMIOLOGICAL DOSE–RESPONSE ASSESSMENT 11

(A) Scatter plot of computed BMDs and their upper and lower bounds at different dose levels 
for the dichotomous (X-axis) and continuous (Y-axis) data models. Data coming from different
case-control studies (see right legend) align with a moderate positive correlation (r = 0.815).

(B) Spearman’s ρ and Kendall’s τ -b measures of association for the dichotomous and 
continuous data models. On the X-axis, we report the case-control studies which analyzed 
data belong to. On the Y-axis, we plot Spearman’s ρ and Kendall’s τ -b measures. Data are 
ordered according to the latter measures. As for the Quantal-Linear and Linear dose-
response models, also for the Dichotomous Hill and Hill models a strong association is 
observed in almost all studies.

F I G U R E 4 Comparison of dichotomous and continuous data models via Dichotomous Hill and Hill dose-response models. Panel (a): BMDs and their
lower and upper bounds computed via dichotomous and continuous data models. Panel (b): Measures of associations of the latter models.

figures show comparable results with an average Spearman’s
rank correlation coefficient accounting to 0.936 ± 0.043
(computed via Fisher’s Z transformation) and an aver-
age Kendall rank correlation coefficient equal to 0.864 ±

0.045.

4 DISCUSSION

In this paper, following a previous work by De Pretis
et al. (2024) focusing on prospective cohort study data, we
aimed to identify a generalizable and standardizable BMD
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12 DE PRETIS ET AL.

modeling method for case-control epidemiological study
data. Two modeling strategies were proposed and compared:
that is, the modeling of the epidemiological data extracted
from case-control studies as dichotomous and continuous
data, respectively. When modeling the case-control study
data as dichotomous dose–response data, we converted com-
monly reported information (e.g., adjusted odds ratio) in
published studies to “effective counts” of cases and non-
cases, which essentially represent the incidence only caused
by exposure to the study chemical (without impact from con-
founders). This approach appropriately weighs each exposure
group while accounting for the influence of confounders on
the incidence rate. Conversely, when modeling commonly
reported adjusted odds ratio as continuous dose–response
data, a minor data preprocessing needs to be completed to
transform the reported ORs (typically median and 95th confi-
dence interval) to the format of mean and standard deviation.
This method shows how health effects can be impacted by the
exposure compared to the reference group.

It is important to emphasize that the modeling methods
presented in this study do not involve direct analysis of raw
epidemiological data. Instead, we rely on published data that
has undergone appropriate processing and adjustment. While
we used epidemiological cancer endpoints for demonstration
purposes, this BMD modeling approach is applicable to a
wide range of health effects other than cancer. For lung can-
cer and bladder cancer induced by exposure to iAs, numerous
studies (Tsuji et al, 2019, Shao et al, 2021) have demonstrated
the existence of an exposure “threshold” from both biological
and statistical perspectives. However, it is not our intention to
suggest that the estimated BMDL values should be used to
develop a reference dose (RfD) or cancer slope factor (CSF)
for iAs. Instead, we want to mention that the extrapolation
of the derived epidemiological BMD to lower doses, or the
methods for conducting low-dose extrapolation for epidemi-
ological BMD, is important but falls outside the scope of this
study.

The conversion of published OR dose–response data
ensures they align with the standardized format required for
BMD analysis using continuous data. This allows for seam-
less applications of commonly used dose–response models
and standard BMR definitions and settings in epidemiologi-
cal BMD analysis. To emphasize and guarantee an effective
comparison between different data structures for BMD esti-
mation (i.e., modeling case-control dose–response data as
dichotomous vs. continuous data), we implemented strate-
gies to minimize the influence of other factors on the BMD
estimates: (1) calculating equivalent BMR values for continu-
ous data based on the specified BMR values for dichotomous
data, using incidence rates as a reference; and (2) selecting
comparable dose–response models for the two data types,
such as Quantal-Linear vs. Linear and Dichotomous-Hill vs.
Hill models.

The estimated BMD, BMDL, and BMDU values from
these two modeling strategies were analyzed for correla-
tion. The correlation coefficients were 0.895 and 0.857
when the simple and complex dose–response models were

employed, respectively, indicating that the BMD estimates
from these two modeling approaches are relatively consis-
tent. The slightly lower correlation coefficient in the complex
model situation may be due to larger estimation uncertainty
in model fitting, similar to the findings by De Pretis et al.
(2024) when dealing with prospective cohort study data. The
compatible BMD estimates from the two modeling strate-
gies are further confirmed by the values of Kendall’s τ -b and
Spearman’s ρ coefficients.

From a theoretical standpoint, modeling case-control study
data as either dichotomous or continuous response for BMD
estimation are generally consistent. However, in practice,
modeling OR as a continuous response is more advanta-
geous. This is because converting confidence intervals into
mean and standard deviation is much more straightforward
than employing numerical methods to derive effective counts.
As a result, modeling OR as continuous data simplifies the
implementation process in BMD modeling tools. Notably,
these findings align with those observed for RRs.This latter
result also aligns with the previous work by De Pretis et al.
(2024), which integrated epidemiological data from prospec-
tive cohort studies into toxicological risk assessment. This
consistency with prior studies underscores the robustness and
generalizability of our proposed BMD modeling methods. It
confirms that our methods side with established practices in
BMD analysis, further validating our approach.
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