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Abstract

The aim of this paper was to explore the role of artificial intelligence (AI) applied to

ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus

databases were searched. All studies were imported to RAYYAN QCRI software. The

overall quality of the included studies was assessed using QUADAS-AI tool. Fifty

studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer,

5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50

(6.0%) on other malignancies. Most studies were at high risk of bias for subject

selection (i.e., sample size, source, or scanner model were not specified; data were not

derived from open-source datasets; imaging preprocessing was not performed) and

index test (AI models was not externally validated) and at low risk of bias for reference

standard (i.e., the reference standard correctly classified the target condition) and

workflow (i.e., the time between index test and reference standard was reasonable).

Most studies presented machine learning models (33/50, 66.0%) for the diagnosis

and histopathological correlation of ovarian masses, while others focused on automatic

segmentation, reproducibility of radiomics features, improvement of image quality,

prediction of therapy resistance, progression-free survival, and genetic mutation. The

current evidence supports the role of AI as a complementary clinical and research tool

in diagnosis, patient stratification, and prediction of histopathological correlation in
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gynecological malignancies. For example, the high performance of AI models to

discriminate between benign and malignant ovarian masses or to predict their specific

histology can improve the diagnostic accuracy of imaging methods.
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What's New?

Artificial intelligence is increasingly used in advanced medicine and is now being applied to ultra-

sound imaging in gynecological oncology. However, a deeper understanding of the capabilities

and limitations of AI would help improve the management of cancer patients from diagnosis to

treatment. The current evidence analyzed in this systematic review of 50 studies supports the

role of AI as a complementary research and clinical tool in diagnosis, patient stratification, and

prediction of histopathological correlation in gynecological malignancies. AI applications are

however still largely lacking for pathologies other than ovarian cancer.

1 | INTRODUCTION

Advances in gynecology ultrasound over the last two decades have

led to significant increase in the detection of gynecological

malignancies.1–12 Currently, ultrasound represents the primary imag-

ing modality for risk stratification of women presenting with ovarian

masses.13 Likewise, ultrasound assessment of women with endome-

trial or cervical cancer allows an accurate description of the topogra-

phy of cancer invasion, allowing tailored surgical management based

upon the imaging findings.14,15

The recent introduction of artificial intelligence (AI) in the field of

diagnostic imaging has revolutionized the common approach to both

diagnosis and prediction of prognosis in patients presenting with

either benign or malignant conditions.16 Indeed, AI has introduced

new information that cannot be acquired from the standard clinical

and radiological parameters.

In the last few years, there has been growing interest in the appli-

cation of AI applied to imaging in gynecology. In particular, the use of

AI has been extended to magnetic resonance imaging (MRI) and com-

puted tomography with encouraging results.17,18

AI is created by feeding into predefined algorithms a multitude of

relevant data, such as reasoning, learning, adaptation, sensory under-

standing, and interaction. This process is typically conducted by

humans and requires the availability of extensive databases.19

Machine learning (ML) is a branch of AI that develops algorithms

and statistical models to build computer systems that imitate human

learning, without being explicitly programmed.20 ML algorithms are

trained on data to produce models and make decisions based on pat-

terns observed.21,22 The accuracy of the model increases as the input

data increases. Recently, more evolved and combined neural networks

have been used in deep learning (DL) to process complex data.

DL uses multilayer artificial neural networks that can remain a “black
box” to the users and can automatically learn hierarchical representations

of data, leading to the extraction of quantitative characteristics by digi-

tally decoding images in order to identify even very small signs.23

In the field of gynecological imaging, AI models usually include

clinical variables, imaging data, and radiomics features.

Radiomics is a technique used to extract, analyze, and interpret

quantitative data from medical images.24 The radiomics workflow

involves different steps: image acquisition, tumor segmentation, quan-

titative features extraction from the tumor region, selection of the

most informative features (i.e., statistical features indicative of inten-

sity, textural features indicative of tissue architecture in terms of

grey-level pixels), and analysis of their relationship with the outcome.

The ultimate goal is the incorporation of quantitative imaging features

into models in order to predict clinical endpoints (i.e., pathology diag-

nosis, staging, prognosis, treatment response).

Due to the growing application of AI in the past few years, some

authors have explored the role of AI in gynecological oncology in sys-

tematic reviews and meta-analyses.25–28 However, there is still a lack

of synthesis of the available evidence regarding AI-based methods in

ultrasound.

The aim of our review is to report the role of AI applied to ultra-

sound imaging in gynecology oncology.

2 | MATERIALS AND METHODS

2.1 | Search strategy

Web of Science, PubMed, and Scopus databases were searched to

retrieve potential eligible articles, published until April 2, 2023. A

search string for PubMed was structured consisting of Medical

Subject Headings terms, keywords and free text words such as

“radiomics” “ultrasound-based radiomics” “artificial intelligence”
“machine learning” “deep learning” “Ultrasonography” “gynecol-
ogy” “gynecological diseases” “endometrium” “uterus” “uterine”
“ovary” “ovarian” “ovaries” “fallopian tube.” The search was

restricted to only humans and the English language. No other

restrictions were used. The search string was adapted for use in the
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other two electronic databases. The full search strategy for all

databases can be found in Supplementary Note 1.

2.2 | Inclusion/exclusion criteria

Inclusion criteria were studies reporting the role of AI applied to ultra-

sound in gynecology oncology, specifically focusing on diagnosis of

gynecological malignancies, image acquisition, quantification, segmen-

tation, and location identification. Systematic reviews, nonempirical or

animal studies, conference abstracts, editorials, commentaries, book

reviews, and abstracts not accompanied by a full text were not con-

sidered eligible for inclusion in the present systematic review.

2.3 | Study selection

All studies retrieved from the search strategy were imported to

RAYYAN QCRI software and duplicates removed. Two authors

(F.M. and M.T.G) reviewed all abstracts independently. Agreement

regarding potential relevance was reached by consensus. Full-text

copies of the selected papers were obtained, and four reviewers

(F.M., M.T.G., M.C., and S.G.Z.) independently extracted relevant

data regarding study characteristics. We considered only papers

reporting data on AI models applied to ultrasound imaging in the

field of gynecological oncology. Inconsistencies were discussed by

the reviewers and consensus reached or by discussion with the cor-

responding author. If more than one study was published for the

same cohort with identical endpoints, the report containing the

most comprehensive information on the population was included

to avoid overlapping populations.

The reference lists of the included studies were hand-searched to

look for additional studies.

When it was not possible to retrieve any full text online, we

contacted the corresponding authors of the articles.

2.4 | Data extraction and analysis

Data extraction was performed by four researchers (F.M., M.C., M.V.,

and H.E.T.). A dedicated data extraction form was used to retrieve the

following information for each eligible study:

(1) study identification: first author, title, publication year;

(2) study characteristics: study period, country, design, disease, popu-

lation; (3) the specific type of AI being assessed; (4) objective of the AI

used and main findings (Table 1).

We performed a qualitative synthesis in the form of a narrative

synthesis. The information retrieved from the included articles was

categorized according to the type of AI assessed, and gynecological

disease and was structured using Excel spreadsheets. The summary of

findings was presented in a dedicated table including the specific AI

used, the setting, the gynecological disease, and the objective for each

of them (Table 1).

In studies including multiple developed models, the results of the

best-performing model were reported in the “performance column” as

the area under the receiver operating characteristic curve (AUC), other-

wise as diagnostic accuracy, sensitivity and specificity, or positive and

negative likelihood ratio and diagnostic odd ratio. For example, when

an author developed more than one AI model, the model with the best

performance was indicated. When the AUC was not reported in the

article, the accuracy was considered and when both AUC and accuracy

were not described, sensitivity and specificity were then indicated.

The indicated performance refers to the external or internal vali-

dation set; if no validation was performed, this information was not

reported. For example, if an author developed a model validated in an

external population, its performance refers to the results obtained

from the external validation set; if the model was not externally vali-

dated, the performance obtained from the internal validation was

reported. Where the model was neither externally nor internally vali-

dated, the performance refers to the data obtained from the devel-

oped model (Table 1).

2.5 | Quality assessment

The overall quality of selected studies was performed using the Qual-

ity Assessment Tool for Artificial Intelligence Centred Diagnostic Test

Accuracy Studies (QUADAS-AI) criteria.29 The specifics are listed in

Supplementary. Table S1. The used criteria come from the extension

and revision of QUADAS-230 and QUADAS-C31 guidelines and com-

prises four domains (patient selection, index test, reference standard,

flow, and timing) in the risk of bias. This new tool assesses each

domain, providing a precise instrument to conduct reviews that evalu-

ate AI-centered studies.

3 | RESULTS

3.1 | General characteristics

A total of 3118 articles were retrieved, 107 were assessed with

respect to their eligibility for inclusion, and 50 studies were included

in this systematic review (Figure 1). 37/50 (74.0%) studies were on

ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial can-

cer, 5/50 (10.0%) on cervical cancer and 3/50 (6.0%) were on other

gynecological malignancies.

The results of the quality assessment of the included studies

using QUADAS-AI tool are presented in Supplementary Table S2.

Most studies were at high risk of bias for subject selection

(i.e., sample size or source were not specified; data was not derived

from open-source datasets; imaging preprocessing was not performed

and information on scanner model used to acquire images was not

specified) and index test (i.e., the AI model was not tested in an exter-

nal population in most articles) domains. However, there was gener-

ally a low risk of bias for reference standard (i.e., the reference

standard reported in most studies correctly classified the target

1834 MORO ET AL.
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condition) and workflow (i.e., in most articles the time between the

index test and the reference standard was reasonable) domains.

3.2 | Individual characteristics of the included
studies

Most studies (35/50, 70.0%) were conducted as single center,32–66

7/50 (14.0%) were multicenter,67–73 while 8/50 (16.0%) did not spec-

ify their design.74–81 Single-center studies were conducted mostly in

China (17/50, 34.0%),33,43,44,46,48,49,51,52,54,57–63,65 followed by Italy

(7/50, 14.0%).36,40,41,47,56,66,73 Most papers were published between

2020 and 2023 (33/50, 66.0%).36–54,57–66,70–73 The sample size ran-

ged from 20 to 107,624 women; the majority of studies included less

than 500 patients (32/50, 64.0%), while four studies included more

than 1000 patients.

33/50 (66.0%) reported the diagnostic accuracy of ML models,

13/50 (26.0%) developed DL models, and 4/50 (8.0%) both ML

and DL.

The primary aim of the large majority of the

included studies was to predict histology (i.e., benign vs.

malignant,32–35,37–42,44–46,48–53,55,56,58–60,62–64,66–81) while others

focused on methodology (automatic segmentation,43,54,61,62,70,72 repro-

ducibility of radiomics features,61,63 improvement of image quality54),

prediction of therapy resistance,65 progression to free survival (PFS)47

and geneticmutation36 (Table 1).

3.3 | Ovarian cancer

26/37 (70.3%) studies reported the performance of ML/DL models

to discriminate between benign and malignant ovarian

masses32,34,35,37–42,45,48–50,52,67–69,71,74–81 while 4/37 (10.8%)

explored the ability of such models to predict their histology

(e.g., benign vs. borderline vs. malignant).33,44,46,51 2/37 (5.4%)

focused on methodology (e.g., target automatic segmentation,

improvement of image quality),43,54 1/37 (2.7%) assessed the

performance of different models to predict PFS47 and 1/37 (2.7%)

BRCA mutation.36

Among those studies aimed at discriminating between benign

and malignant adnexal masses, the study by Gao et al.71 included the

highest number of patients (n = 107,624). The authors developed a

DL model from ultrasound images obtaining a performance similar to

that of expert sonographers in the external validation set (AUC 0.87).

Ben Van Calster et al.67 developed an ML model including clinical and

ultrasound variables of 1066 patients with AUC 0.95 in the internal

validation set. Christiansen et al.42 in a study including 758 patients

developed ultrasound-based imaging DL model with AUC 0.95 in the

internal validation test set. Hsu et al.49 included 587 patients with

adnexal masses and developed an ultrasound-based imaging DL model

with accuracy 0.92 in the internal validation set (AUC not shown).

Acharya et al.81 in a study including 469 patients, developed an

ultrasound imaging-based ML model with AUC 0.81 in the internalT
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validation set. Chen et al.48 developed an ultrasound-based imaging

DL model in a cohort of 420 patients with AUC 0.93 in the internal

validation set. Ahmadi et al.69 in a series of 305 patients, developed an

ML model including clinical and ultrasound variables with AUC 0.91 in

the internal validation set. Two studies37,38 included data from the Pros-

tate, Lung, Colorectal, and Ovarian database and both of them developed

ML models. In one study, the authors included clinical and ultrasound

variables with accuracy 0.81 (AUC not shown),37 and in the other study

they included ultrasound features with AUC 0.99 in the internal valida-

tion set.38 The remaining studies32,34,35,39–41,45,50,52,68,74–80 included a

sample size of less than 300 patients or the sample size was not speci-

fied. No study, except for Gao71 and Lucidame,68 tested the model in an

external validation set.

Among studies reporting the prediction of histology provided by

different AI models, Qi et al.44 built a combined clinical-radiomics model

to discriminate between benign, borderline, and malignant serous ovar-

ian tumors in a cohort of 265 patients and reported an AUC 0.91 in the

internal validation set. From the same cohort, Wang et al.46 tested the

ability of a DL model based on ultrasound images to discriminate

between benign, borderline, and malignant ovarian tumors with AUC

0.96 in the internal validation set. In the study of Wu et al.33 the sample

size was not specified (ultrasound images = 988), and the performance

of the DL model was AUC 0.97 in the internal validation set. One

study51 included a sample size of less than 200 patients.

Three studies had more than one objective (first objective was to

predict the specific histology and second objective was on methodol-

ogy). Li et al.72 in a series of 2021 patients, developed DL model for

target automated segmentation and also realized DL model to discrim-

inate between benign versus borderline versus malignant adnexal

masses. For the first endpoint, the dice similarity coefficient was 0.92;

for the second endpoint, the macro-F1 score was 0.75 in the external

validation set (AUC not shown). In the other two studies, the sample

size was low (35)53 or not specified.70

Two studies built DL models to realize target automated

segmentation,43,54 and/or to improve image quality54 with high

performance.

Arezzo et al.47 developed a ML model based on clinical and ultra-

sound variables to predict 12-month PFS in 64 patients with ovarian

cancer, showing AUC 0.92 in the internal validation set.

Finally, Nero et al.36 developed an ML model including radiomics

features for predicting germline BRCA1/2 gene status in a cohort of

255 healthy patients showing accuracy 0.64 in the internal validation

set (AUC not shown).

3.4 | Endometrial cancer

3/5 studies aimed at predicting malignancy, considering patients with

abnormal uterine bleeding (one),58 and regardless of symptoms

(two)55,56; one study aimed to discriminate between low- and high-risk

endometrial cancers73 and one focused on the prediction of myometrial

infiltration.57 Ruan et al.58 included the largest series of patients (1837)

and developed a nomogram for the prediction of endometrial

malignancy based on clinical and ultrasound variables showing AUC

0.91 in the internal validation set. In a cohort of 675 patients, Angioli

et al.56 developed a tool based on clinical and ultrasound variables to

determine the probability of endometrial cancer (AUC 0.92 in the

internal validation set). Michail et al.55 developed an ML model to

predict malignancy including a sample size less than 100 patients,

but the model was not validated. Moro et al.73 developed an ML

model including clinical and ultrasound features to differentiate

between high-risk endometrial cancers and the other three risk

classes (low-, intermediate-, high-intermediate) with AUC 0.90 in the

external validation set. Finally, Xu et al.57 developed ML algorithms

including clinical and ultrasound variables in the detection of deep

myometrial invasion (sample size not specified) with accuracy 0.98

(AUC not shown) in the external validation set.

3.5 | Cervical cancer

Jin et al.59 included a series of 172 patients and investigated the

ability of noninvasive ultrasound-based radiomics methods in the pre-

operative discrimination between positive and negative lymph node

metastasis in early cervical cancer, achieving AUC 0.77 in the internal

validation set. In a subsequent study with a series of 148 patients, the

same group compared the performance of automatic versus manual

segmentation algorithms in lymph node metastasis detection by

means of an ML algorithm based on radiomics features extracted from

the segmented region of interest.62 Models built with features based

on DL automatic segmentation had higher performance than models

built with features based on manual segmentation in the validation

set (AUC 0.75 in the internal validation set). In a series of 536 patients,

Yi et al.63 developed an ML model including radiomics features to

predict lymph node metastasis, and evaluated radiomics features

reproducibility among different scanners concluding that the perfor-

mance of the radiomics model is scanner-dependent (AUC range

among different scanners 0.71–0.82).

In a series of 796 patients with cervical cancer, Jin et al.61 devel-

oped an automated segmentation model showing a similar performance

to that of manual segmentation (intraclass correlation coefficient 0.99).

Finally, Zhou et al.60 conducted a study including 26 patients and

developed an algorithm based on ultrasound contrast-enhanced

images (time-intensity curve) to discriminate between malignant and

benign cervix showing accuracy 0.86 (AUC not showed) in the internal

validation set.

3.6 | Other cancers

Among studies concerning other gynecological tumors, Qin et al.65

included a cohort of 147 patients affected by low-risk gestational tro-

phoblastic neoplasia with myometrial invasion. Authors developed an

ML model to predict methotrexate resistance. The model combined

tumor vascularity with International Federation of Gynecology and

Obstetrics prognostic scoring system, showing accuracy 0.73 in the
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internal validation set (AUC not shown). In the study of Fragomeni

et al.66 including 127 patients, the authors developed an ML model

(morphonode predictive model) aiming to discriminate between

metastatic and nonmetastatic inguinal lymph nodes in vulvar cancer

patients. The model showed AUC 0.92 in the internal validation set.

Chiappa et al.64 developed ML models including radiomics features to

predict the risk of malignancy of uterine mesenchymal lesions in a

series of 70 patients (AUC 0.86 in the internal validation set).

4 | DISCUSSION

The present review focuses on the role of AI applied to ultrasound

imaging in gynecological oncology. Most articles reported the use of

AI when applied to ovarian masses to define the diagnostic

performance of ML in predicting histology. On the other hand, a lim-

ited number of studies on endometrial and cervical cancer have been

published, focusing mostly on diagnostic performance of AI models in

predicting pathological findings. The performance of ultrasound-based

models was consistently high in most studies, demonstrating discrimi-

native predictive ability and superiority when compared to non-AI

methods. However, some methodological shortcomings should be

mentioned: the external validation was presented only in few studies,

the number of variables tested for modeling differed significantly

among works, and the majority of studies were single-center including

a low number of cases.

Our results agree with those reported in the published literature.

Akazawa et al.25 reported the role of AI in gynecological cancers and

reviewed 71 articles (34 on cervical cancer, 21 on ovarian cancer,

13 on endometrial cancer, and three on uterine sarcoma). 35/71

F IGURE 1 Flow diagram.
Summary of the study
identification and selection
process, specifying whether
papers were excluded or
retrieved from bibliographic
search with reasons appropriately
clarified.
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studies used imaging data (i.e., MRI, CT, ultrasound, cytology, and

hysteroscopy) including ultrasound images in only 5/35 studies.

All five articles were on ovarian cancer. The authors highlighted the

need to perform further studies in order to collect larger series of

gynecological malignancies.

Shrestha et al,26 included 61 articles and presented a similar sce-

nario. Most studies were onMRI (35 articles) followed by CT (17 articles),

positron emission tomography (6 articles), and ultrasound (8 articles).

Again, most ultrasound image-based studies (7/8) were on ovarian can-

cer reporting that ML and DL models based on clinical, ultrasound, radio-

mics features or medical images may have great potential in supporting

clinicians in the diagnosis and classification of ovarian tumors. Only one

study included ultrasound images of cervical cancer to detect lymph

node metastases using a DL method and showed satisfactory results

compared with the radiologist's performance.

Ponsiglione et al.28 in a review including 63 studies assessed the

methodological rigor of radionics-based studies using imaging in

the setting of ovarian cancer. Most articles were on CT and only 14 on

ultrasound. Finally, Xu et al.27 focused on AI performance in image-

based ovarian cancer detection and the majority of studies (19/34) con-

cerned ML and DL methods applied to ultrasound images (15/19 and

4/19, respectively), followed by MRI and CT. They concluded that AI

algorithms excelled in the identification of ovarian cancer using medical

radiography imaging, which manifested an equivalent or even better

performance than independent detection by clinicians.

To the best of our knowledge, this is the first systematic review

specifically dedicated to AI system performance applied to ultrasound

in all fields of gynecological cancer. We conducted a comprehensive

literature search in different databases to ensure the rigor of the

study. We included data such as sample size, number of images, year

of publication, geographical distribution, outcomes, as well as type of

AI and families of variables included. Moreover, we assessed the qual-

ity of studies using the QUADAS-AI tool,29 specifically adapted for AI

research, which is a strength of this systematic review and will also

guide future studies. However, we were unable to conduct metanaly-

sis of the data, given variety in endpoint selection, validation, and per-

formance metrics.

We believe that the present review can help readers to better

understand the role of AI applied to ultrasound imaging. The AI could

potentially impact our clinical management by improving the diagnostic

accuracy and reducing time spent by the clinician which can be dedicated

to relationships. The impact of AI on clinical management could be rele-

vant. First, it could enhance diagnostic accuracy, thereby reducing the

time spent by clinicians on diagnostic procedures. Second, it could free

up time that could be allocated to more interpersonal aspects of care.

Conversely, AI algorithms require the collection of large volumes of data

to obtain extensive databases and they are created and managed by

humans. In addition, the system needs a quality control process for data

and a regular follow-up over time, demanding qualified and trained staff.

In conclusion, the main AI application to ultrasound in gynecology

oncology regards improving preoperative diagnosis of ovarian masses

to help clinicians and surgeons plan the best treatments for patients

also when expert ultrasound examiners are not available. AI

applications are still lacking for other pathologies including myometrial

lesions, endometrial and cervical cancers, as well as to predict tumor

response to therapy, genetic mutation status, and disease-free sur-

vival. AI and radiomics applied to ultrasound, which is widely available

in clinical settings, can open up further research and new strategies in

the management of gynecological oncology patients. For example, AI

may help to predict histological factors and molecular profile preoper-

atively in order to better personalize treatment (i.e., POLE mutation in

endometrial cancer, PDL-1 in cervical cancer, LVSI in early cervical

cancer). It may also have other applications in predicting treatment

response after chemotherapy and recurrence in ovarian and cervical

cancers.
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