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Abstract: We deal with the periodic boundary value problem associated with the parameter-dependent
second-order nonlinear differential equation

u󸀠󸀠 + cu󸀠 + (λa+(x) − μa−(x))g(u) = 0,

where λ, μ > 0 are parameters, c ∈ ℝ, a(x) is a locally integrable P-periodic sign-changing weight function,
and g : [0, 1] → ℝ is a continuous function such that g(0) = g(1) = 0, g(u) > 0 for all u ∈ ]0, 1[, with super-
linear growth at zero. A typical example for g(u), that is of interest in population genetics, is the logistic-type
nonlinearity g(u) = u2(1 − u). Using a topological degree approach, we provide high multiplicity results by
exploiting the nodal behavior of a(x). More precisely, whenm is the number of intervals of positivity of a(x) in
a P-periodicity interval, we prove the existence of 3m − 1 non-constant positive P-periodic solutions, when-
ever the parameters λ and μ are positive and large enough. Such a result extends to the case of subharmonic
solutions. Moreover, by an approximation argument, we show the existence of a family of globally defined
solutions with a complex behavior, coded by (possibly non-periodic) bi-infinite sequences of three symbols.
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1 Introduction and Statement of the Results
In this paper, we investigate existence and multiplicity of non-constant positive solutions for the parameter-
dependent second-order ordinary differential equation

u󸀠󸀠 + cu󸀠 + (λa+(x) − μa−(x))g(u) = 0, (Eλ,μ)

where λ and μ are positive real parameters, c ∈ ℝ, a+(x) and a−(x) are the positive and the negative part,
respectively, of a P-periodic and locally integrable sign-changing function a : ℝ → ℝ, and g : [0, 1] → ℝ is
a continuous map satisfying the sign condition

g(0) = g(1) = 0, g(u) > 0 for all u ∈ ]0, 1[, (g∗)
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and the superlinear growth condition at zero

lim
u→0+

g(u)
u
= 0. (g0)

Following a terminology popularized in [32], we refer to (Eλ,μ) as an indefinite equation, meaning that the
weight function a(x) changes sign. In the last decades this kind of equations has widely been investigated,
both in the ODE and in the PDE setting, starting from the classical contributions [1–4, 13] and till to very
recent ones [9, 16, 28, 35, 36, 42, 51–53]; we refer the reader to [17] for a quite exhaustive bibliography on
the subject.

The mathematical questions we address here are motivated by the study of the spatial effects on the
variation in the genetic material along environmental gradients. In population genetics, when individuals of
a continuously distributed population mate at random in their habitat, and no genetic drift nor new muta-
tions appear, the evolution of the frequencies of two alleles, A1 and A2, at a single locus under the action of
migration and selection can be described through the reaction-diffusion boundary value problem

{{{{{
{{{{{
{

∂tu = ∑
i,j
Vi,j(x)∂xixju + b(x) ⋅ ∇u + h(x, u) in Ω × ]0, +∞[,

0 ≤ u ≤ 1 in Ω × ]0, +∞[,
ν(x) ⋅ V(x)∇u = 0 on ∂Ω × ]0, +∞[,

(1.1)

where u(x, t) and 1 − u(x, t) denote the allele frequency of A1 and A2, respectively (cf. [38, 44]). The set
Ω ⊂ ℝN (N ≥ 1) represents the habitat that is assumed to be a bounded domain with smooth boundary ∂Ω
and outward unit normal vector ν(x). The matrix-valued function V(x) and the vector-valued function b(x)
are given and characterize the migration. Finally, h(x, u) is a nonlinear term which describes the effects of
the selection and satisfies h(x, 0) = 0 = h(x, 1) for all x ∈ Ω, so that u ≡ 0 and u ≡ 1 are constant solutions of
problem (1.1) that means that allele A1 is absent or is fixed in the population, respectively.

In this context, available theory also assumes that migration is homogeneous and isotropic, namely,
V(x) is constant and b ≡ 0, and that the selection is of the form h(x, u) = a(x)g(u), where a(x) is the spatial
factor and g(u) is a function of gene frequency satisfying (g∗). The sign-indefinite weight term a(x) reflects
at least one change in the direction of selection and leads to several environmental regions in the habitat Ω
which are favorable (a(x) > 0), neutral (a(x) = 0), or unfavorable (a(x) < 0) for one allele. In this connection,
investigations on non-constant positive stationary solutions (i.e., clines) lead to the study of the Neumann
problem

{{{
{{{
{

d∆u + a(x)g(u) = 0 in Ω,
0 ≤ u ≤ 1 in ∂Ω,
∂νu = 0 on ∂Ω,

(1.2)

where ∆ denotes theLaplace operator and d > 0 is thediffusion rate.Neumannboundary conditionsmodel an
impenetrable barrier for the population so that no-flux of genes across the boundary occurs. The number and
the stability of non-constant positive solutions of (1.2) are governed by the features of both the components
a(x) and g(u).

The existence of a unique non-constant and globally asymptotically stable solution of (1.2) is proved
in [12, 31, 37] for sufficiently small d provided that ∫Ω a(x)dx < 0 and g(u) is a smooth function such that
g󸀠󸀠(u) < 0 for every u ∈ ]0, 1[. The archetypical example is the case when no allele is dominant or the popula-
tion is haploid, namely g(u) = u(1 − u) (e.g., [29, 43]). On the other hand, if g(u) is not concave, multiplicity
results for (1.2) are shown in [39, 50]. In particular, if g󸀠(0) = 0 and we assume also that limu→0+

g(u)
uk > 0 for

some k > 1, then for d sufficiently small there exist at least two non-constant solutions: one stable and the
other unstable (cf. [39, Theorem 2.9]). The main example in this framework concerns completely dominance
of allele A2 over allele A1, namely g(u) = u2(1 − u) (e.g., [38, 39]).

In this paper, we deal withmigration-selectionmodels in a unidimensional habitat. We also assume that
V(x) and b(x) are constant functions, with b(x) = c for some c ∈ ℝ. Moreover, we describe the strength of
selection in the environmental regions which are beneficial or harmful for the alleles by introducing two
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positive independent parameters, λ and μ, on which we discharge the migration rate. Precisely, the weight
term we consider is defined as

aλ,μ(x) := λa+(x) − μa−(x). (1.3)

Hence, the selection is h(x, u) = aλ,μ(x)g(u), where g(u) satisfies (g∗) and, in order to include recessive phe-
nomena as a case study, we assume also condition (g0). In such a way, we are lead to equation (Eλ,μ). We
notice that, for λ = μ = 1

d and c = 0, this gives the one-dimensional version of the elliptic PDE in (1.2).
We are interested in periodically changes in genotype within a population as a function of spatial loca-

tion. Thus we assume that a(x) is P-periodic (for some P > 0) and we seek non-constant positive solutions of
equation (Eλ,μ) (in the Carathéodory sense, see [30, Section I.5]) satisfying periodic boundary conditions

u(0) = u(P), u󸀠(0) = u󸀠(P).

These models are appropriate in the case of populations living in circular habitats (e.g., around a lake or
along the shore of an island), as well as for ring species, for instance, around the arctic.

To state our main results, we introduce the following condition on the weight function a(x) that we
assume henceforth:
(a∗) There exist m ≥ 1 non-empty closed intervals I+1 , . . . , I+m separated by m non-empty closed intervals

I−1 , . . . , I−m such that
m
⋃
i=1

I+i ∪
m
⋃
i=1

I−i = [0, P],

and
a(x) ≻ 0 on I+i ,
a(x) ≺ 0 on I−i .

In the above condition, the symbol ≻ (respectively, ≺) means that a(x) ≥ 0 (respectively, a(x) ≤ 0), with
a(x) ̸≡ 0. We also define

μ#(λ) := λ
∫P0 a+(x)dx

∫P0 a−(x)dx
(1.4)

and notice that ∫P0 aλ,μ(x)dx < 0 if and only if μ > μ#(λ).
With this notation, our first result reads as follows.

Theorem 1.1. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition
(a∗). Let g : [0, 1] → ℝ be a continuously differentiable function satisfying (g∗) and (g0). Then there exists
λ∗ > 0 such that for every λ > λ∗ and for every μ > μ#(λ) equation (Eλ,μ) has at least two non-constant positive
P-periodic solutions.

More precisely, fixed an arbitrary constant ρ ∈ ]0, 1[ there exists λ∗ = λ∗(ρ) > 0 such that for every λ > λ∗

and for every μ > μ#(λ) there exist two positive P-periodic solutions us(x) and uℓ(x) to (Eλ,μ) such that

0 < ‖us‖∞ < ρ < ‖uℓ‖∞ < 1.

Let us notice that, when ∫P0 a(x)dx < 0, an application of Theorem 1.1 with μ = λ provides two non-constant
positive P-periodic solutions of the one-parameter equation

u󸀠󸀠 + cu󸀠 + λa(x)g(u) = 0 (1.5)

for λ > 0 sufficiently large (see Corollary 3.1). When c = 0, this result can thus be interpreted as a periodic
version of the two-solution theorem given in [39, Theorem 2.9] for the Neumann boundary value problem
(indeed, λ = 1

d large implies d small). It is remarkable, however, that the same result holds even in the
non-Hamiltonian case c ̸= 0.

The second, andmain, part of our investigation is focused on the appearance of highmultiplicity phenom-
ena for solutions of (Eλ,μ). In this regard, the fact that the weight function aλ,μ(x) defined in (1.3) depends on
two parameters λ and μ plays a crucial role: indeed, high multiplicity of periodic solutions will be proved to
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arise when λ > λ∗ is fixed (where λ∗ is the constant already given by Theorem 1.1) and μ is sufficiently large
(typically, much larger than the constant μ#(λ) defined in (1.4)).

To state our result precisely, we introduce the condition

lim sup
u→1−

g(u)
1 − u < +∞ (g1)

and notice that it is satisfied whenever g(u) is continuously differentiable in a left neighborhood of u = 1. To
complement Theorem 1.1 we have the following result. We remark that an analogous result is also valid if
Dirichlet or Neumann boundary conditions are considered (see Section 6.2).

Theorem 1.2. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuous function satisfying (g∗), (g0), and (g1). Then there exists λ∗ > 0 such that for
every λ > λ∗ there exists μ∗(λ) > 0 such that for every μ > μ∗(λ) equation (Eλ,μ) has at least3m − 1 non-constant
positive P-periodic solutions.

More precisely, fixed an arbitrary constant ρ ∈ ]0, 1[ there exists λ∗ = λ∗(ρ) > 0 such that for every λ > λ∗

there exist two constants r, R with 0 < r < ρ < R < 1 and μ∗(λ) = μ∗(λ, r, R) > 0 such that for every μ > μ∗(λ)
and for every finite string S = (S1, . . . , Sm) ∈ {0, 1, 2}m, with S ̸= (0, . . . , 0), there exists at least one positive
P-periodic solution uS(x) of (Eλ,μ) such that, for every i = 1, . . . ,m,
∙ maxx∈I+i uS(x) < r if Si = 0,
∙ r < maxx∈I+i uS(x) < ρ if Si = 1,
∙ ρ < maxx∈I+i uS(x) < R if Si = 2.

Let us notice that the number of solutions provided by Theorem1.2 is strongly relatedwith the nodal behavior
of the weight function aλ,μ(x): the larger the number of nodal domains of the weight function,m, the greater
the number of solutions obtained, 3m − 1. Observe also that the number 3m − 1 comes from the possibility
of “coding” the solutions via their behavior in each interval of positivity I+i : “very small” (Si = 0), “small”
(Si = 1) or “large” (Si = 2). We mention that the same type of multiplicity pattern also emerges in a different
context, namely for equation (Eλ,μ) with c = 0 and a nonlinear term g : [0, +∞[ → [0, +∞[ satisfying (g0) and
having sublinear growth at infinity, that is, g(u)

u → 0 for u → +∞ (see [11]).
The possibility of providing, in the context of indefinite boundary value problems, high multiplicity

results by playing with the nodal behavior of the weight function was first suggested in [27]; therein, an
interesting analogy was proposed with the papers [14, 15], giving, in the PDE setting, multiplicity of solu-
tions depending on the shape of the domain. Later on, along this line of research, several contributions
followed [5–7, 11, 19–23, 25, 26, 45, 47]. In particular, dealing with equation (Eλ,μ), with c = 0 and g(u)
a Lipschitz continuous function satisfying (g∗) and (g0), the existence of 8 = 32 − 1positive solutions for both
the Dirichlet and the Neumann boundary value problemwas previously proved in [20], for a weight function
a(x) with m = 2 intervals of positivity. Therefore, Theorem 1.2 extends the result therein to the general case
m ≥ 2 and to a wider class of boundary conditions, including periodic ones, possibly in the non-Hamiltonian
case c ̸= 0. It is worth noticing that this was explicitly raised as an open problem in [20, Conjecture 2]; let
us stress however that the shooting arguments employed in [20] by no means can be used to investigate the
periodic problem, and in the present paper we rely on a completely different approach.

Our last result concerns the dynamics of equation (Eλ,μ) on the whole real line. Precisely, having defined
the intervals

I+i,ℓ := I
+
i + ℓP, i = 1, . . . ,m, ℓ ∈ ℤ,

we provide globally defined positive solutions of (Eλ,μ), whose behavior in each of the above intervals can be
coded, as in Theorem 1.2, by a bi-infinite (possibly non-periodic) sequence S ∈ {0, 1, 2}ℤ. This is a picture of
symbolic dynamics, and equation (Eλ,μ) is said to exhibit chaos. The precise statement is the following.

Theorem 1.3. Let c ∈ ℝ and let a : ℝ → ℝ be a locally integrable periodic function of minimal period P > 0
satisfying condition (a∗). Let g : [0, 1] → ℝ be a continuous function satisfying (g∗), (g0), and (g1). Then fixed
an arbitrary constant ρ ∈ ]0, 1[ there exists λ∗ = λ∗(ρ) > 0 such that for every λ > λ∗ there exist two constants r
and Rwith0 < r < ρ < R < 1, and μ∗(λ) = μ∗(λ, r, R) > 0 such that for every μ > μ∗(λ) the followingholds: given
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any two-sided sequence S = (Sj)j∈ℤ ∈ {0, 1, 2}ℤ which is not identically zero, there exists at least one positive
solution uS(x) of (Eλ,μ) such that, for every i = 1, . . . ,m and ℓ ∈ ℤ,
∙ maxx∈I+i,ℓ uS(x) < r if Si+ℓm = 0,
∙ r < maxx∈I+i,ℓ uS(x) < ρ if Si+ℓm = 1,
∙ ρ < maxx∈I+i,ℓ uS(x) < R if Si+ℓm = 2.
In particular, if the sequence S is km-periodic for some integer k ≥ 1, there exists at least a positive kP-periodic
solution uS(x) of (Eλ,μ) satisfying the above properties.

For the proofs of Theorem1.1 andTheorem1.2,we adopt a functional analytic approachbased on topological
degree theory in Banach spaces (cf. [22] and the subsequent papers [10, 11, 23]). In particular, we follow the
general strategies developed in [10, 11], dealing with a nonlinear term g : [0, +∞[ → [0, +∞[ satisfying (g0)
and having sublinear growth at infinity. As already mentioned, these (super-sublinear) nonlinearities have
similar features with respect to logistic-type nonlinearities considered in the present paper. However, while
in the former case it is often possible to develop dual arguments for small/large solutions, here the presence
of the constant solution u ≡ 1 leads to an “asymmetric” situation which requires completely new arguments.
An important feature of this method of proof is that the estimates leading to the constant λ∗ and μ∗(λ) are
fully explicit, depending only on the local behavior of the weight function a(x) but not on the length of the
periodicity interval. As a consequence, one can prove Theorem 1.3 via an approximation argument.

Thepaper is structuredas follows. InSection2,wedescribe the abstract degree setting andweprove some
technical estimates on the solutions of (Eλ,μ) (and of some related equations). Based on this, in Section 3 and
Section 4, we give the proofs of Theorem 1.1 and Theorem 1.2, respectively. The proof of Theorem 1.3 is then
presented, together with some comments about the existence of subharmonic solutions, in Section 5. The
paper endswith Section 6, discussing some related results: subharmonic solutions via the Poincaré–Birkhoff
theorem, Dirichlet/Neumann boundary value problems, stability issues, and an asymptotic analysis of the
solutions for μ → +∞.

2 Abstract Degree Setting and Technical Lemmas
The aim of this section is to present the main tools used in the proofs of our theorems as well as some
preliminary technical lemmas.

Before doing this, we introduce the following notation employed throughout the paper:

I+i = [σi , τi], I−i = [τi , σi+1], i = 1, . . . ,m, (2.1)

where σi and τi are suitable points such that

0 = σ1 < τ1 < σ2 < τ2 < . . . < τm−1 < σm < τm < σm+1 = P.

Notice that, due to the P-periodicity, we have assumed without loss of generality that 0 ∈ I+1 (and, thus,
P ∈ I−m). We also stress that, in dealing with the above intervals, a cyclic convention will be adopted. For
example,wewill freelywrite expressions like I−i−1 ∪ I

+
i ∪ I
−
i , where, if i = 1,we agree that the interval I

−
0 means

the P-shifted interval I−m − P. A similar remark applies for instance for I+i ∪ I
−
i ∪ I
+
i+1 when i = m and, in such

a case, I+m+1 = I
+
1 + P. This is not restrictive since the weight function a(x) is P-periodic.

2.1 Coincidence Degree Framework

In this section we recall Mawhin’s coincidence degree theory (cf. [24, 40, 41]) and we present two lemmas
for the computation of the degree (cf. [11]).

First of all, we remark that solving the P-periodic problem associated with (Eλ,μ) is equivalent to look-
ing for solutions u(x) of (Eλ,μ) defined on [0, P] and such that u(0) = u(P) and u󸀠(0) = u󸀠(P). Accordingly,
let X := C([0, P]) be the Banach space of continuous functions u : [0, P] → ℝ, endowed with the sup-norm
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‖u‖∞ := maxx∈[0,P] |u(x)|, and let Z := L1(0, P) be the Banach space of integrable functions v : [0, P] → ℝ,
endowed with the L1-norm ‖v‖L1(0,P) := ∫

P
0 |v(x)|dx. We define the linear Fredholm map of index zero

L(u) := −u󸀠󸀠 − cu󸀠

on dom L := {u ∈ W2,1(0, P) : u(0) = u(P), u󸀠(0) = u󸀠(P)} ⊆ X. We also introduce the L1-Carathéodory func-
tion

fλ,μ(x, u) :=
{{{
{{{
{

−u if u ≤ 0,
aλ,μ(x)g(u) if u ∈ [0, 1],
0 if u ≥ 1,

and we denote by Nλ,μ : X → Z the Nemytskii operator induced by the function fλ,μ, namely

(Nλ,μu)(x) := fλ,μ(x, u(x)), x ∈ [0, P].

The coincidence degree theory ensures that the P-periodic problem associated with

u󸀠󸀠 + cu󸀠 + fλ,μ(x, u) = 0 (2.2)

is equivalent to the coincidence equation

Lu = Nλ,μu, u ∈ dom L,

or to the fixed point problem

u = Φλ,μu := Πu + QNλ,μu + KΠ(Id − Q)Nλ,μu, u ∈ X,

where Π : X → ker L ≅ ℝ, Q : Z → coker L ≅ Z/Im L ≅ ℝ are two projections, and KΠ : Im L → dom L ∩ ker Π
is the right inverse of L (cf. [24, 40, 41]).

In this framework, if Ω ⊆ X is an open and bounded set such that

Lu ̸= Nλ,μu for all u ∈ ∂Ω ∩ dom L,

the coincidence degree DL(L − Nλ,μ , Ω) of L and Nλ,μ in Ω is defined as

DL(L − Nλ,μ , Ω) := degLS(Id − Φλ,μ , Ω, 0)

and it satisfies the standard properties of the topological degree, such as additivity, excision, homotopic
invariance.

Our goal is to construct open and bounded sets Λ ⊆ X such that DL(L − Nλ,μ , Λ) ̸= 0. By the existence
property of the degree, this implies that there exists u ∈ Λ ∩ dom L such that Lu = Nλ,μu. Therefore, u(x) is
a P-periodic solution of (2.2). To obtain a P-periodic solution of (Eλ,μ), we further need to have

0 ≤ u(x) ≤ 1 for all x ∈ [0, P].

The first inequality follows from a simple convexity argument (the so-called maximum principle). Indeed, if
x0 ∈ [0, P] is such that u(x0) = minx∈[0,P] u(x) < 0, then from equation (2.2) we obtain u󸀠󸀠(x) < 0 for a.e. x in
a neighborhood of x0, a contradiction. As for the second inequality, it will be a consequence of the construc-
tion of Λ, indeed we will take Λ ⊆ {u ∈ X : ‖u‖∞ < 1}, so that u(x) < 1 for all x ∈ [0, P] (incidentally, notice
that this prevents u(x) to be the constant solution u ≡ 1).

To construct the sets Λ as above, we need to introduce some auxiliary sets where we will compute the
degree. Given three constants r, ρ, Rwith 0 < r < ρ < R < 1, for any pair of subsets of indices I, J ⊆ {1, . . . ,m}
(possibly empty) with I ∩ J = 0, we define the open and bounded set

ΩI,J
(r,ρ,R) := {u ∈ X : ‖u‖∞ < 1, max

I+i
|u| < r, i ∈ {1, . . . ,m} \ (I ∪ J), max

I+i
|u| < ρ, i ∈ I, max

I+i
|u| < R, i ∈ J}.

With this notation, the following lemmas hold.
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Lemma 2.1. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuous function satisfying (g∗). Let I ̸= 0 and λ, μ > 0. Assume that there exists
v ∈ L1(0, P), with v(x) ≻ 0 on [0, P] and v ≡ 0 on⋃i I−i , such that the following properties hold:
(H1) If α ≥ 0, then any P-periodic solution u(x) of

u󸀠󸀠 + cu󸀠 + aλ,μ(x)g(u) + αv(x) = 0, (2.3)

with 0 ≤ u(x) ≤ R for all x ∈ [0, P], satisfies
∙ maxx∈I+i u(x) ̸= r if i ∉ I ∪ J,
∙ maxx∈I+i u(x) ̸= ρ if i ∈ I,
∙ maxx∈I+i u(x) ̸= R if i ∈ J.

(H2) There exists α0 ≥ 0 such that equation (2.3), with α = α0, does not possess any non-negative P-periodic
solution u(x) with u(x) ≤ ρ for all x ∈ ⋃i∈I I+i .

Then it holds that DL(L − Nλ,μ , ΩI,J
(r,ρ,R)) = 0.

Lemma 2.2. Let c ∈ ℝand let a : ℝ → ℝbea P-periodic locally integrable function satisfying condition (a∗). Let
g : [0, 1] → ℝ be a continuous function satisfying (g∗). Let λ > 0 and μ > μ#(λ). Assume the following property:
(H3) If ϑ ∈ ]0, 1], then any P-periodic solution u(x) of

u󸀠󸀠 + cu󸀠 + ϑaλ,μ(x)g(u) = 0, (2.4)

with 0 ≤ u(x) ≤ R for all x ∈ [0, P], satisfies
∙ maxx∈I+i u(x) ̸= r if i ∉ J,
∙ maxx∈I+i u(x) ̸= R if i ∈ J.

Then it holds that DL(L − Nλ,μ , Ω0,J(r,ρ,R)) = 1.

The proofs of Lemmas 2.1 and 2.2 follow the argument of the ones of [11, Lemma 3.1] and [11, Lemma 3.2],
respectively (even with some simplifications, due to the fact that the sets considered in the present paper are
bounded, differently from the case treated in [11]). We point out that in [11] only the case c = 0 was treated;
however, the presence of the term cu󸀠 does not cause any additional difficulties, after having observed that
the following property holds:

Property. If u(x) is a non-negative solution of either (2.3) or (2.4), then

max
x∈I−i

u(x) = max
x∈∂I−i

u(x). (2.5)

The above property is a direct consequence of the Hopf maximum principle (see, for instance, [33, Theo-
rem 1.2]); alternatively it can be obtained by arguing as in [23, Remark 3.4].

We notice that, for d ∈ ]0, 1[, by taking either I = {1, . . . ,m} and J = 0 in Lemma 2.1 or I = J = 0 in
Lemma 2.2, we can evaluate the degree on the sets of the following type:

{u ∈ X : ‖u‖∞ < 1, max
I+i
|u| < d, i ∈ {1, . . . ,m}}.

An application of property (2.5) together with the excision property of the degree allows us to compute the
degree on the open ball Bd ⊆ X of center zero and radius d > 0. More precisely, the following corollaries can
be proved.

Corollary 2.1. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuous function satisfying (g∗). Let I ̸= 0 and λ, μ > 0. Let d ∈ ]0, 1[ and assume
that there exists v ∈ L1(0, P), with v(x) ≻ 0 on [0, P] and v ≡ 0 on⋃i I−i , such that the following properties hold:
(H̃1) If α ≥ 0, then any non-negative P-periodic solution u(x) of (2.3) satisfies ‖u‖∞ ̸= d.
(H̃2) There exists α0 ≥ 0 such that equation (2.3), with α = α0, does not possess any non-negative P-periodic

solution u(x) with ‖u‖∞ ≤ d.
Then it holds that DL(L − Nλ,μ , Bd) = 0.

Corollary 2.2. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuous function satisfying (g∗). Let λ > 0 and μ > μ#(λ). Let d ∈ ]0, 1[ and assume
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that the following property holds:
(H̃3) If ϑ ∈ ]0, 1], then any non-negative P-periodic solution u(x) of (2.4) satisfies ‖u‖∞ ̸= d.
Then it holds that DL(L − Nλ,μ , Bd) = 1.

2.2 Finding the Constant λ∗
In the following lemma we provide the constant λ∗ = λ∗(ρ) that appears in all our main results.

Lemma 2.3. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuous function satisfying (g∗). Then, for every ρ ∈ ]0, 1[, there exists λ∗ = λ∗(ρ) > 0
such that, for every λ > λ∗, α ≥ 0, and i ∈ {1, . . . ,m}, there are no non-negative solutions u(x) of

u󸀠󸀠 + cu󸀠 + λa+(x)g(u) + α = 0, (2.6)

with u(x) defined for all x ∈ I+i and such thatmaxx∈I+i u(x) = ρ.

The proof is essentially the same as in [10, Section 3.1] and, since we need to slightly refine the estimates,
we just provide a sketch.

Proof. We fix ε > 0 such that ε < 1
2 (τi − σi) and ∫

τi−ε
σi+ε

a+(x)dx > 0, for every i ∈ {1, . . . ,m}. Thus the quantity

νε := min
i=1,...,m

τi−ε

∫
σi+ε

a+(x)dx

is well defined and positive.
Let ρ > 0 be fixed and consider α ≥ 0 and i ∈ {1, . . . ,m}. Suppose that u(x) is a non-negative solution

of (2.6) defined on I+i = [σi , τi] and such that maxx∈I+i u(x) = ρ.
Arguing as in [10, Step 1 and Step 2 of Section 3.1] (with the care of replacing the constant T therein

with |I+i |), we obtain that
|u󸀠(x)| ≤ u(x)

ε
e|c||I

+
i | for all x ∈ [σi + ε, τi − ε], (2.7)

and that
min

x∈[σi+ε,τi−ε]
u(x) ≥ δiρ with δi :=

ε
ε + e2|c||I+i ||I+i |

∈ ]0, 1[.

We define η = η(ρ) := min{g(u) : u ∈ [δiρ, ρ]} and

λ∗ = λ∗(ρ) := max
i=1,...,m

ρ(ε|c| + 2e|c||I+i |)
εη ∫τi−εσi+ε

a(x)dx
. (2.8)

Then, by integrating equation (2.6) on [σi + ε, τi − ε] and using (2.7) (for x = σi + ε and x = τi − ε), we obtain

λη
τi−ε

∫
σi+ε

a(x)dx ≤ λ
τi−ε

∫
σi+ε

a(x)g(u(x))dx

= u󸀠(σi + ε) − u󸀠(τi − ε) + c(u(σi + ε) − u(τi − ε)) − α(τi − ε − σi − ε)

≤ 2ρ
ε
e|c||I

+
i | + |c|ρ.

Therefore, non-negative P-periodic solutions u(x) of (2.6) withmaxx∈I u(x) = ρ can exist only for λ ≤ λ∗. This
proves the lemma.

2.3 Some Estimates for Small Solutions

The following lemma gives a lower bound for positive P-periodic solutions of (2.4) that will be exploited in
the proof of the existence result in Theorem 1.1.
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Lemma 2.4. Let c ∈ ℝand let a : ℝ → ℝbea P-periodic locally integrable function satisfying condition (a∗). Let
g : [0, 1] → ℝ be a continuously differentiable function satisfying (g∗) and g󸀠(0) = 0. Let λ > 0 and μ > μ#(λ).
Then there exists r0 ∈ ]0, 1[ such that for every ϑ ∈ ]0, 1], every non-negative P-periodic solution u(x) of (2.4)
with ‖u‖∞ ≤ r0 satisfies u ≡ 0.

Proof. Let M > e|c|P‖a‖L1(0,P). By contradiction, we assume that there exists a sequence (un(x))n of non-
negative P-periodic solutions of (2.4) for ϑ = ϑn ∈ ]0, 1] satisfying 0 < ‖un‖∞ → 0. By the strong maximum
principle (see [17, Appendix C]), we have that un(x) > 0 for all x ∈ [0, P], moreover, since ‖un‖∞ → 0, we
have that un(x) < 1 for all x ∈ [0, P] and n large. We can thus perform the change of variable

zn(x) :=
u󸀠n(x)

ϑng(un(x))
, x ∈ ℝ. (2.9)

An easy computation shows that

z󸀠n(x) + czn(x) + ϑng󸀠(un(x))z2n(x) + aλ,μ(x) = 0. (2.10)

Moreover, zn(x) has to vanish in some point x̃n ∈ [0, P], since un(x) is P-periodic.
We claim that

‖zn‖∞ ≤ M.

We suppose by contradiction that this is not true. Then we can find a maximal interval Jn ⊆ [0, P] either of
the form [x̃n , x̂n] or of the form [x̂n , x̃n] such that |zn(x)| ≤ M for all x ∈ Jn and |zn(x)| > M for some x ∉ Jn. By
the maximality of the interval Jn, we also know that |zn(x̂n)| = M. Rewriting (2.10) as

(ec(x−x̂n)zn(x))󸀠 + ec(x−x̂n)(ϑng󸀠(un(x))z2n(x) + aλ,μ(x)) = 0,

an integration on Jn gives

zn(x̂n) = −∫
Jn

ec(x−x̂n)(ϑng󸀠(un(x))z2n(x) + aλ,μ(x))dx

from which
M = |zn(x̂n)| ≤ e|c|P( sup

x∈[0,P]
|g󸀠(un(x))|PM2 + ‖aλ,μ‖L1(0,P)).

Passing to the limit as n → +∞ and using g󸀠(0) = 0, we thus obtain M ≤ e|c|P‖aλ,μ‖L1(0,P), contradicting the
choice of M.

Now, we integrate (2.10) on [0, P] to obtain

0 < −
P

∫
0

aλ,μ(x)dx ≤ sup
x∈[0,P]
|g󸀠(un(x))|PM2,

and so a contradiction is reached using the fact that g󸀠(u) is continuous and g󸀠(0) = 0.

The next lemma gives us some estimates for positive solutions of (2.4) which will be used to prove the mul-
tiplicity result in Theorem 1.2. To state it, let us introduce the following notation. For any constant d > 0,
we set

ζ(d) := max
d
2 ≤u≤d

g(u)
u

, γ(d) := min
d
2 ≤u≤d

g(u)
u

.

Furthermore, recalling (a∗) and the positions in (2.1), for all i ∈ {1, . . . ,m}, we set

Ar
i(x) :=

x

∫
τi

a−(ξ)dξ, Al
i(x) :=

σi+1

∫
x

a−(ξ)dξ, x ∈ I−i . (2.11)

Lemma 2.5. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuous function satisfying (g∗) and (g0). Let λ > 0. Then there exists ̄r ∈ ]0, 1[ such
that for every r ∈ ]0, ̄r], for every ϑ ∈ ]0, 1], and for every μ > 0, if u(x) is a non-negative solution of (2.4) defined



684 | A. Boscaggin et al., High Multiplicity and Chaos for an Indefinite Problem

in I−i−1 ∪ I
+
i ∪ I
−
i for some i ∈ {1, . . . ,m} withmaxx∈I+i u(x) = r, the following hold:

∙ If u󸀠(σi) ≥ 0, then

u(σi+1) ≥ r(1 +
ϑ
2 (μγ(r)‖A

r
i‖L1(I−i )e

−|c||I−i | − 1)),

u󸀠(σi+1) ≥ ϑr(
1
2μγ(r)‖a‖L1(I

−
i )
e−|c||I

−
i | − λ‖a‖L1(I+i )ζ(r)e

|c||I+i ∪I
−
i |).

∙ If u󸀠(τi) ≤ 0, then

u(τi−1) ≥ r(1 +
ϑ
2 (μγ(r)‖A

l
i−1‖L1(I−i−1)e

−|c||I−i−1| − 1)),

u󸀠(τi−1) ≤ −ϑr(
1
2μγ(r)‖a‖L1(I

−
i−1)

e−|c||I
−
i−1| − λ‖a‖L1(I+i )ζ(r)e

|c||I−i−1∪I
+
i |).

Proof. From condition (g0) we can fix a constant ̄r ∈ ]0, 1[ such that for every r ∈ ]0, ̄r] it holds that

ζ(r) < 1
2λmaxi=1,...,m e|c||I

−
i−1∪I

+
i ∪I

−
i ||I−i−1 ∪ I

+
i ∪ I
−
i |‖a‖L1(I+i )

. (2.12)

We give the proof when u󸀠(σi) ≥ 0 (the case u󸀠(τi) ≤ 0 follows from analogous arguments). We divide the
arguments into two parts: in the first one, we provide some estimates for u(τi) and u󸀠(τi), in the second one,
we obtain the inequalities on u(σi+1) and u󸀠(σi+1).

Step 1. Let x̂i ∈ I+i be such that
u(x̂i) = max

t∈I+i
u(x) = r.

We notice that if σi ≤ x̂i < τi, then u󸀠(x̂i) = 0 (since u󸀠(σi) ≥ 0). Otherwise, if x̂i = τi, then u󸀠(x̂i) ≥ 0.
Suppose first that u󸀠(x̂i) = 0. Let [s1, s2] ⊆ I+i be the maximal closed interval containing x̂i and such that

u(x) ≥ r
2 for all x ∈ [s1, s2]. We claim that [s1, s2] = I+i . From

(ecxu󸀠(x))󸀠 = −ϑλa+(x)g(u(x))ecx , x ∈ I+i ,

integrating between x̂i and x and using u󸀠(x̂i) = 0, we obtain

u󸀠(x) = −ϑλ
x

∫
x̂i

a+(ξ)g(u(ξ))ec(ξ−x) dξ for all x ∈ I+i .

Then
|u󸀠(x)| ≤ ϑλ‖a‖L1(I+i )ζ(r)re

|c||I+i | for all x ∈ [s1, s2],

and

u(x) = u(x̂i) +
x

∫
x̂i

u󸀠(ξ)dξ ≥ r(1 − λ‖a‖L1(I+i )ζ(r)e
|c||I+i ||I+i |) >

r
2 for all x ∈ [s1, s2].

This inequality, together with the maximality of [s1, s2], implies that [s1, s2] = I+i . Hence

u󸀠(x) ≥ −ϑλ‖a‖L1(I+i )ζ(r)re
|c||I+i | for all x ∈ I+i (2.13)

implying
u󸀠(τi) ≥ −ϑλ‖a‖L1(I+i )ζ(r)re

|c||I+i |. (2.14)

Furthermore, by integrating (2.13) on [x̂i , τi], we obtain

u(τi) ≥ r(1 − ϑλ‖a‖L1(I+i )ζ(r)e
|c||I+i ||I+i |). (2.15)

On the other hand, if we suppose that x̂i = τi and u󸀠(x̂i) > 0, we have

u(τi) = r ≥ r(1 − ϑλ‖a‖L1(I+i )ζ(r)e
|c||I+i ||I+i |)

and
u󸀠(τi) > 0 ≥ −ϑλ‖a‖L1(I+i )ζ(r)re

|c||I+i |.

Thus, in any case, (2.14) and (2.15) hold, and so we can proceed with the second part of the proof.



A. Boscaggin et al., High Multiplicity and Chaos for an Indefinite Problem | 685

Step 2. We consider the interval I−i = [τi , σi+1]. Since the map x 󳨃→ ecxu󸀠(x) is non-decreasing in I−i , from
(2.14) we have

u󸀠(x) ≥ ec(τi−x)u󸀠(τi) ≥ −ϑλ‖a‖L1(I+i )ζ(r)re
|c||I+i ∪I

−
i | for all x ∈ I−i .

Therefore, integrating on [τi , x] and using (2.15), we have

u(x) = u(τi) +
x

∫
τi

u󸀠(ξ)dξ

≥ r(1 − ϑλ‖a‖L1(I+i )ζ(r)e
|c||I+i ||I+i | − ϑλ‖a‖L1(I+i )ζ(r)e

|c||I+i ∪I
−
i ||I−i |)

≥ r(1 − λ|I+i ∪ I
−
i |‖a‖L1(I+i )ζ(r)e

|c||I+i ∪I
−
i |)

≥ r(1 − λ|I−i−1 ∪ I
+
i ∪ I
−
i |‖a‖L1(I+i )ζ(r)e

|c||I−i−1∪I
+
i ∪I

−
i |)

>
r
2 for all x ∈ I−i , (2.16)

where the last inequality follows from (2.12). On the other hand, integrating

(ecxu󸀠(x))󸀠 = ϑμa−(x)g(u(x))ecx , x ∈ I−i ,

on [τi , x] and using (2.14) and (2.16), we find

u󸀠(x) = u󸀠(τi)ec(τi−x) + ϑμ
x

∫
τi

a−(ξ)g(u(ξ))ec(ξ−x) dξ

≥ ϑr(−λ‖a‖L1(I+i )ζ(r)e
|c||I+i ∪I

−
i | +

1
2μγ(r)A

r
i(x)e
−|c||I−i |) for all x ∈ I−i .

In particular,
u󸀠(σi+1) ≥ ϑr(

1
2μγ(r)‖a‖L1(I

−
i )
e−|c||I

−
i | − λ‖a‖L1(I+i )ζ(r)e

|c||I+i ∪I
−
i |).

Finally, a further integration and condition (2.15) provide

u(σi+1) = u(τi) +
σi+1

∫
τi

u󸀠(x)dx

≥ r(1 − ϑλ‖a‖L1(I+i )ζ(r)e
|c||I+i ||I+i | − ϑλ‖a‖L1(I+i )ζ(r)e

|c||I+i ∪I
−
i ||I−i | + ϑ

1
2μγ(r)‖A

r
i‖L1(I−i )e

−|c||I−i |)

≥ r(1 − ϑλ‖a‖L1(I+i )ζ(r)e
|c||I−i−1∪I

+
i ∪I

−
i ||I−i−1 ∪ I

+
i ∪ I
−
i | + ϑ

1
2μγ(r)‖A

r
i‖L1(I−i )e

−|c||I−i |)

≥ r(1 + ϑ2(μγ(r)‖A
r
i‖L1(I−i )e

−|c||I−i | − 1)),

where the last inequality follows from (2.12). Thus the proof is completed.

2.4 Some Estimates for Large Solutions

We start by introducing the following auxiliary result.

Lemma 2.6. Let c ∈ ℝ. Let g : [0, 1] → ℝ be a continuous function satisfying conditions (g∗) and (g1). Let J ⊆ ℝ
be a closed interval and b ∈ L1(J). Then, for every ε ∈ ]0, 1[, there exists Rε = Rε(c, g, J, b) ∈ ]0, 1[ such that
for every ϑ ∈ ]0, 1] and for every non-negative solution u(x) of

u󸀠󸀠 + cu󸀠 + ϑb(x)g(u) = 0,

that satisfies u(x̂) ≥ Rε and u󸀠(x̂) = 0 for some x̂ ∈ J, it holds that

u(x) ≥ 1 − ε and |u󸀠(x)| ≤ ε for all x ∈ J.



686 | A. Boscaggin et al., High Multiplicity and Chaos for an Indefinite Problem

Proof. Given ε ∈ ]0, 1[, let us define

Rε = 1 − εe−
1
2 K‖b‖L1(J)+(1+2|c|)|J|.

First of all we notice that either u ≡ 1 or (1 − u(x))2 + (u󸀠(x))2 > 0 for every x ∈ J, due to the uniqueness of the
solution of the Cauchy problem

{{{
{{{
{

u󸀠󸀠 + cu󸀠 + ϑb(x)g(u) = 0,
u(x0) = 1,
u󸀠(x0) = 0,

ensured by condition (g1).
In the first case the thesis follows straightforwardly. In the second case, we compute

d
dx log((1 − u(x))

2 + (u󸀠(x))2) = −2 (1 − u(x))u
󸀠(x) + ϑb(x)u󸀠(x)g(u(x)) + c(u󸀠(x))2

(1 − u(x))2 + (u󸀠(x))2
.

From the previous equality and since by (g1) we can fix K > 0 such that g(u) ≤ K(1 − u) for every u ∈ [0, 1],
we deduce that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d
dx log ((1 − u(x))

2 + (u󸀠(x))2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2 (1 − u(x))|u

󸀠(x)| + |b(x)||u󸀠(x)|g(u(x)) + |c|(u󸀠(x))2

(1 − u(x))2 + (u󸀠(x))2

≤ 2 (1 + K|b(x)|)(1 − u(x))|u
󸀠(x)| + |c|(u󸀠(x))2

(1 − u(x))2 + (u󸀠(x))2

≤ 1 + K|b(x)| + 2|c|.

Hence, by an integration of the above inequality from x̂ to an arbitrary x ∈ J, we have

log (1 − u(x))
2 + (u󸀠(x))2

(1 − u(x̂))2
≤ K‖b‖L1(J) + (1 + 2|c|)|J|.

As a consequence, it follows that

(1 − u(x))2 + (u󸀠(x))2 ≤ (1 − Rε)2eK‖b‖L1(J)+(1+2|c|)|J| = ε2

for all x ∈ J, and so the thesis is proved.

The following lemma gives an upper bound for positive P-periodic solutions of (2.4) which will be used to
prove the existence result in Theorem 1.1.

Lemma 2.7. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuously differentiable function satisfying (g∗). Let λ > 0 and μ > μ#(λ). Then there
exists R0 ∈ ]0, 1[ such that for every ϑ ∈ ]0, 1], every non-negative P-periodic solution u(x) of (2.4) satisfies
‖u‖∞ < R0.

Proof. By contradictionwe assume that there exists a sequence (un(x))n of non-negative P-periodic solutions
of (2.4) for ϑ = ϑn ∈ ]0, 1] such that ‖un‖∞ → 1−.

By applying Lemma 2.6 with the choice of J = [0, P] and b(x) = aλ,μ(x), we deduce that un(x) → 1 uni-
formly in x as n → +∞.

Through the change of variable introduced in (2.9) and an integration of (2.10) on [0, P] we have

0 >
P

∫
0

aλ,μ(x)dx = −ϑn
P

∫
0

g󸀠(un(x))z2n(x)dx. (2.17)

When g󸀠(1) < 0, we deduce that g󸀠(u) < 0 for every u in a left neighborhood of 1. In this case, a contradiction
follows from (2.17) by the uniform convergence of un(x) to 1. When g󸀠(1) = 0, a contradiction is reached
because, by arguing as in Lemma 2.4, the sequence (zn(x))n is uniformly bounded and g󸀠(un(x)) converges
to 0 uniformly.
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The next lemma gives us some estimates for positive solutions of (2.4) which will be used to prove the mul-
tiplicity result in Theorem 1.2. To state it, we recall the definition of Ar

i(x) and Al
i(x) given in (2.11) and we

introduce the further notation

Γ(d) := max
0≤u≤d

g(u), χ(d, D) := min
d≤u≤D

g(u),

where d, D ∈ ]0, 1[ satisfy d < D.

Lemma 2.8. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗).
Let g : [0, 1] → ℝ be a continuous function satisfying (g∗) and (g1). Let λ > 0 and d ∈ ]0, 1[. Then there exists
R̄ = R̄(d) ∈ ]d, 1[ such that for every R ∈ [R̄, 1[, ϑ ∈ ]0, 1] and μ > 0, if u(x) is a non-negative solution of (2.4)
defined in I−i−1 ∪ I

+
i ∪ I
−
i for some i ∈ {1, . . . ,m} withmaxx∈I−i−1∪I+i ∪I−i u(x) = maxx∈I+i u(x) = R it holds that

u(σi+1) ≥ R + ϑ(μ‖Ar
i‖L1(I−i )χ(d, R)e

−|c||I−i | − λ‖a‖L1(I+i )Γ(R)e
|c||I+i ∪I

−
i ||I+i ∪ I

−
i |),

u(τi−1) ≥ R + ϑ(μ‖Al
i−1‖L1(I−i−1)χ(d, R)e

−|c||I−i−1| − λ‖a‖L1(I+i )Γ(R)e
|c||I−i−1∪I

+
i |||I−i−1 ∪ I

+
i |).

Proof. Given d > 0, let us take
ε = 1 − d

1 +maxi=1,...,m |I−i |e
|c||I−i |

.

We now apply Lemma 2.6 with the choice of J = I+i and b(x) = λa+(x) in order to find the corresponding
Rε,i = Rε(c, g, I+i , λa

+) and we set
R̄ = R̄(d) = max

i=1,...,m
Rε,i .

Notice that 1 − ε > d. Therefore, since Rε,i ∈ ]1 − ε, ε[, it holds that R̄ ∈ ]d, 1[.
Let R ∈ [R̄, 1[, ϑ ∈ ]0, 1] and μ > 0. Let u(x) be a non-negative solution of (2.4) defined in I−i−1 ∪ I

+
i ∪ I
−
i

for some i ∈ {1, . . . ,m} with
max

x∈I−i−1∪I
+
i ∪I

−
i

u(x) = max
t∈I+i

u(x) = R.

Let x̂i ∈ I+i be such that u(x̂i) = maxx∈I+i u(x) = R. We observe that u󸀠(x̂i) = 0, otherwise u(x) > R for
some x in a neighborhood of x̂i. Lemma 2.6 applies and yields

u(x) ≥ 1 − ε and |u󸀠(x)| ≤ ε for all x ∈ I+i . (2.18)

We claim that
u(x) ≥ d for all x ∈ I−i−1 ∪ I

+
i ∪ I
−
i .

The inequality in I+i is obvious since 1 − ε > d. As for the interval I−i , since the map x 󳨃→ ecxu󸀠(x) is non-
decreasing, we have ecxu󸀠(x) ≥ ecτiu󸀠(τi), for all x ∈ I−i . Thus, from (2.18) it follows that

|u󸀠(x)| ≤ εe|c||I
−
i | for all x ∈ I−i .

Then an integration gives

u(x) = u(τi) +
x

∫
τi

u󸀠(ξ)dξ ≥ 1 − ε − ε|I−i |e
|c||I−i | ≥ d for all x ∈ I−i ,

where the last inequality follows from the choice of ε. A similar argument applies in the interval I−i−1 and the
claim is thus proved.

Recalling that u(x̂i) = 0, we find

u󸀠(x) = −ϑλ
x

∫
x̂i

a+(ξ)g(u(ξ))ec(ξ−x) dξ for all x ∈ I+i

implying
|u󸀠(x)| ≤ ϑλ‖a‖L1(I+i )Γ(R)e

|c||I+i | for all x ∈ I+i .
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Therefore

u(τi) = u(x̂i) +
τi

∫
x̂i

u󸀠(ξ)dξ ≥ R − ϑλ‖a‖L1(I+i )Γ(R)e
|c||I+i ||I+i |.

As a consequence, in the interval I−i we have

u󸀠(x) = u󸀠(τi)ec(τi−x) + ϑμ
x

∫
τi

a−(ξ)g(u(ξ))ec(ξ−x) dξ

≥ −ϑλ‖a‖L1(I+i )Γ(R)e
|c||I+i ∪I

−
i | + ϑμAr

i(x)χ(d, R)e
−|c||I−i | for all x ∈ I−i .

An integration of the above inequality, together with the estimate for u(τi), finally provides

u(σi+1) = u(τi) +
σi+1

∫
τi

u󸀠(x)dx

≥ R − ϑλ‖a‖L1(I+i )Γ(R)e
|c||I+i ||I+i | − ϑλ‖a‖L1(I+i )Γ(R)e

|c||I+i ∪I
−
i ||I−i | + ϑμ‖A

r
i‖L1(I−i )χ(d, R)e

−|c||I−i |

≥ R + ϑ(μ‖Ar
i‖L1(I−i )χ(d, R)e

−|c||I−i | − λ‖a‖L1(I+i )Γ(R)e
|c||I+i ∪I

−
i ||I+i ∪ I

−
i |),

where the last inequality follows from (2.12). Thus the proof is completed.

Remark 2.1. Lemma 2.8 will be exploited in Section 4.1, while verifying the assumptions of Lemma 2.1 and
Lemma 2.2. We stress that only the assertion on u(σi+1) will be used. The second one plays a role in the
corresponding proofs dealing with Dirichlet or Neumann boundary conditions (see Section 6.2).

3 Existence of Two Solutions
In this section we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Given ρ > 0, we first apply Lemma 2.3 in order to find the constant λ∗ = λ∗(ρ) > 0
(defined as in (2.8)). Then we fix λ > λ∗.

We claim that Corollary 2.1 applies with the choice of d = ρ and v(x) as the indicator function 𝟙⋃i I+i (x)
of the set⋃i I+i , that is,

v(x) =
{
{
{

1 if x ∈ ⋃mi=1 I
+
i ,

0 if x ∈ [0, P] \ ⋃mi=1 I
+
i .

First, we verify assumption (H̃1). From property (2.5), since v(x) = 0 for all x ∈ ⋃i I−i , we observe that any
non-negative P-periodic solution of (2.3) attains its maximum on⋃i I+i . Then (H̃1) follows from Lemma 2.3.
As for assumption (H̃2), we integrate equation (2.3) on [0, P] and pass to the absolute value in order to obtain

α‖v‖L1(0,P) ≤ ‖aλ,μ‖L1(0,P) max
u∈[0,ρ]

g(u).

Therefore, (H̃2) follows for α sufficiently large. Summing up, from Corollary 2.1, we thus obtain

DL(L − Nλ,μ , Bρ) = 0.

Now, we use Lemma 2.4 and Lemma 2.7 to fix r0 and R0 in ]0, 1[. Without loss of generality we can
assume 0 < r0 < ρ < R0 < 1. Then Corollary 2.2 applies both with the choice of d = r0 and d = R0 (indeed,
(H̃3) is trivially satisfied). Therefore, we have

DL(L − Nλ,μ , Br0 ) = 1 and DL(L − Nλ,μ , BR0 ) = 1.

The additivity property of the coincidence degree implies

DL(L − Nλ,μ , Bρ \ Br0 ) = −1 and DL(L − Nλ,μ , BR0 \ Bρ) = 1.
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As a consequence, there exist a P-periodic solution us(x) of (2.2) in Bρ \ Br0 as well as a P-periodic solution
uℓ(x) of (2.2) in BR0 \ Bρ. As observed in Section 2.1, by the maximum principle it holds that us(x) ≥ 0 and
uℓ(x) ≥ 0 for all x ∈ [0, P]. Moreover, we clearly have us(x) < 1 and uℓ(x) < 1 for all x ∈ [0, P]. Hence, us(x)
and uℓ(x) are non-negative P-periodic solutions of (Eλ,μ). Since g(u) is of class C1, the uniqueness of the
constant zero solution for the Cauchy problem associated with (Eλ,μ) implies that us(x) and uℓ(x) are positive
P-periodic solutions of (Eλ,μ) and the proof is concluded.

Remark 3.1. By a careful checking of the proof, one can realize that Theorem 1.1 is still valid if g(u) is
assumed to be continuously differentiable in a right neighborhood of u = 0 and in a left neighborhood of
u = 1. We also remark that the assumption of differentiability near u = 0 could be removed, provided one
supposes a condition of regular oscillation, that is,

lim
u→0+
ω→1

g(ωu)
g(u)
= 1

(cf. [10, Section 4.3]). At last, wemention that, by arguing as in [10], one could alsoweaken assumption (a∗),
so as to cover some situations when the weight function a(x) changes sign infinitely many times. For the sake
of briefness, and since assumption (a∗) is crucial in the proof of Theorem 1.2, we have preferred to work in
a unified simpler setting.

We end this section by stating the following straightforward corollary, dealing with the one-parameter
equation (1.5).

Corollary 3.1. Let c ∈ ℝ and let a : ℝ → ℝ be a P-periodic locally integrable function satisfying condition (a∗)
and ∫P0 a(x)dx < 0. Let g : [0, 1] → ℝ be a continuously differentiable function satisfying (g∗) and (g0). Then
there exists λ∗ > 0 (depending on c, g(u) and a+(x), but not on a−(x)) such that for every λ > λ∗ equation (1.5)
has at least two non-constant positive P-periodic solutions.

4 High Multiplicity of Solutions
In this section we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Given ρ > 0, we first apply Lemma 2.3 in order to find the constant λ∗ = λ∗(ρ) > 0
(defined as in (2.8)). Then we fix λ > λ∗.

We apply Lemma 2.5 to find ̄r ∈ ]0, 1[ and we fix

r ∈ ]0, min{ ̄r, ρ}[.

Moreover, we apply Lemma 2.8, with the choice of d = ρ, to find R̄ ∈ ]ρ, 1[ and we fix

R ∈ [R̄, 1[.

We claim that there exists μ∗(λ) = μ∗(λ, r, R) > 0 such that for every μ > μ∗(λ) Lemma2.1 and Lemma2.2
hold for any pair of subsets of indices I, J ⊆ {1, . . . ,m}with I ∩ J = 0. This is a long technical step of the proof
and we provide the details in Section 4.1. Once this is proved, we have that

DL(L − Nλ,μ , ΩI,J
(r,ρ,R)) =

{
{
{

0 if I ̸= 0,
1 if I = 0.

(4.1)

We define the open and bounded sets

ΛI,J
(r,ρ,R) := {u ∈ X : ‖u‖∞ < 1, max

I+i
|u| < r, i ∈ {1, . . . ,m} \ (I ∪ J), r < max

I+i
|u| < ρ, i ∈ I,

ρ < max
I+i
|u| < R, i ∈ J}

and so from (4.1) and the combinatorial argument in [11, Appendix A], we obtain that

DL(L − Nλ,μ , ΛI,J
(r,ρ,R)) = (−1)

#I.



690 | A. Boscaggin et al., High Multiplicity and Chaos for an Indefinite Problem

As a consequence of the existence property for the coincidence degree, we thus obtain the existence of
a P-periodic solution of (2.2) in each of these 3m sets ΛI,J

(r,ρ,R). Here, the number 3m comes fromall the possible
choices I and J with I ∩ J = 0. Notice that, since the identically zero function is contained in the set Λ0,0(r,ρ,R),
we do not consider it in the sequel. Instead, every solution u(x) of (2.2) in each of the other 3m − 1 sets
is non-constant and, by the maximum principle, such that u(x) ≥ 0 for all x ∈ [0, P]. By the uniqueness of
the zero solution for the Cauchy problem associated with (2.2) (coming from condition (g0)) we have also
u(x) > 0 for all x ∈ [0, P]. Moreover, by construction, it follows that u(x) < 1 for all x ∈ [0, P]. Hence, u(x) is
a non-constant positive P-periodic solution of (Eλ,μ).

Summing up, for each choice of I and Jwith I ∩ J = 0 ̸= I ∪ J, there exists at least one positive P-periodic
solution uI,J(x) of (Eλ,μ) such that
∙ 0 < maxx∈I+i uI,J(x) < r for all i ∉ I ∪ J,
∙ r < maxx∈I+i uI,J(x) < ρ for all i ∈ I,
∙ ρ < maxx∈I+i uI,J(x) < R for all i ∈ J.
To achieve the conclusionof Theorem1.2,weobserve that, givenanyfinite stringS= (S1, . . . , Sm) ∈ {0,1,2}m,
with S ̸= (0, . . . , 0), we can establish a one-to-one correspondence between S and the sets

I := {i ∈ {1, . . . ,m} : Si = 1}, J := {i ∈ {1, . . . ,m} : Si = 2},

so that Si = 0 when i ∉ I ∪ J. This completes the proof of Theorem 1.2.

4.1 Finding the Constant μ∗(λ, r, R)
The constant μ∗(λ, r, R) is defined as

μ∗(λ, r, R) := max{μ(H1), μ(H3)},

where μ(H1) and μ(H3) will be obtained along the arguments below (see (4.4) and (4.7)). We stress that such
constants are fully explicit, depending only on λ, r, ρ, R, g(u) and a(x).

Checking the Assumptions of Lemma 2.1

Let I, J with I ̸= 0 and define v(x) as the indicator function of the set⋃i∈I I+i , namely

v(x) =
{
{
{

1 if x ∈ ⋃i∈I I+i ,
0 if x ∈ [0, P] \ ⋃i∈I I+i .

Verification of (H1). Let α ≥ 0. By contradiction, we suppose that there exists a P-periodic solution u(x)
of (2.3) with 0 ≤ u(x) ≤ R, for all x ∈ [0, P], such that at least one of the following conditions holds:
(h11) There is an index i ∉ I ∪ J such that maxx∈I+i u(x) = r.
(h12) There is an index i ∈ I such that maxx∈I+i u(x) = ρ.
(h13) There is an index i ∈ J such that maxx∈I+i u(x) = R.

Suppose that (h11) holds. Since v(x) = 0 for x ∈ I
−
i−1 ∪ I

+
i ∪ I
−
i , equation (2.3) reduces to (Eλ,μ). Consider at

first the case u󸀠(σi) ≥ 0. By Lemma 2.5 (with ϑ = 1), we have that

u(σi+1) ≥ r(1 +
1
2(μγ(r)‖A

r
i‖L1(I−i )e

−|c||I−i | − 1)) ≥ μ2 rγ(r)‖A
r
i‖L1(I−i )e

−|c||I−i |.

Thus, taking

μ > μ̂ri :=
2Re|c||I−i |

rγ(r)‖Ar
i‖L1(I−i )

, (4.2)

we obtain u(σi+1) > R, a contradiction. On the other hand, if u󸀠(σi) < 0, using the fact that x 󳨃→ ecxu󸀠(x)
is non-increasing on I+i , we have that u󸀠(τi) < 0. In this case, we can use the second part of Lemma 2.5
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(with ϑ = 1) to reach the contradiction u(τi−1) > R whenever

μ > μ̂li :=
2Re|c||I−i−1|

rγ(r)‖Al
i−1‖L1(I−i−1)

. (4.3)

Now, we suppose that (h12) holds. In this case a contradiction is immediately obtained by Lemma 2.3 (no
assumption on μ > 0 is needed).

At last, we assume that (h13) holds. As for the case (h
1
1) we have v(x) = 0 for x ∈ I−i−1 ∪ I

+
i ∪ I
−
i . Then we

can apply Lemma 2.8 (with d = ρ and ϑ = 1) in order to obtain

u(σi+1) ≥ R + μ‖Ar
i‖L1(I−i )χ(ρ, R)e

−|c||I−i | − λ‖a‖L1(I+i )Γ(R)e
|c||I+i ∪I

−
i ||I+i ∪ I

−
i |.

Taking

μ > μ̌ri :=
λ‖a‖L1(I+i )Γ(R)e

|c||I+i ∪I
−
i ||I+i ∪ I

−
i |

‖Ar
i‖L1(I−i )χ(ρ, R)e

−|c||I−i |
,

we obtain u(σi+1) > R, a contradiction. Notice that, contrarily to the case (h11), here it is not necessary to
consider the behavior of u(x) in the interval I−i−1.

We conclude that (H1) holds for

μ > μ(H1) := max
i=1,...,m
{μ̂ri , μ̂

l
i , μ̌

r
i}. (4.4)

Verification of (H2). Let u(x) be an arbitrary non-negative P-periodic solution of (2.3) such that u(x) ≤ ρ for
all x ∈ ⋃i∈I I+i . We fix an index j ∈ I and observe that on the interval I+j equation (2.3) reads as

u󸀠󸀠 + cu󸀠 + λa+(x)g(u) + α = 0.

Let ε ∈ ]0, 12 (τj − σj)[. As shown along the proof of Lemma 2.3 the inequality (2.7) holds. Then, integrating
the differential equation on [σj + ε, τj − ε], we obtain

α(τj − σj − 2ε) = u󸀠(σj + ε) − u󸀠(τj − ε) + cu(σj + ε) − cu(τj − ε) − λ
τj−ε

∫
σj+ε

a+(x)g(u(x))dx

≤
2ρ
ε
e|c||I

+
j | + 2|c|ρ.

This yields a contradiction if α > 0 is sufficiently large. Hence (H2) is verified.

Checking the Assumptions of Lemma 2.2

Let J ⊆ {1, . . . ,m} and ϑ ∈ ]0, 1].

Verification of (H3). By contradiction, suppose that there exists a P-periodic solution u(x) of (2.4) with
0 ≤ u(x) ≤ R for all x ∈ [0, P] such that at least one of the following conditions holds:
(h31) There is an index i ∉ J such that maxx∈I+i u(x) = r.
(h32) There is an index i ∈ J such that maxx∈I+i u(x) = R.

Suppose that (h31) holds. We consider at first the case u󸀠(σi) ≥ 0. We are going to prove that, if μ large
enough, then

u(x) > r and u󸀠(x) > 0, (4.5)

for all x ∈ [0, P]. This clearly contradicts the P-periodicity of u(x).

Proving (4.5) in I+i+1. Taking μ > μ̂ri (with μ̂ri defined in (4.2)), we have

μ > e|c||I−i |

γ(r)‖Ar
i‖L1(I−i )

and so, from Lemma 2.5, we obtain u(σi+1) > r (as ϑ > 0). Moreover, using the estimate on u󸀠(σi+1) provided



692 | A. Boscaggin et al., High Multiplicity and Chaos for an Indefinite Problem

in Lemma 2.5, we observe that u󸀠(σi+1) > 0 when

μ >
2λ‖a‖L1(I+i )ζ(r)e

2|c||I+i ∪I
−
i |

γ(r)‖a‖L1(I−i )
. (4.6)

Integrating (2.4) on [σi+1, x] ⊆ I+i+1 and using again Lemma 2.5, we obtain

u󸀠(x) = u󸀠(σi+1)ec(σi+1−x) − ϑλ
x

∫
σi+1

a+(ξ)g(u(ξ))ec(ξ−x) dξ

≥ u󸀠(σi+1)e−|c||I
+
i+1| − ϑλ‖a‖L1(I+i+1)Γ(R)e

|c||I+i+1|

≥ ϑr(12μγ(r)‖a‖L1(I
−
i )
e−|c||I

−
i ∪I

+
i+1| − λ‖a‖L1(I+i )ζ(r)e

|c||I+i ∪I
−
i ∪I

+
i+1| − λ‖a‖L1(I+i+1)

Γ(R)
r

e|c||I
+
i+1|).

Notice that the first of the above inequalities requires u󸀠(σi+1) ≥ 0, which is ensured by (4.6). Taking

μ > μ̃ri :=
2λ(‖a‖L1(I+i )ζ(r)re

|c||I+i ∪I
−
i ∪I

+
i+1| + ‖a‖L1(I+i+1)Γ(R)e

|c||I+i+1|)

γ(r)r‖a‖L1(I−i )e
−|c||I−i ∪I

+
i+1|

,

we finally obtain that u󸀠(x) > 0 for all x ∈ I+i+1. Consequently, u(x) ≥ u(σi+1) > r on I+i+1. We conclude that for

μ > max{μ̂ri , μ̃
r
i},

inequalities in (4.5) hold.

Proving (4.5) in I−i+1. Using the monotonicity of the map x 󳨃→ ecxu󸀠(x), we deduce that

u󸀠(x) ≥ ec(τi+1−x)u󸀠(τi+1) > 0 for all x ∈ I−i+1.

Thus the conclusion follows, since u(τi+1) > r.

Proving (4.5) in I+i+2. Integrating equation (2.4) on [τi+1, x] ⊆ I−i+1, we find
u󸀠(x) = u󸀠(τi+1)ec(τi+1−x) + ϑμ

x

∫
τi+1

a−(ξ)g(u(ξ))ec(ξ−x) dξ

> ϑμAr
i+1(x)χ(r, R)e

−|c||I−i+1| for all x ∈ I−i+1;

in particular,
u󸀠(σi+2) > ϑμ‖a‖L1(I−i+1) χ(r, R)e

−|c||I−i+1| > 0.

On the other hand, integrating equation (2.4) on [σi+2, x] ⊆ I+i+2, we find

u󸀠(x) = u󸀠(σi+2)ec(σi+2−x) − ϑλ
x

∫
σi+2

a+(ξ)g(u(ξ))ec(ξ−x) dξ

> ϑ(μ‖a‖L1(I−i+1)χ(r, R)e
−|c||I−i+1∪I

+
i+2| − λ‖a‖L1(I+i+2)Γ(R)e

|c||I+i+2|) > 0

for all x ∈ I+i+2, where the last inequality holds for

μ > μ∗,+i = μ
∗,+
i (I
−
i+1, I
+
i+2) :=

λ‖a‖L1(I+i+2)Γ(R)e
2|c||I−i+1∪I

+
i+2|

‖a‖L1(I−i+1)χ(r, R)
.

Then the solution u(x) is increasing in I+i+2 and hence u(x) > u(σi+2) > r on I+i+2. Therefore, the inequalities
in (4.5) hold in I+i+2.

Proving (4.5) in [0, P]. This is easily achieved by repeating the argument just described in order to cover
a P-periodicity interval. This eventually requires

μ > max
i=1,...,m

μ∗,+i .



A. Boscaggin et al., High Multiplicity and Chaos for an Indefinite Problem | 693

Having dealt with the case u󸀠(σi) ≥ 0, we now assume u󸀠(σi) < 0, which implies (by the monotonicity of the
map x 󳨃→ ecxu󸀠(x) in I+i ) that u

󸀠(τi) < 0. A contradiction can be achieved proceeding backward. More pre-
cisely, we may use at first Lemma 2.5 and then an inductive argument similar to the one explained above.
Conditions on μ will be replaced by the analogous inequalities

μ > μ̂li ,

with μ̂li defined in (4.3),

μ > μ̃li :=
2λ(‖a‖L1(I+i )ζ(r)re

|c||I+i−1∪I
−
i−1∪I

+
i | + ‖a‖L1(I+i−1)Γ(R)e

|c||I+i−1|)

γ(r)r‖a‖L1(I−i−1)e
−|c||I−i−1∪I

+
i−1|

and

μ > μ∗,−i = μ
∗,−
i (I
+
i−2, I
−
i−2) :=

λ‖a‖L1(I+i−2)Γ(R)e
2|c||I+i−2∪I

−
i−2|

‖a‖L1(I−i−2)χ(r, R)
.

Thus the contradiction u󸀠(x) < 0 for all x ∈ [0, P] can be proved for

μ > max
i=1,...,m

μ∗,−i .

Taking into account all the possible situations we conclude that case (h31) never occurs if

μ > μ(H3)
1 := max

i=1,...,m
{μ̂ri , μ̂

l
i , μ̃

r
i , μ̃

l
i , μ
∗,+
i , μ∗,−i }.

To conclude the proof, we suppose now that (h32) holds. By applying Lemma 2.8, the contradiction
u(σi+1) > R follows when

μ > μ̄i :=
λ‖a‖L1(I+i )Γ(R)e

2|c||I+i ∪I
−
i ||I+i ∪ I

−
i |

‖Ar
i‖L1(I−i )χ(r, R)

.

We conclude that case (h32) never occurs if

μ > μ(H3)
2 := max

i=1,...,m
μ̄i .

Summing up, we can apply Lemma 2.2 for

μ > μ(H3) := max{μ(H3)
1 , μ(H3)

2 , μ#(λ)} (4.7)

and therefore formula (2.4) is verified.

5 Globally Defined Solutions and Symbolic Dynamics
In this section we prove Theorem 1.3. Actually, we are going to give just a sketch of the argument, which
follows the same schemes of the one for the proof of [23, Theorem 4.5]. We also remark that one could adapt
to the present setting also the discussion developed in [11, Section 6], in order to show that the existence of
non-periodic bounded solutions coded by sequences of three symbols implies semiconjugation of a suitable
map induced by (Eλ,μ) with the Bernoulli shift.

Proof of Theorem 1.3. Given ρ > 0, we fix the constants λ∗, r, R, and μ∗ as in Theorem 1.2. The first crucial
observation is that all these constants depend (besides on g) only on the behavior of the weight function a(x)
on the intervals I+i and I

−
i with i ∈ {1, . . . ,m} (and not on the length P of the periodicity interval). As a conse-

quence, the conclusion of Theorem 1.2 holds (with the same constants) even if, in place of [0, P], an interval
of the type [n1P, n2P] (with n1, n2 ∈ ℤ and n1 < n2) is considered.

Let S = (Si)i∈ℤ ∈ {0, 1, 2}ℤ be an arbitrary sequence which is not identically zero. If S is km-periodic
for some integer k ≥ 1, then an application of Theorem 1.2 in the interval [0, kP] ensures the existence of
at least a kP-periodic solution uS(x) of (Eλ,μ) coded by S. If it is not the case, we approximate S with the
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sequence (Sn)n, where Sn ∈ {0, 1, 2}ℤ is the (2n + 1)m-periodic sequence defined as

Snj := Sj for j = −nm + 1, . . . , (n + 1)m.

An application of Theorem 1.2 on the interval [−nP, (n + 1)P] (at least for n sufficiently large, so that Sn ̸≡ 0)
leads to the existence of a non-constant positive (2n + 1)P-periodic solution un(x) of (Eλ,μ) such that
∙ maxt∈I+i,ℓ un(x) < r if Sj = 0 for j = i + ℓm,
∙ r < maxt∈I+i,ℓ un(x) < ρ if Sj = 1 for j = i + ℓm,
∙ ρ < maxt∈I+i,ℓ un(x) < R if Sj = 2 for j = i + ℓm
for every i = 1, . . . ,m and ℓ = −n, . . . , n.

A compactness argument (cf. [23, Section 4.3]) ensures the existence of a solution ũ(x) of (Eλ,μ) defined
onℝ and obtained as the limit of a subsequence of un(x). Passing to the limit as n → +∞, we have
∙ maxx∈I+i,ℓ ũ(x) ≤ r if Sj = 0 for j = i + ℓm,
∙ r ≤ maxx∈I+i,ℓ ũ(x) ≤ ρ if Sj = 1 for j = i + ℓm,
∙ ρ ≤ maxx∈I+i,ℓ ũ(x) ≤ R if Sj = 2 for j = i + ℓm
for every i = 1, . . . ,m and ℓ ∈ ℤ.

To conclude the proof we have to show that the above inequalities are strict. This can be done using
on one hand Lemma 2.3 (ensuring that maxI+i,ℓ un ̸= ρ) and on the other hand the arguments exploited in
Section 4.1 to prove that the alternatives (h11) and (h

1
3) can not hold (notice that for these the periodicity is

not necessary).

Remark 5.1. Given an integer k ≥ 2, Theorem 1.2 provides positive kP-periodic solutions of (Eλ,μ). In this
direction, it is natural to investigatewhether such solutions have kP asminimal period, namely, whether they
are not ℓP-periodic for any integer ℓ = 1, . . . , k − 1. A kP-periodic solution with this property is usually said
to be a subharmonic solution of order k (cf. [8] and [23, Section 4.1] for additional comments and references
on the subject).

Given an integer k ≥ 2, in order to produce at least a subharmonic solutions of order k, it is sufficient
to take the km-periodic sequence S = (Sj)j∈ℤ ∈ {0, 1, 2}ℤ given by S1 = 1 and Sj = 0 for j ∈ {2, . . . , km}. The
minimality of the period kP is a consequence of the behavior of the solution uS(x) given by S. Following the
discussion developed in [11, Section 6] and in [23, Section 4.2], one can give an estimate for the number
of subharmonic solutions of order k. Indeed, one can define a one-to-one correspondence between the ape-
riodic necklaces of length k on n colors and the non-null strings of length k on n symbols. Taking n = 3m

symbols/colors, the desired estimate is given by Witt’s formula

Σ3m (k) =
1
k ∑l | k

μ(l)3
mk
l ,

where μ( ⋅ ) is the Möbius function, defined onℕ \ {0} by μ(1) = 1, μ(l) = (−1)q if l is the product of q distinct
primes and μ(l) = 0 otherwise. We refer to [18, Remark 4.1] for an interesting discussion on this formula.

6 Related Results and Remarks
We conclude the paper with some complementary results and remarks.

6.1 Subharmonic Solutions

In the context of Theorem 1.1, if we further suppose that g(u) is of class C2 in an interval [0, ε] and satisfies
g󸀠󸀠(u) > 0 for every u ∈ ]0, ε], then the equation

u󸀠󸀠 + aλ,μ(x)g(u) = 0 (6.1)

has, for every λ > λ∗ and μ > μ#(λ), positive subharmonic solutions of order k for any integer k large enough.
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This follows from [8, Theorem 3.3], after having observed that the constant λ∗ given therein does not
depend on a−(x) (actually, is obtained exactly as in Lemma 2.3). Let us stress that such a proof is of sym-
plectic nature, being based on the Poincaré–Birkhoff fixed point theorem: therefore, the assumption c = 0 is
essential. Subharmonic solutions in the case c ̸= 0 can be found as in Remark 5.1 (for every integer k ≥ 1),
but only for larger μ, i.e., μ > μ∗(λ).

6.2 Dirichlet and Neumann Boundary Conditions

A suitable variant of Theorem1.2 is valid when equation (Eλ,μ) is coupledwith Dirichlet boundary conditions

u(0) = u(P) = 0

or Neumann boundary conditions
u󸀠(0) = u󸀠(P) = 0.

Let us recall that, in both cases,with a standard change of variablewe canassume c = 0 (cf. [17,AppendixC]).
In this context, it is possible to consider a slightlymore general sign condition,with respect to (a∗), for the

L1-weight a : [0, P] → ℝ. Precisely, a(x) can be allowed to have an initial negativity interval I−0 and, if m ≥ 2
or I−0 ̸= 0, to have I−m = 0, that is, a(x) can be non-negative in a left neighborhood of P, provided that there
exists at least one negativity interval (cf. [11, Section 7.2]).

The proofs require just minor modifications with respect to the ones given for the periodic problem.
Precisely, the appropriate abstract setting for Dirichlet and Neumann boundary conditions is described
in [11, Remark 2.1]; with this in mind, the general strategy in Section 4 remains the same. In order to ver-
ify the assumptions of the degree lemmas in Section 2.1, the estimates given in Section 2.2 can still be
exploited, since they are of local nature, and the boundary condition at x = 0 and x = P can be used in place
of the P-periodicity to reach the desired contradictions. See also Figure 1 for a numerical example.

As standard corollaries, one can give multiplicity results for radially symmetric positive solutions of
elliptic BVPs on annular domains (cf. [11, Section 7.3] and [21, Section 3]).

6.3 Stability Issues

Dealing with equation (6.1) and assuming further that g(u) is of class C2 in an interval [0, ε] and satisfies
g󸀠󸀠(u) > 0 for every u ∈ ]0, ε], some information about the linear (in)stability of the solutions found in Theo-
rem 1.1 and Theorem 1.2 can be given. Here, linear stability/instability is meant in the sense of steady states
of the corresponding parabolic problem, that is, a P-periodic solution u(x) of (6.1) is said to be linearly stable
(respectively, linearly unstable) if the principal eigenvalue ν0 of the P-periodic problem associated with

v󸀠󸀠 + (ν + aλ,μ(x)g󸀠(u(x)))v = 0

satisfies ν0 ≥ 0 (respectively, ν0 < 0), cf. [34, Definition 2.1]. The same definition can be given when (6.1)
is considered together with Dirichlet or Neumann boundary conditions (of course, the principal eigenvalue
is meant with respect to the corresponding boundary conditions). It is worth mentioning that, for P-periodic
solutions, this notion of linear stability is completely unrelatedwith respect to themore traditional one, based
on Floquet theory, arising as the linear version of Lyapunov stability [48].

Taking into account the above discussion, one can apply [8, Lemma 4.2] ensuring that ν0 < 0 for every
positive P-periodic solution u(x) of (6.1) satisfying ‖u‖∞ < ε. Therefore, choosing ρ ∈ ]0, ε[ in Theorem 1.2,
we conclude that all the 2m − 1 solutions associated with the strings S with Si ̸= 2 for all i = 1, . . . ,m, are
linearly unstable (recall that, by property (2.5), these solutions satisfy ‖u‖∞ < ρ). By a careful checking of
the computation in [8, Lemma4.2], one can deduce the same conclusionwhenDirichlet/Neumann boundary
conditions are taken into account.

In the same way we can also deduce that the small solution us(x) in Theorem 1.1 is linearly unstable:
this is consistent with [39, Theorem 1.3], proving, for the Neumann problem, that one solution is unstable
(while a second one is stable).
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(a) Graph of the weight term defined
as a(x) = 2 sin(2x) −max{0, sin(x)}
on [0, 2π] and a(x) = 0.2 on [2π, 8].
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(b) Graph of the nonlinear term
g(u) = u2(1 − u).
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(c) Graphs of 26 = 33 − 1 positive solutions of the Neumann boundary value problem
associated with (Eλ,μ), where c = 1, a(x) is as in sub-figure (a) with P = 8 (and so m = 3),
g(u) is as in sub-figure (b), λ = 12, and μ = 80.

Figure 1: High multiplicity of positive solutions for the indefinite Neumann boundary value problem associated with (Eλ,μ).

6.4 Asymptotic Analysis

By using the arguments described in [11, Section 5] and in [23, Section 3.5], it is possible to investigate the
asymptotic behavior for μ → +∞ of the solutions provided by Theorem 1.2 and Theorem 1.3 (with λ > λ∗

fixed). More precisely, if {uS,μ(x)}μ>μ∗(λ) denotes a family of solutions coded by the same string S, one can
show that, up to subsequences, the following hold:
∙ uS,μ(x) converges to zero uniformly in all the negativity intervals of a(x),
∙ uS,μ(x) converges to zero uniformly in the positivity intervals I+i,ℓ such that Si+ℓm = 0,
∙ uS,μ(x) converges to a positive solution of the Dirichlet problem associated with (Eλ,μ) on the positiv-

ity intervals I+i,ℓ such that Si+ℓm ∈ {1, 2} (notice that, from this discussion, it follows that such Dirichlet
problems have at least two positive solutions, cf. [49]).
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π
x

u(
x)

(a) Graph of the “large” solution uℓ(x) of
the Neumann boundary value problem
associated with (Eλ,μ), where c = 1, a(x)
and g(u) are as in Figure 1 with P = π
(and so m = 1). Notice that
∫
π
0 a(x)dx < 0. We take λ = μ ∈ {12, 15,
20, 30, 50, 100, 200, 500, 5000} and we
represent also the limit profile.

π
x

u(
x)

(b) Graph of the “large” solution uℓ(x) of
the Neumann boundary value problem
associated with (Eλ,μ), where c = 1, a(x)
and g(u) are as in Figure 1 with P = π
(and so m = 1). We take λ = 12 and
μ ∈ {12, 30, 100, 500, 2000, 104 , 105 ,
106 , 108} and we represent also the limit
profile.

Figure 2: Asymptotic analysis for the indefinite Neumann boundary value problem associated with (Eλ,μ) with respect to the
parameters λ and μ.

Similarly, one can discuss the case of Dirichlet and Neumann boundary conditions (in the Neumann case,
whenever a(x) starts or ends with a positivity interval I+i with corresponding Si ∈ {1, 2}, then uS,μ(x) con-
verges in such an interval to a positive solution of a mixed Dirichlet/Neumann problem). We omit the details
for briefness.

It is worth mentioning that, for the one-parameter equation u󸀠󸀠 + λa(x)g(u) = 0, that is, equation (Eλ,μ)
for λ = μ and c = 0, the asymptotic behavior of the two positive solutions when λ → +∞ has been carefully
investigated in [46]. Roughly speaking, the small solution us(x) converges to zero uniformly in the whole
interval [0, P], while the large solution uℓ(x) converges to 1 (respectively, to 0) uniformly on every compact
subinterval of the interior of the positivity intervals (respectively, negativity intervals), see [46, Theorem 1.3]
for the precise statement. Of course, this result is unrelated with the one discussed above for the two-
parameter equation (Eλ,μ), since in the latter case λ is fixed (and μ → +∞). See also Figure 2 for a numerical
investigation.
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